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Abstract

The Interledger Protocol (ILP) allows for lightweight
settlements across differently situated payment systems.
However, it reveals all transaction information (sender ad-
dress, receiver address, transaction amount) to on and off
path observers. This paper presents ILP-CEPA, an ap-
plication layer on top of ILP that uses Tor-style onion
routing to obscure this information. It works without
modifications to Interledger's underlying protocols, and
requires no additional coordination between nodes. Our
work shows that ILP-CEPA provides a number of secu-
rity guarantees, including the one aforementioned, at an
acceptably low performance overhead.

1 Introduction

The Interledger Protocol (ILP) is a multi-hop streaming
network protocol allowing for micropayments and inter-
operability between different ledgers. It makes miniscule
tradeoffs in security to allow for lightweight settlements
(unlike the Lightning Network). ILP can be used for more
than just cryptocurrency, but for this scenario, we will fo-
cus on its integration with cryptocurrencies.

When a sender sends value to a receiver over the In-
terledger, the sender connects to the Interledger network
sets up a payment channel with a connector, which are
analogous to packet routers over a network. Connectors
are payment facilitators that assist from getting from var-
ious senders to receivers without having to open indi-

vidual payment channels with each receiver as a sender.
They also facilitate atomic currency swaps based on an
exchange rate.

Privacy concerns arise because of ILP's packet design
in the STREAM protocol. Specifically, connectors are
responsible for large flows of smaller values facilitated
through STREAM and have access to large datasets from
packet analysis on their connected peers. In an Interledger
packet, the destination, source address, value, expiration
and data are all visible to intermediary connectors, who
are responsible for forwarding value from sender to re-
ceiver.

With this information, an Interledger connector already
knows the sender and receiver. Ideally there should be a
way to avoid being victim to a reveal of network topology
of all ILP value transfers that link payments with individ-
uals.

1.1 Motivation
The original proposal for this project was conceived by
Evan Schwartz, co-inventor of the Interledger Protocol.
While the base ILP construction is already deployed and
facilitating hundreds of thousands micropayments per day
(which is actually hundreds of dollars), there are many
payment-related use cases that require additional privacy
guarantees in order to be feasible. This commonly man-
ifests itself in scenarios where senders/receivers want to
minimize what a passive observer in the network is able to
learn about transactions. For example, corporations may
want to hide their balance sheet to protect the confidential-



ity of customers; individuals may want to protect them-
selves from mass data mining; entities executing large fi-
nancial transactions may prefer to transact without having
to worry about information leaks and the corresponding
effects on the market.

The goal of this project, dubbed ILP-CEPA, is to con-
duct research into the ways in which peer-to-peer payment
networks are anonymized and, more specifically, to pro-
duce a working implementation of one such solution for
ILP. Although these goals could be fulfilled in a multi-
tude of ways, the most pragmatic — given the semesters
limited timeframe — was to implement an onion-routed
overlay transport protocol as well as a wrapper encoding
for base ILP packets that enable onion routing.

2 Related Work

To our knowledge, ILP-CEPA is the first attempt to im-
plement anonymity on ILP. Due to ILPs conceptual sim-
ilarity to the TCP/IP stack (see Figure 1), implementing
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Figure 1: The Interledger Protocol stack. Our solution,
CEPA, is implemented as an application layer solution on top
of STREAM.

some form of network privacy such as onion routing (or
simulating a VPN construction) seemed like a promising
technique to test base anonymity guarantees.

Cryptocurrencies like Bitcoin and Ethereum are
pseudo-anonymous and all current onboardings from fiat
currencies are subject to Know Your Customer (KYC)
policies and Anti Money Laundering (AML) regulation.
Additionally, systematic monitoring of Bitcoin's unen-
crypted peer-to-peer network and analysis [3] of the
blockchain can reveal who is using Bitcoin and for what
purposes. Existent credit networks such as Ripple and
Stellar are also susceptible to the same problems.

From a business and privacy perspective, having leak-
age on the base layer is bad. The traceability of each coin
also puts the fungibility of all coins on a ledger at risk. We
believe some of these problems can be mitigated through
the use of a privacy layer over Interledger.

Privacy Ledgers Many proposals have been put for-
ward for work on anonymity-focused blockchain ledgers.
Complex zero knowledge proofs are in use across a num-
ber of projects [15] including ZCash, Monero and simi-
lar works. A separate line of works seek to increase the
anonymity of Bitcoin by mixing transactions (e.g. Coin-
Join, CoinShuffle, CoinSwap). Like Bitcoin, each of these
constructions require that all transactions are stored on the
blockchain. These solutions are all implemented as their
own system, and direct interoperability between them is
impossible without any coordination layer.

Interoperability Solutions ILP also falls under this
category as it facilitates the transfer of value across mul-
tiple ledgers through an atomic-swap-like construction.
Comparative work includes the Cosmos Network (and
Polkadot), which leverages a construction similar to that
of BTC-Relay known as Inter-Blockchain Communica-
tion (IBC) in which each Cosmos chain is a light client of
every chain its connected to. Cosmos in this sense is ca-
pable of doing generic state transitions across chains (e.g.
smart contract calls), but is a heavier solution that is not
optimal for value transfers.

Payment Channels Networks Payment Channel Net-
works (PCNs) are network overlay solutions that results
in parties transacting off-chain. The Lightning Network
(LN) [11] operates as a network of bidirectional payment
channels transferring value out of band. The function-
ality is carried out by Bitcoin scripts that are included
in transactions, signed through third-party clients run by
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users. PCNs do not require transactions on-chain beyond
the opening (and closing, if desired) of payment channels.

CEPA is primarily inspired by Lightning-Onion [5, 6,
12], the Lightning Networks native onion routing imple-
mentation, with many similar objectives and security con-
siderations. Notably, the Lighting Networkss base pay-
ment channels operate differently than ILPs and, as such,
require different considerations. For example, on the
Lightning Network, on-path transactions share a Hashed
Time-Lock Contract (HTLC) pre-image for the entire pro-
cess, which makes their onion-routing implementation es-
pecially prone to collusion attacks. Additionally, when
the HTLC is revealed on-chain for a payment channel
close, then a single node on the payment path can match
the pre-image to the specific transaction and figure out the
sender and receiver of the money. Our implementation,
CEPA, is also vulnerable to colluding parties, but not to
the same degree as the Lightning Network. Since ILP's
STREAM layer operates without HTLCs, the vector for
collusion attacks on CEPA resembles that of Tor, which is
in general harder to execute than on Lightning.

Tor and Cryptocurrencies Several works have pro-
posed routing the native networking protocols of various
cryptocurrencies over the Tor network. Many issues have
come up in the course of exploring this solution trajec-
tory. One such example is a vulnerability exposed when
Tor is used in conjunction with Bitcoin [1] which in-
volves the manipulation of Bitcoins anti-DoS network-
ing rules. Therefore, we opted to implement a Tor-style
onion routing protocol on top of native ILP protocols,
instead of routing ILP packets through the existing Tor
network. This eliminates the vulnerabilities presented in
these works.

3 Background and ILP
ILP encapsulates a suite of multiple different protocols
building off of one another to form the full payment net-
work stack. Its goal is to consolidate many disparate pay-
ment systems. Connectors act as the nodes on the network
which make sure packets are routed and forwarded to end
recipients correctly. Their incentive is being able to gener-
ate incremental revenue via currency bid-ask spread. The
bulk of the components that make up ILP are:

Bilateral Transfer Protocol (BTP). The base commu-

nication layer between peers. Defines a link-layer proto-
col that communicates arbitrary information over secure
WebSocket and is compatible with a wide range of under-
lying ledgers through the usage of Plugins.

ILPv4. The titular core protocol (similar to IP) respon-
sible for the construction of packets including safety mea-
sures like expiry times (equivalent to traditional TTL),
and demarcating currency identifiers (e.g. XRP, BTC,
etc.) and amounts. Key to this component are estab-
lishing unconditional payment channels (contrast this to
LNs conditional payment channels which use Hash Time-
Locked Contracts, or HTLCs); these take the form of
signed claims against funds held on a ledger.

STREAM. The primary transfer protocol (similar to
TCP or UDP). This layer enables packets containing a
cryptographic condition whose fulfillment is only known
to the recipient to be relayed across a path. If everything
goes well and the receiver wants the funds, the receiver
provides the fulfillment, which triggers the funds to move
between each connector in the payment path. This way,
the fulfillment proves that the money was delivered to
the intended recipient and also acts as a request to ac-
tivate payment. Inspired by QUIC, the protocol multi-
plexes multiple streams of packets over the same connec-
tion. STREAM ensures end-to-end delivery over multiple
ILP connectors.

Simple Payment Setup Protocol (SPSP). STREAM
does not specify how payment details, such as the ILP
address or shared secret, should be exchanged between
the sender and receiver. SPSP is a minimal protocol that
uses HTTPS for communicating these details.

Interledger Dynamic Configuration Proto-
col (ILDCP). The address configuration protocol
(similar to DHCP). Assigns hierarchical addresses
to nodes in a parent-child fashion, for example:
g.us.acmebank.acmecorp.sales.199 may re-
fer to a connector held by the sales division of acmebank
in the US.

Our system, ILP-CEPA, is implemented as an applica-
tion layer that sits on top of STREAM.
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4 Security

4.1 Adversary and Threat Model
The protocol makes the following assumptions about net-
work adversaries:

1. Off-route passive observers can constantly monitor
traffic from every on-route node.

2. Every ILP node can retain message information for
an indefinite amount of time.

3. ILP nodes may be controlled by adversaries, but it is
statistically unlikely that all nodes along the path are
controlled by the same adversary.

4.2 Security Guarantees
Under the above assumptions about adversaries, we re-
quire our solution to guarantee the following properties
of the system:

1. Participants in an onion-routed circuit don't know
their exact position within the circuit.

2. Participants within an onion-routed circuit do not
know the identity of any other participants in the cir-
cuit, except for their neighboring connectors.

3. Participants cannot distinguish the sender of the pay-
ment, nor the receiver of the payment.

4. Participants within a route don't know how many par-
ticipants were involved in the entire payment route.

5. At best, even the receiver would only know a throw-
away wallet address from payment channel state, as-
suming the user has done best practices outside of
the protocol.

6. If a connector is compromised, it won't leak informa-
tion about messages previously transmitted over the
connector.

Notably, we do not require that this protocol is se-
cure against timing analysis, or in situations where onion
routers can collude with each other. Tor, for example, is
not secure against these two threats. Our model is not ei-
ther.

5 System Design
We designed our solution as a layer that sits on top of
ILP-STREAM. This ensures that connectors can run ILP-
CEPA without requiring any modifications to the under-
lying ILP protocols. The following section outlines the
various components of our system:

5.1 Overview
The protocol picks a number of CEPA-compatible con-
nectors, and routes an onion-circuit over them to a desti-
nation node. Each link in the onion-circuit is a STREAM
connection, which may be routed through ILP connec-
tors as described in the base Interledger Protocol. See
Figure 2 for a diagram of the completed route. Mes-
sages to the destination are incrementally encrypted with
ephemeral symmetric keys established with each of the
CEPA-connectors. The details on how this route is estab-
lished, routed on, and secured is described in detail below.

5.2 Connector Set-up
When a connector boots up, it instantiates a server that lis-
tens for incoming ILP-STREAM connectors. This server
is defined by an ILP address, and a secret key that is gen-
erated as part of the server instantiation process. For any
connector to connect to this server, they require knowl-
edge of both the secret key, and the address. For base
ILP, this is assumed to be handled out-of-band (For exam-
ple, the client and destination verbally exchange addresses
of accounts they want to transact money between.) This
is impractical when defining larger chains with onion-
routers, so we require that all connectors publish both
their address and their STREAM server secret key to a
publicly viewable directory service at set-up time. In ad-
dition, each connector generates a public key and private
key using 1024-bit RSA, and publishes the public key to
the directory service as well. This asymmetric key is used
in the key-exchange step to generate ephemeral shared
keys. Since base ILP does not define a Public Key In-
frastructure, we define our own in this step.

In place of a novel PKI, it would be possible in theory,
to just establish Simple Payment Setup Protocol (SPSP)
connections between the sender and each of the Onion
Routers, and run Diffie-Hellman key exchange over SPSP
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Figure 2: ILP-CEPA circuit.

to establish shared keys. SPSP runs over HTTPS, so it
would leverage the PKI of the Internet. However, such a
scheme would leak an unordered list of the onion routers
on the route, so we decided to implement our own PKI in-
stead. The roadmap for ILP includes a custom-addressed
based PKI in the coming year, so we believe that our ap-
proach would integrate well into that.

The directory service stores a key-value mapping be-
tween ILP addresses of STREAM servers to a tuple con-
taining their shared key and public key.

5.3 Client Setup
When a client wishes to send an onion-routed message to
a destination address, the following steps take place:

1. The client queries the directory service for a list of
all connectors running the CEPA protocol.

2. The client determines how many hops they wish their
onion-routed circuit to contain. This number defaults
to 3, but can be increased to any integer up to 10 if
the client so desired. The number of hops cannot be
less than 2.

3. The client chooses 3 (or whatever their desired num-
ber of hops) onion routers from the list returned by
the directory service. In our base implementation,
this is done at random. However, since this is done

client-side, clients are free to choose how to deter-
mine which onion routers to use. For example, they
might know a list of friendly nodes, have certain
nodes they dont trust, choose geographically prox-
imate nodes, nodes with best exchange rates, etc.

5.4 Key-Exchange

Before the client can construct the packet payload, they
must establish shared keys with each onion router. Estab-
lishing pairwise keys with each onion router is not secure,
because it would be trivial for an off-path passive observer
to correlate network flows to learn the onion routers and
sender for a given onion-routed circuit. Therefore, keys
are negotiated incrementally through the onion-routed cir-
cuit.

5.5 Connector Set-up

We choose Elliptic Curve Diffie-Hellman (ECDH) key ex-
change as our key-exchange algorithm of choice, because
it is fast, requires only two messages over the network,
and guarantees forward secrecy.

To create a new circuit, the sender (lets call her Al-
ice) sends a create message to the first node in the onion-
routed circuit (call it Bob.) The payload of this create
message contains the first half of the Diffie Hellman Key
Exchange handshake. That is, gx, encrypted with Bobs
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Figure 3: Like Tor, CEPA also negotiates keys incrementally
through the onion routed circuit.

public key, which Alice retrieves from the directory ser-
vice. Bob receives this message, and computes the shared
secret Kss1 = gxy , for some randomly chosen key y. Bob
replies to Alice with a payload containing gy . From this,
Alice can compute the same shared secret Kss1. Now, Al-
ice and Bob have established a symmetric key shared se-
cret they can use to encrypt messages between each other.
To extend the circuit further, Alice can send an extend
message to Bob to tell him to extend the onion circuit to
a new connector (lets call her Carol). The payload of this
message contains gx (for a different x than the one she
chose to negotiate with Bob) This message is encrypted
with Carols public key, such that Bob cannot learn the
value of the new x. This payload, along with Carols ILP
address, is encrypted with Kss1, Alice and Bobs shared
key, and sent to Bob. On reception, Bob unencrypts the
message, learns Carols ILP address, and forwards the pay-
load to her. Carol can decrypt this payload using her
asymmetric private key, to learn gx. Carol generates a
new y, computes a secret key Kss2 = g(xy), which will
be the ephemeral key negotiated between Carol and Alice.
Carol sends an extend message back to Bob, which con-
tains gy . Bob forwards this message back to Alice. Just as
Bob was used to extend the message to Carol, Carol can
be used to extend the circuit forward, up to any number of
connectors. The last connector in the route should be the
destination connector Alice wishes to ultimately commu-
nicate with.

This circuit-level handshake protocol achieves unilat-
eral entity authentication (Alice knows shes handshaking

with the OR, but the OR doesnt care who is opening the
circuit Alice uses no public key and remains anonymous)
and unilateral key authentication (Alice and the OR agree
on a key, and Alice knows only the OR learns it). Since it
uses Diffie Hellman, It also achieves forward secrecy and
key freshness [16].

5.6 Packet Construction

Modeled after Tor's Onion Routing, CEPA packets consist
of a payload recursively encrypted with ephemeral keys
of the on-path onion connectors, from furtherest away to
closest. It also contains an HMAC for integrity, the ad-
dress of the next hop connector, and is padded to a fixed
length. See Figure 3 for illustration.

5.7 Packet Routing

When an connector receives an onion routed packet, the
following process take place.

1. The received message is padded to the max length
with null bytes to prevent length correlation attacks.
Therefore, the connector must strip away all null
bytes from the end of the message to get the origi-
nal payload.

Figure 4: ILP-CEPA simplified packet construction. The base
packet is ’wrapped’ in the public keys of the routers on-path
of the circuit. For visual clarity, this diagram does not show
padding.
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2. The connector sees from one of the packet header
fields that the received packet is an CEPA packet. It
uses the ephemeral shared secret Kssi to decrypt the
message.

3. This payload is parsed as a JSON to give a structured
collection of key-value pairs that the connector can
read. It contains the ILP address of the next hop con-
nector (which may be null), an HMAC checksum,
and the payload to be forwarded to the next hop.

4. If the next hop if null, then the payload is the mes-
sage sent from the sender. The destination can act
on this message as desired. This action is outside the
CEPA protocol.

5. If the next hop is not null, the connector queries the
directory service for the public key and shared se-
cret of the connector corresponding the next hop ILP
address. The connector uses the address and shared
secret to establish a new ILP-STREAM connection
to the next hop.

6. The connector takes the payload, and pads it with
null bytes up to the max length. This message is sent
along the STREAM connection to the next hop.

6 Implementation

6.1 Client

We built a client that initiates the ILP-CEPA protocol
described above in Node.js. We built on top of ILP's
base connector repository, which provided a Node.js im-
plementation of a barebones ILP connector. For all the
cryptography functions, we used crypto, a Node.js pack-
age that provides a JavaScript ES6 wrapper to OpenSSL's
cryptography functions. For symmetric key encryption,
we used AES-256 in CBC mode. For the Diffie-Hellam
Key Exchange, we used the fast ECDHE variant, sam-
pling from the secp256k1 elliptic curve as defined in the
libsecp256k1 library. Our HMAC used SHA256 as the
base hashing function.

6.2 CEPA Connector
We also built an implementation of a CEPA-connector,
which is capable of participating in onion-routed circuits.
Like the client, this was built in Node.js using Javascript.
For all the cryptography functions we used the crypto
library. This implementation was under 1000 lines of
Javascript code.

6.3 Directory Service
The core Interledger team is currently working on design-
ing and developing a Public Key Infrastructure for ILP.
Such a design would greatly influence the design of the di-
rectory service. Furthermore, we did not believe that the
directory service implementation was a core part of our
protocol. Tor has an existing, well-studied distributed di-
rectory service that our design would look very similar to.
The directory service does not introduce major latency or
performance implications, so we decided to implement a
simple, centralized directory service for the sake of study-
ing our protocol for this paper.

Our directory service was a Flask webserver, written
in Python, hosted on an online hosting platform. It ex-
poses a REST API that allowed connectors to: publish
their address, public key, and STREAM shared secret.
This is used when a CEPA-connector boots up and ini-
tializes. retrieve a list of all CEPA-connector addresses,
and their related data. This is used for the client to pick
an onion route. get the public key and STREAM shared
secret for a given address. This is used by intermediate
CEPA-connectors to establish connections.

The data was stored in an in-memory Python key-value
store. The URL of the webserver was hardcoded into the
connector code. The implementation of the directory ser-
vice was very simple, clocking under 50 lines of Python
code.

6.4 Network Simulation
We set up provisioning with Terraform and Python on
DigitalOcean, using multiple 1vCPU, 1GB instances sta-
tioned across their NYC, SFO, and LON regions. This
would allow for us to run several servers, connect a client
and send onion messages across to a destination. With
more time, we can perform very detailed analysis on ILP
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in general that would provide more insight into the over-
head of ILP-CEPA.

7 Evaluation
Our evaluation strategy was two pronged. First, we de-
signed various attacks, and tested our protocol's defense
against them. This was done by spinning up a number of
CEPA-connectors on a local testnet, and simulating traffic
between nodes. For passive attacks, we studied collected
traffic flow logs and looked for vulnerabilities. For active
attacks, we assumed that one or many of the nodes were
controlled by an adversary (in this case, us), and tried to
see what kind of attacks were possible with that amount of
access to the network. Our results from these experiments
are descibed in the next section. In the following sec-
tion, we analyze some of the performance characteristics
of our protocol. Overall, we are satisfied with the number
of threats we can protect against, while acknowledging
that there remains certain weaknesses and vulnerabilities.

7.1 Performance Analysis
We studied how the time to complete a payment, mea-
sured as the time between the source querying the direc-
tory service and the destination receiving the message,
and how it varied as the number of hops varied. For each
number of hops, we repeated the experiment 100 times
and took the average. This was executed on a local testnet,
where all the connectors were instantiated on the same
computer. Therefore, the time is entirely the result of CPU
time, and not The result of this experiment is described in
Figure 4.

We see from this graph that, as would be expected, the
time taken increases with the number of hops. However,
it is not a linear relationship. The delta time increases
for every extra hop. This is because AES encryption is
slower for larger inputs. AES is the bottleneck in terms of
CPU cycles, and since the network latency is zero on the
local test network, this encryption/decryption time domi-
nates. This is a problem, performance wise. One would
think that clients that only need two hops could only en-
crypt twice, incurring a much smaller time penalty than
more paranoid clients that want to use, for example, 10
hops. However, this opens up the protocol to a length cor-

relation attack. Since each level of encryption increases
the message length, messages sent along the first circuit
would be significantly smaller in length than those sent
along the second. This would allow a passive observer to
learn which nodes belong to which circuit (although not
the order of the nodes.) Therefore, all messages sent over
the CEPA protocol should be padded to the max length of
some constant number of hops. Messages that don't use
the full length can simply pad with extra null bytes.

A corollary of this design decision is that the protocol
must specify some number of hops, and have all messages
encrypt/pad to that length. No circuit would be allowed to
have more hops than that. Conversely, circuits that need
only a small number of hops like 2-3 must incur the time
penalty of encrypting a very large payload (since under
AES, encrypting null bytes is no faster than encrypting
random bytes) This penalty could be several seconds is
the maximum number of hops is large (approximately 10
seconds).

8 Attacks and Defenses
In designing ILP-CEPA, we considered a wide number of
possible attack vectors. Below we summarize some of
them, and describe how well our system can withstand
these attacks.

8.1 Passive Attacks
These are attacks in which the attacker reads transit infor-
mation without altering it, with the intention of analyzing
the information for malicious purposes.

Observing Node Traffic Patterns. Traffic analysis
on a node will not reveal their destination, or the unen-
crypted contents of the data they send or receive. How-
ever, it will reveal traffic patterns around frequency of data
sent and received, as well as the addresses of nodes send-
ing/receiving data to/from it. Correlating these at a con-
nection level would require significant work on the part of
the adversary, since multiple connections each with multi-
ple STREAMs could be running simultaneously on a sin-
gle node.

Observing Content. All content is encrypted, and
therefore unobservable to an off-path observer. Due to
onion-wrapping, an on-path observer cannot observe the
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Figure 5: Transaction completion time for varying number of hops.

unencrypted message either, except for the destination
node.

Node Failure. STREAM transactions are not atomic,
but rather sent as a stream of atomic micropayments.
If a node along the STREAM circuit goes down, error
messages propagate back to the initiator of the connec-
tion. The protocol recovers by automatically construct-
ing a new route (which does not contain the unresponsive
node), and proceeds to send the remainder of the transac-
tion amount along that route. In this process, the sender
incurs only a very very small amount of monetary loss
(enough to be negligible.) If an onion-router dies, no such
guarantees are made. The sender will receive a timeout
message, and the onus lies with the sender to re-initiate
a payment. The only guarantee is that the monetary loss
with also be small (enough to be negligible.)

End-to-End Size Correlation. All payloads are
padded to equal length. This puts a cap on the maximum
number of hops, but prevents guessing onion routers.
However, sealing off this attack vector comes with a
heavy performance effect. The protocol must hard-code
the maximum number of hops, and pad all messages to
that length. This means that all transactions need to en-
crypt this large number of bits, even transactions that

elected to have a much smaller number of hops. This
trade-off is described in more detail in the next section.

End-to-End Ledger Correlation. ILP plugins allow
each connector to have multiple accounts, preventing cor-
relation of ledger transactions. The view an attacker has
of the overall transaction space is much and disjointed
than on a single ledger, making attacks that attempt to
trace a transaction to completion [7] improbable.

Protocol Distinguishability. In the current implemen-
tation, it is quite easy for an on or off-path adversary to de-
termine whether a given message is being sent over CEPA
or not. All CEPA packets are the same length (due to
padding), so that is the easiest way for an adversary to de-
termine how a message is being transmitted. One possible
way to mitigate this is to split CEPA packets into arbitrary
length, and STREAM those. The CEPA connector would
reconstruct the full payload on its end. However, even this
could be attacked. CEPA nodes would still take more time
to process CEPA messages than not CEPA messages (be-
cause of the overhead of AES decryption, padding, etc.),
so timing attacks could be used to leak the protocol be-
ing used. In the future work section, we describe a major
change to the base ILP protocol, involving routing ILP
messages themselves over STREAM in a VPN-like con-
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figuration, that could be used to fully seal off this attack
vector.

Timing Attacks. As mentioned in the Security Guar-
antees section, this approach does not directly protect
against timing attacks. A passive observer could observe
data of CEPA-standard length transmitted along an in-
coming STREAM connection to a node, and then ob-
serve CEPA-data along an outbound STREAM connec-
tion. With high probability, these two packets would be-
long to the same onion circuit, and therefore, the passive
observer can learn the preceding and following connectors
in the circuit. This attack could be made harder by ran-
domizing wait times at each hop, or by sending dummy
packets along random STREAM connections, but such
tactics only make timing attacks harder, not impossible.
Especially with the amount of Big-Data based tools at a
large adversary's disposal, timing attacks are very diffi-
cult to protect against, even on established networks like
Tor. The best defense is to have large networks with high
traffic that masks individual circuits in the noise, but this
would require widespread adoption of both ILP and our
protocol.

8.2 Active Attacks
These are attacks where an attacker compromises a node,
or attempts to otherwise modify data for malicious pur-
poses.

Packet Spinning. This attack aims to block other onion
routers from being selected in circuits. The attack in-
volves placing a malicious relay node inside an anonymiz-
ing system and keeping legitimate nodes busy. We achieve
this by creating circular circuits and injecting fraudulent
packets, crafted in a way that will make them spin an ar-
bitrary number of times inside our artificial loops. At the
same time we inject a small number of malicious nodes
that we control into the anonymizing system. By keeping
a significant part of the anonymizing system busy spin-
ning useless packets, we increase the probability of hav-
ing our nodes selected in the creation of legitimate cir-
cuits, since we have more free capacity to route requests
than the legitimate nodes. This technique may lead to the
compromise of the anonymity of people using the system
[10].

Having a maximum number of nodes that can be in-
cluded in a single onion-routed circuit greatly increases

Figure 6: Example of a Packet Spinning Attack. A malicious
client constructs a packet wrapped with the same ORs'public
keys multiple times.

the amount of resources needed to execute such an attack.
However, it is a valid concern and is especially danger-
ous in the network's early days when the network doesnt
have a high number of CEPA connectors running on it. As
the network scales, the amount of computational power
needed to execute such an attack increases making it pro-
hibitive for an adversary short of nation-state actors.

Denial of Service. Analysis by artificially congesting
circuits and evaluating changes in latency is possible. An
attacker can obtain the entire path of a user [14, 8]. Tor
node traffic loads can be estimated and analyzed against
known traffic patterns. This scenario can easily be set up
with Packet Spinning-style DoS'ing.

Routing Attacks. Based around limiting a victims
routing selection space and then analyzing their circuit
construction (again, possible through Packet Spinning).
If the attacker is chosen for the circuit, they may be able
to analyze route choice and extrapolate based on the de-
fault routing algorithm available. CEPA combats this by
using a pseudo-random algorithm for the router (but not
necessarily ILP) node selection.

Replay Attacks. Replaying one side of the Elliptic
Curve Diffie-Hellman key exchange protocol will result in
the creation of a different ephemeral shared session key.
Therefore, past messages cant be unencrypted even if an
adversary had access to a recorded session and compro-
mised a onion router node.

There are also attacks possible on the directory service,
but since we only implemented a bare-bones version and
expect it to change with the release of ILP's PKI, we did
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not enumerate vulnerabilities in the directory service.

9 Future Work
One big limitation with the current implementation of
ILP-CEPA is that onion routed traffic looks very differ-
ent from regular, non-onion routed ILP traffic. A conse-
quence of this is that off-path adversaries can, with rel-
atively little effort, determine which nodes are running
CEPA onion-routing software, and which are just routing
on the base ILP protocol. This doesnt break any of our
security guarantees, but it is an unfortunate side-effect of
our implementation.

We are aware of a relevant solution to this problem
and discuss a brief design of an architecture to mitigate
this leakage of information. Taking advantage of ILP's
ILDCP parent-child hierarchy, a construction of a virtual
private network topology can be constructed. The ben-
efits of this construction allow for the free transport of
packets within the VPN after establishing an encrypted
point-to-point tunnel with the parent. A scenario where
this construction may be useful is in the case where ap-
plication administrators manage multiple connectors and
want a single entry-point for secure payments.

The current status of changing public-key-
infrastructure on Interledger is that it's unlikely to
do more than what SPSP is doing, which leverages TLS
certificates at a specific payment pointer (which can be
resolved to an HTTPs URL). Onion routing works by
including public keys in the domains which can then be
used to establish ephemeral keys, so we could in theory
try to create payment pointers via our own version of
SPSP that leverages a similar construction.

Although onion routing is tried and tested, there are
newer works that work more effectively for a smaller
number of nodes, and additional there are claimed solu-
tions to the collusion problem. Ideally we would take
these constructions[2, 4, 13] and implement several of
them to compare. Alongside improving privacy, there are
plently more ways we can make this protocol more effi-
cient. [9] One thing we did was publish 1024bit RSA pub-
lic keys to the directory service, but we should be using
ed25519 keys since they’re way more compact and pro-
vide similar strength guarantees. We can also make use of
CPU cycle analysis and try to make the server function as

asynchronously as possible.
Additionally, we would like to formalize the crypto-

economic incentives behind running an onion router.
There is currently no incentive for someone running an
ILP connector to also run an onion router CEPA node, be-
yond good will and volunteerism. Likewise, Tors relay
network consists entirely of volunteers. We believe this
is not sufficient. The next step would be to create some
of pay structure to encourage participation. This is a non-
trivial task since expanding the onion router subset from
volunteers to care about the network to the general public
opens up the system to attacks from entities trying to make
a quick buck at the expense of the network. However, we
believe this is possible. The unmodified Interledger proto-
col incentivizes participation by rewarding all forwarding
connectors with a small percentage reward of the trans-
action they enable. They do this while still guarantee-
ing transaction completion (although its not fully atomic.)
We believe a similar reward scheme could be extended to
CEPA connectors, but would require careful consideration
of a range of attacks.
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