
BlindTM – A Turing Machine System
for Secure Function Evaluation

Rafael Dutra
rtd@berkeley.edu

Benjamin Mehne
bmehne@berkeley.edu

Jay Patel
patel.jay@berkeley.edu

ABSTRACT
Secure Function Evaluation (SFE) is the problem of per-
forming an algorithm while keeping the input, output and
intermediate values hidden from curious parties. This prob-
lem is of increasing interest due to the prevalence of cloud
services that allow users to store data as well as execute code
remotely.

Previous implementations of SFE systems use “garbled cir-
cuits” in which computation is modeled as logic gates which
are evaluated while keeping the truth values of each wire hid-
den. In this work, we present BlindTM, the first implemen-
tation of a “Blind Turing Machine” which performs secure
function evaluation by computing on and manipulating the
tape of a Turing Machine in an encrypted manner. BlindTM
supports several tunable parameters for performance and se-
curity, and allows secure computation to be expressed in a
more flexible manner than garbled circuits, through states
and symbols manipulated by a Turing Machine.

1. INTRODUCTION
Secure Function Evaluation (SFE) is the problem of per-
forming an algorithm (function) securely – keeping the in-
put, output and intermediate values hidden from curious
parties. Multiple means exist to implement SFE, including
garbled circuits and – more recently – fully homomorphic
encryption. Systems that implement SFE are of increasing
interest due to the prevalence of cloud services that allow
users to store data as well as execute code in the cloud. In
this work, we focus on applications that involve two par-
ties – one of which (the client) is computationally bounded.
As cloud computation platforms become more common – as
platform as a service (PAAS) becomes a more common busi-
ness model – the ability for a computation to be performed
remotely without leaking private data on a cloud server will
become of increasing relevance.

For example, a hospital may want to perform some analysis
on its patient data that requires a large amount of processing
and memory resources. It would be very convenient to have
this analysis executed by a cloud service provider, but it is
often necessary by law to maintain the confidentiality of the
patient data and the outputs of the analysis. Furthermore,
if the hospital could have this computation performed with
minimal interaction with the cloud server, then it could use
its own computation resources for its own needs and contract
out for more resources only when necessary. This could be
achieved by a system that provides SFE between two parties,

with bounded interactions between them.

In this project we designed, implemented, and evaluated the
first Blind Turing Machine implementation that allows Se-
cure Function Evaluation to be performed by a curious cloud
server. The Blind Turing Machine shown here is based on
the construction proposed by Rass [12] to use group homo-
morphic encryption to implement the transitions of the Tur-
ing Machine in a secure manner. In the model we are target-
ing, the server receives the encrypted algorithm in the form
of a Blind Turing Machine, along with the client’s encrypted
inputs. It then executes the algorithm on the encrypted in-
put, returning an encrypted form of the final output that
can be decrypted by the client. The desired security guar-
antee is that the server cannot derive any information about
the data being processed with a non-negligible probability
(semantic security). We evaluate our implementation with
varying degrees of security guarantees as well as compare
with garbled-circuits based implementations.

2. ALTERNATIVE METHODS FOR
SECURE FUNCTION EVALUATION

The problem of SFE has been studied under various ap-
proaches. The most common technique is the use of Yao’s
garbled circuits [13, 14]. In Yao’s garbled circuits, the idea
is to represent an algorithm by a circuit with logic gates and
evaluate the circuit while keeping the truth values of each
wire hidden. This is a protocol performed by two parties:
the Garbler and the Evaluator. The Garbler creates two
random keys for each wire (one for each truth value) and
sends a garbled truth table of each gate to the Evaluator.
The Evaluator can then execute each logic gate on encrypted
values.

Other approaches are the ones studied under the more gen-
eral area of Secure Multiparty Computation (SMC). The
main goal of SMC is to allow the evaluation of a function
that takes inputs from two or more different parties. Gar-
bled circuits can be used for this purpose: the garbled circuit
evaluator can choose some inputs to the logic gates and ob-
tain the corresponding key from the Garbler by using an
oblivious transfer. This mechanism is a superset of two-
party SFE, since it also allows the evaluation of functions
that receive inputs from different parties.

Most recently, in 2009, Fully Homomorphic Encryption
(FHE) was shown to be a practical approach to SFE [2].
This method relies on an encryption scheme that is homo-



morphic with respect to the two group operations (+, ·).
That is, addition or multiplication operations performed on
the ciphertext produces a result which, when decrypted,
matches the result of applying the identical operations on
the plaintext. One disadvantage of this method is that cur-
rently known implementations of FHE systems are not effi-
cient when compared to other cryptographic schemes. This
mechanism provides an advantage over garbled circuits in
that it can represent more easily traditional programs.

3. STATE OF THE ART
Fairplay [8] was the first system which demonstrated the
feasibility of two-party secure computation using garbled
circuits. Fairplay programs are implemented in a domain-
specific language called Secure Function Definition Language.
This language is then processed into a circuit representa-
tion (in the form of Secure Hardware Definition Language),
which is then garbled. Optimizations are applied to elimi-
nate dead code and optimize the gate layout. The resulting
garbled circuit is in the form of a Java object which can
then be executed on an input. The circuit specification lan-
guage fixes the size of each input and intermediate variable
to enable direct creation of the circuits.

The original Fairplay project was used as the inspiration for
many subsequent projects. One such system called TASTY
[4], utilized a combination of homomorphic encryption and
garbled circuits to improve on the Fairplay implementation
and automatically generate protocols for SFE communica-
tion. A secure computation framework from [5] is a system
that attempts to improve the efficiency of garbled circuit
computation over similar Fairplay-based systems. We refer
to this framework as FastGC in the comparison section.

More recently, Malka et al. described VMCrypt [7], a soft-
ware architecture for parallel garbled circuit evaluation with
the explicit goals of scalability and software modularity in
mind. Their system prominently featured an API (Abstract
Programming Interface) to enable developers to integrate
garbled circuits into their own applications and to easily
create new/reuse circuits as needed.

All of the freely and publicly available implementations of
SFE focus on garbled circuits-based systems. This paper
is the first implementation of a Turing Machine-based SFE
system. In section 6, we provide comparisons against two
garbled circuits based systems.

4. CRYPTOGRAPHIC BACKGROUND
In 2013, two constructions for a Turing Machine which com-
putes over encrypted data were introduced. Goldwasser et
al. propose a model which uses fully homomorphic encryp-
tion [3]. Rass’s construction, which is used by the BlindTM,
uses a weaker cryptographic primitive, homomorphic public-
key encryption with equality test (HPKEET) to build a Tur-
ing Machine that works over an encrypted tape, using the
homomorphic properties of the encryption. One advantage
of this construction is that it does not require a fully ho-
momorphic encryption, which is usually less efficient than
other cryptographic primitives.

4.1 Turing Machine architecture

In this project we worked with multi-tape Turing Machines.
The advantage of having many tapes is that it provides an
easy way to represent programming constructs. Additional
tapes may be used to copy arrays of symbols, to implement
queues, stacks and other data structures.

Each tape extends infinitely in both directions. Each tape
has its own head and all heads can move independently. The
machine can read the symbol below the head of any, or all of,
its tapes in order to decide the next transition. The machine
also maintains a state and uses a finite set of logical rules to
determine the next state, the symbols that should be written
on each tape, and the movements of each head.

Thus the transitions of the Turing Machine can be repre-
sented as a mapping

(State, [Symbol ])→ (State, [Symbol ], [Move]).

For example, the following entry in the mapping

(q, [σ1, σ2])→ (q′, [σ′1, σ
′
2], [move1 ,move2 ])

determines that this 2-tape Turing Machine, when in state
q and finding symbols σ1, σ2 under its heads, should go to
state q′, replace these symbols by σ′1, σ

′
2 and move each head

according to move1,move2.

The basic idea of the Blind Turing Machine is that each
transition should be transformed into

(gq, [gσ1 , gσ2 ])→ (Encpk(q′ − q),
[Encpk(σ′1 − σ1), Encpk(σ′2 − σ2)],

[move1,move2]).

Some further explanation is required here. Firstly, g is a
generator in a group where the discrete logarithm is assumed
to be computationally hard. That is, for each value x, we
assume that it is infeasible to recover x from gx. In this way,
the exponentiation x 7→ gx works as a commitment of the
value x.

So the evaluator has access to the commitments of the cur-
rent state q and the symbols σ1, σ2. By using these com-
mitments, the evaluator finds the appropriate transition in
the transition table and is able to retrieve encryptions of the
differences ∆q = q′ − q, ∆σi = σ′i − σi.

The HPKEET encryption scheme used here is described
in §4.2. It is homomorphic, which allows the evaluator
to obtain an encryption of the next state by calculating
Encpk(q′) = Encpk(q′ − q) · Encpk(q). The same proce-
dure is performed on tape symbols σi. This scheme also
allows equality tests of ciphertexts. It does so by enabling
the evaluator (who knows a secret token that allows compar-
ison) to obtain commitments of the plaintexts (that can be
compared for equality). In this way, the evaluator can obtain

a commitment gq
′

of the next state. The same can be done
for the next tape symbols read from the tapes (which could
be in new positions since the heads can move). From these
commitments, the evaluator proceeds to the next iteration.

The use of homomorphism for calculating the next config-
uration was chosen by Rass in its Blind Turing Machine in



order to provide stronger security guarantees against adver-
saries which are not authorized to run the Turing Machine
(those that do not have the authorization token). This de-
sign allows, for example, clients to send an Encrypted Turing
Machine to a cloud service provider but only send the au-
thorization token at a later date. While the service provider
has not received the authorization token, it is not capable
of executing the Turing Machine or extracting information
from it.

4.2 Homomorphic Public Key Encryption
with Equality Test

In order for this construction to work, a Homomor-
phic Public Key Encryption with Equality Test (HP-
KEET) must be constructed. We follow the construction
proven to be CCA1-secure (chosen-ciphertext attack) in
[12]. The HPKEET scheme is described by five procedures
(KeyGen,Enc,Dec,Aut, Com). Besides the standard func-
tions for key generation, encryption and decryption, there
is an authorization function Aut that outputs a token and
a comparison function Com that uses the token to compare
two ciphertexts.

The construction is based on an underlying Homomorphic
Public Key Encryption (HPKE) scheme which will be de-
noted by (G,E,D). We assume the ciphertext space in this
HPKE primitive is a group G for which the discrete log prob-
lem is hard. Let g, h be two different generators for G. The
construction is defined as follows.

KeyGen. let (sk1, pk1) and (sk2, pk2) be two pairs of keys
generated by G. Output sk = (sk1, sk2), pk = (pk1, pk2).

Enc. sample a random value s. Output the ciphertext
(c1, c2, c3) = (Epk1(m), gm · hs, Epk2(s)).

Dec. verify if the ciphertext (c1, c2, c3) is well-formed by

checking gDecsk1
(c1) · hDecsk2

(c3) = c2. In the affirmative
case, output Decsk1(c1).

Aut. output sk2.

Com. to compare ciphertexts (c1, c2, c3), (c′1, c
′
2, c
′
3), check

if c2 · h−Dsk2
(c3) = c′2 · h−Dsk2

(c′3). In the affirmative case,
output ‘equal’, otherwise ‘not equal’.

It is easy to see that this HPKEET scheme is homomorphic
if we assume the underlying HPKE scheme is additively ho-
momorphic.

4.3 Damgård ElGamal encryption
The underlying HPKE scheme suggested in [12] is Damg̊ard’s
version of ElGamal encryption [1]. This is a simple modifi-
cation to the original ElGamal encryption that allows it to
be proved CCA1-secure [6]. In our implementation, we use
the group of invertible integers modulo p for a prime num-
ber p. The number of bits of p is a configurable security
parameter.

In the original ElGamal encryption, the secret key is a num-
ber x and the public key is the commitment gx. We assume
the discrete logarithm is hard for group G, so that obtaining

x from gx is infeasible. Then to encrypt a message m, a ran-
dom number r is sampled and the ciphertext is constructed
as (gr,m · (gx)r).

In Damg̊ard’s version, an extra term is included in the ci-
phertext. The secret key now consists of two different num-
bers x, y and the public key is composed by the com-
mitments gx, gy. Then the ciphertext is constructed as
Epk(m) = (gr,m · (gx)r, (gy)r) for a random r. With this
extra term, it is possible to check if the ciphertext is valid
before decrypting it. This is enough to prove the system
CCA1-secure.

The problem of using Damg̊ard ElGamal encryption (DEG)
as the HPKE scheme used to construct HPKEET is that
DEG is multiplicatively homomorphic. It is easy to see that
Epk(m) · Epk(m′) = Epk(m ·m′). To turn this scheme into
an additively homomorphic one, we can just encrypt a com-
mitment vm of the plaintext m, instead of encrypting m
directly. Here, v may be any generator of the group G.

In particular, the HPKEET ciphertext is adapted to be
(c1, c2, c3) = (Epk1(gm), gm · hs, Epk2(hs)). This way we
can still allow comparisons in the presence of the token sk2,
since this token can be used to decrypt hs and then obtain
the value of gm.

The problem now is how to allow decryption, since the plain-
text m is ‘committed’ as gm. This can be solved if we assume
all plaintexts m come from a reasonably small space. Then
we can maintain a lookup table that maps commitments to
plaintexts.

Note that this extra step of encrypting commitments vm

instead of directly encrypting m is only necessary because
the chosen HPKE in our implementation was DEG, which is
multiplicatively homomorphic. If we used a HPKE scheme
which is already additively homomorphic, such as Paillier
encryption [10], no modification would be needed. Paillier
encryption will be explored in a future work.

4.4 Security challenges
The method described above for creating an encrypted Tur-
ing Machine that operates over encrypted data is not by
itself enough to achieve security. There are some challenges
that need to be addressed to allow this Blind Turing Ma-
chine to be applied in a real secure system.

Firstly, the head movements are completely unencrypted to
the evaluator. As will be discussed in §5.2, we should make
sure the Turing Machine has oblivious head movements to
avoid leaking information about the inputs, and the algo-
rithm being performed on the input.

Another problem is that the evaluator has access to the com-
parison token and therefore is able to compare any two tape
symbols or any two states. This may leak significant infor-
mation about the contents of the inputs and the behavior of
the Turing Machine. For example, the evaluator can readily
calculate the frequencies of different symbols in the input
tape.

We address this problem by performing a blow up of state



Figure 1: Overview of the system: Everything within the
shaded blue rectangle is performed by the BlindTM system.

Figure 2: Overview of how the system works: The BTM
(BlindTM) is produced as from Figure 1, the client encrypts
the input tape as described in §4.2, the server runs the
BlindTM, and the client decrypts the output as in the same
section.

and symbol spaces, as will be described in §5.3. In [12], each
state and tape symbol is mapped into one random plain-
text. The plaintext space is assumed to be much larger
than the state space and symbol space used by the Turing
Machine. This is required to guarantee a high min-entropy
and avoid simple brute-force attacks. In our implementa-
tion, each state and symbol can actually be mapped to more
than one plaintext, in order to prevent attacks based on ci-
phertext comparisons.

5. BLINDTM IMPLEMENTATION
BlindTM is written in the Java language. The system im-
plemented takes a Turing Machine and transforms it into a
Blind Turing Machine through a series of three phases. We
also include infrastructure for running an unmodified Tur-
ing Machine, specified with our API. The application of the
phases can be seen in Figure 1. The resulting Blind Turing
Machine, though being Turing complete, requires further in-
frastructure than a regular Turing Machine specified in our
API. The Blind Turing Machine receives encrypted tape val-
ues as its input and outputs an encrypted form of the tape
after the computation has completed. This design can be
seen in Figure 2.

5.1 Turing Machine Representation
There are many representations of Turing Machines avail-
able, and many of which have limitations that are unneces-
sary for the proofs used in [12]. In order to construct the
most useful Turing Machine representation, as many limita-
tions as possible were removed while maintaining the neces-
sary components of the Turing Machine. In our representa-
tion, a Turing Machine can have any number of tapes, any
size alphabet (specified in bits) for the tape cells, any num-
ber of states, and any number of deterministic transitions
up to the limits imposed by the Java Virtual Machine envi-
ronment. Furthermore, we do not require that a state have
a complete transition table. During the execution of a Tur-
ing Machine as specified in our implementation, if a state is
reached such that the value read from the tape has no tran-
sition, it is taken to be a transition to a halting statement.
In general, we expect that such transitions will represent an
error in logic in the application. Future work may use the
final state of the Blind Turing Machine execution to check

qCompl, 0, qCompl, 1, >

qCompl, 1, qCompl, 0, >

Figure 3: Excerpt of a simple binary complement program
as input for BlindTM. The first transition can be read as
“when in state qCompl and the head is on 0, transition to
state qCompl, write a 1 to the tape, and move the tape right.”

whether the program reached a state that the programmer
specified to be a halting state.

In our system, the programmer constructs a TuringMachine
object which must specify the number of tapes, the alphabet
bit size, starting/initial state, and the initial value for each
tape cell. This TuringMachine then must have its transi-
tion table loaded. Transitions are specified by a mapping
(State, [Symbol]) → (State, [Symbol], [Move]). Users can
input the transitions in an easy to understand text format
shown in Figure 3. Furthermore, we have a code gener-
ation interface which uses lambda functions to more effi-
ciently generate transition tables for programs with a large
alphabet space and many states.

The system maps each state identifier to a distinct integer.
A tape cell value is read from each tape and is used as a
lookup table to find the next state. Three head movements
are possible for each tape: left, right or no movement. The
inputs of the Turing Machine can be loaded into one or more
tapes.

Once the TuringMachine object is constructed, it is passed
to the three phases of the BlindTM system.

5.2 Oblivious Turing Machine
The first phase of the BlindTM system is the transformation
that makes it oblivious with regards to head movements.
Consider the Turing Machine that reads the value at the
initial head position on a binary tape, and moves left if it
is 1 and right if it is 0. By running this Turing Machine,
one can clearly obtain information about the input from its
head movement. Furthermore, the head movement in this
example is not necessary for correctness (the output tape is
unchanged, and one halting state can be used).

From this example, it is clear that the head movement may
reveal characteristics of the input. In order to mitigate this
issue, we create an Oblivious Turing Machine. An Oblivious
Turing Machine is one where the position of the head is
determined by the size (and not content) of the input and the
time step. For instance, the typically implemented Turing
Machine that bitwise AND’s two binary tapes and prints to
an output tape is oblivious – the Turing Machine starts on
the left side of the input and moves right, writing the output
to the output tape at each step. The head movement in this
case is only a function of the input size and the time – any
content of the same size yields the same head movements.

Programmers using the BlindTM API must specify if their
Turing Machine is already oblivious or our system will at-
tempt to change them into an Oblivious Turing Machine.
Many Turing Machines – machines adding two numbers, per-
forming bitwise operations, calculating Hamming distance –



Figure 4: Transformation used to obtain an Oblivious Tur-
ing Machine.

are typically implemented in an Oblivious Turing Machine
or can be easily transformed into one. Performing these
changes manually prevents an increase in overhead by the
automatic transformation. It should be noted that detecting
whether a Turing Machine is already oblivious is non-trivial
and, if completeness is desired, is reducible to the Halting
Problem. Naively, one may think that if each state has the
same movement for all transitions, then the Turing Machine
is oblivious, but this is not true. Consider a state that al-
ways has the head move left, but half of its transitions lead
to a state that always moves right and the other half lead to
a state that always moves left. If only one movement type is
used for all except the halting state, then it is still not nec-
essarily oblivious, as two inputs of the same size may have
different length execution paths. For a Turing Machine to
be oblivious, all paths must have the same movement pat-
tern, which can only be detected easily in a narrow set of
instances. Exploring the space of heuristics to automati-
cally detect Oblivious Turing Machines in general is left to
a future work.

5.2.1 Oblivious transformation
Figure 4 represents the method we used to transform the
original Turing Machine into an oblivious one. Special mark-
ers (the symbols $ in the figure) are used to represent left
and right bounds of the tapes. Intuitively, they represent
the bounds of where the heads of the original Turing Ma-
chine could have been at the current stage being simulated.
These heads are represented by the letters H in the figure
and are always between the two end markers. The new heads
of the transformed (oblivious) Turing Machine always move
together (vertical bar in figure) and will be referred to as
the superhead. At each stage, the superhead moves from
left to right and from right to left, pushing forwards each of
the end markers $ by one unit.

This Oblivious TM is able to simulate the original TM by
manipulating the heads of the original TM when the super-
head goes over them. Local buffers are used to store the
required data for these manipulations. They are stored as
part of the state of the new TM, as shown in Figure 4. At
the beginning of each stage, there is one symbol buffer (σ
bits) per tape that stores the symbol below each head and
one state buffer (S bits) that stores the current state of the
original TM. Using these values, the Oblivious TM is able to
determine the next transition: next symbols to write under
the heads, next movements to perform and next state to go

to. The state is stored in the state buffer of S bits and each
new symbol to be written is stored in a symbol buffer of σ
bits. The movements occupy two bits each and are stored as
part of the three control bits attached to each symbol buffer.

After this first step, the symbol buffers contain the symbols
that should be written under each head. During the pass
of the superhead, those symbols are written at the positions
of the original heads (marked H) and the heads are moved
if necessary. The new symbol below the head is read and
stored in the buffer. If the original head is supposed to
move left, this is done during the left pass of the superhead.
If it needs to move right, it is done during the right pass. If
the head needs to stay stationary, this can be done in any
of the passes (left, for example).

In this construction, the state of the Oblivious TM with T
tapes requires T (σ + 3) + S + 2 bits and each tape cell re-
quires σ + 2 bits, including the control bits that determine
the movements of the heads and the places to read and write
the special markers H and $ in the tapes. A naive imple-
mentation of the transition function would be a lookup ta-
ble with 2T (2σ+5)+S+2 entries. To reduce the memory over-
head, we used two tables. The Transition Table is used at
the beginning of each stage to determine the next transi-
tion. It does not depend on the symbols currently under
the superhead, which are all blank, since the superhead is
at the leftmost position of the tapes, which was never used.
From this observation, the size of this table can be reduced
to 2T (σ+3)+S . The other table is the Symbol Table, used to
manipulate the symbol buffers and the symbols of the tapes.
In our implementation, only one symbol table can be used
for all tapes, allowing its size to be 22σ+4. For example, in a
TM with 3 tapes, 2 bits per symbol and 4 bits per state, the
naive implementation would need a table of size 233, while
our implementation uses one table of size 219 and another
of size 28, making the system more practical.

The local buffers are encoded using random values. In Fig-
ure 4, each red rectangle represents a block of bits that needs
to be encoded. As discussed in §5.3, each of those blocks can
be encoded to many different values in order to hide infor-
mation. The control bits that represent the markers $ and
the movement of the superhead do not need to be encoded,
because the information they store is always visible to the
evaluator of the Turing Machine.

The security of this model is based on the assumption that
no information can be extracted from the blocks of bits after
they have been encoded as (possibly many) random values.
So after the first step that uses the Transition Table, the
new symbols that should be written under the heads remain
hidden and the new state of the original TM also remains
hidden. And since the moves of the heads are encoded in
conjunction with the symbol buffers, they also cannot be
discovered by the evaluator. Then, during the right pass
and the left pass of the superhead, the Symbol Table is
used to update the symbol buffers and the symbols below
the superhead. At each step, both of these blocks of ran-
domly encoded symbols are updated for each tape, and there
are many different representations for each of them. So the
evaluator cannot find out where the actual head movements
took place. The control bits that indicate where the head



is, which movement the head should perform and where the
head needs to be dropped are encoded jointly with the sym-
bol values. So, from the evaluator’s perspective, all tape
operations look the same, independently of the fact that a
given head is being manipulated or not.

This simple construction takes time O(n2) to simulate n
steps of the original TM. There is a construction from Pip-
penger and Fischer [11] with runtime O(n log(n)), which
is the best possible, but this construction is applied to a
single-tape TM. We considered implementing this construc-
tion after transforming the multi-tape TM to a single-tape
one. The transformation from multi-tape to single-tape is
very similar to our implementation of the Oblivious TM de-
scribed above: the single head needs to “find” all the heads
at each tape before it can reach a decision for the current
stage. So this transformation to a single-tape TM would
already produce a O(n2) overhead, invalidating the possible
gain that would be obtained by the O(n log(n)) algorithm
of [11].

5.3 State and Symbol explosion
The second phase of the BlindTM system is the blow up
of the number of different states and symbols. Before this
phase the head movements of the Turing Machine are al-
ready obfuscated from any curious observer, but the values
of the states and tape symbols are clearly visible. At the end
of this phase, a direct comparison between the states/tape
cells and the original Turing Machine becomes infeasible.
This phase is broken into three parts to counter three is-
sues: the comparison of states related to some known input,
the comparison of the tape to some known input, and the
comparison of tape writing behavior to that observed with
some input.

5.3.1 State-space explosion
The issue of a direct state comparison can be naively handled
via duplicating states - for any state q, create some states
q′, q′′, q′′′, et cetera. For each of these new states, popu-
late them with the same transition functions as q. Then,
to make certain that they are attainable in the Turing Ma-
chine, randomly select transitions that lead to q and redirect
them to one of the q′, q′′, q′′′, · · · . Increasing the number of
equivalent states does not increase the runtime of the Turing
Machine, since each additional state performs the same as
the original state and no execution path is increased. An
alternative mechanism that could be used to increase the
number of states would be to allow for new intermediate
states between original states, but this would increase the
runtime by some constant factor. The simple state-space
explosion method we use here was chosen to minimize the
runtime overhead, at the expense of increasing the size of
the representation of the Turing Machine. Note that even
with the increased number of states, it is possible to revert
to the original Turing Machine by deduplicating states that
have similar transitions and write the same value to the tape.
This can be done inductively, starting at the halting state(s)
to recover the entire machine – increasing the state-space is
not sufficient to prevent a curious attacker from recovering
the state space, which can then be used to determine char-
acteristics of the input. In our implementation, each state is
assigned a random identifier and a mapping is kept, emulat-
ing a one-time pad. This exposes another attack available

to a curious adversary – if the adversary has some auxiliary
knowledge of the inputs (or can create some inputs), it can
then gain information about how they are processed and
thereby gain information about subsequent inputs. This is
handled in the third phase of our system. The number of
states created from the original state is a controllable secu-
rity parameter.

5.3.2 Tape-space explosion
In order to mitigate the ease by which an attacker can dedu-
plicate states after the state-space explosion phase, we im-
plement a tape-space explosion. First we create a second,
larger alphabet for the tape that is a superset of the original
alphabet. Then we map each element on the original tape
to some non-empty set of elements in the second tape’s al-
phabet. This is performed for each tape. For each transition
that is performed for some tape symbol σ from the original
tape, one of the σ′, σ′′, σ′′′, · · · tape symbols assigned to it
from the second tape that is used to replace σ. After this
transformation, deduplicating the states requires the tape
symbols to be first deduplicated so that it is possible to find
equivalent transitions. Since the final tape is passed back as
the output of the Turing Machine, it is possible to construct
a machine via this explosion scheme that is the same as a sec-
ond machine without this explosion mechanism. The results
of these two machines would not be meaningfully different.
Note that this explosion also functions like a one-time pad
and has the same drawbacks – if the adversary could influ-
ence or know from some external source, multiple equivalent
inputs, it could use the runtime characteristics to dedupli-
cate the tape space. The number of inputs necessary for
an effective deduplication scales with the size of the second
tape – this is a controllable security parameter.

For the tape-space explosion to be effective, at least some
set of the tape symbols must be used to initialize the tapes.
Since the tape is not bounded in size, we must either use
one symbol to denote a blank (not yet used) tape cell or
reveal to the executer a set of cell values that we consider
to be equivalent to “blank”. Since there is no improvement
in security by revealing multiple equivalent “blank” values,
we instead let only one value denote blank for unused cells
(we may have multiple “blank” equivalents in cells the Tur-
ing Machine populates or is populated as part of input). If
we only introduced symbols from the first, smaller alpha-
bet when writing values on the tapes, then deduplication of
transitions would be trivial. Thus, we ensure that the write
operations of the tape value σ are transformed into one of
σ′, σ′′, σ′′′, · · · .

5.3.3 Non-uniform blow-up
The explosion factor for any state or tape value should be
determined by the distribution of that state or tape value
during runtime. For instance, if one state was rarely at-
tained – say it could only be attained via an unlikely ex-
ecution path over the space of inputs – then having many
shadow states for it would only minorly change the distri-
bution of states achieved for the input space. If some state
was highly symptomatic of a likely partition of inputs, then
having many shadow states for this original state would cre-
ate a more uniform distribution of achievable states during
runtime. A similar logic can be applied to tape values. For
instance, imagine a Turing Machine that reads some value α



Algorithm Input
bits

Alphabet
Bitsize

States Transitions Oblivious

AND 512 2 2 5 True
COMP 512 2 4 19 True
MULT 128 2 10 72 True
HAM 256 2 6 19 True
PAL 512 6 3 8257 False

KNAP 50 3 12 23553 False

Figure 5: Algorithms implemented using the BlindTM sys-
tem.

from the initial head position, then changed the value at α
cells left of the starting head position to be α, writing back
the same value read for all other encountered tape cells. To
make this Turing Machine oblivious, discussed in §5.2, let
the Turing Machine always move, in total, to a fixed number
β of cells to the left such that ∀α : β > α. When this Turing
Machine is run, without tape-space explosion, the value of
the first cell is trivial to determine. Tape space explosion
helps mitigate this issue by changing the values written dur-
ing the steps that move the head to α left cells. Since the
Turing Machine does not allow the read cell to be stored as a
variable, the writing back of the same value will be done via
transitions of the form q, σ → q′, σ, left . After the tape ex-
plosion, this transition will look like q, σ → q′, σ′, left , which
is the same form that the final state that writes back α (or,
in this case, the α-equivalent value) to the tape.

6. SYSTEM EVALUATION
To evaluate the BlindTM system, we first microbenchmark
the runtime of each individual transformation from an un-
encrypted Turing Machine: homomorphic encryption, obliv-
ious head movement, state/tape blowup. Next, we bench-
mark our system by measuring end-to-end runtime and com-
paring it with existing garbled circuit implementations on a
set of common algorithms. Finally, we conclude with a dis-
cussion of improvements necessary to make the implemen-
tation more practical.

We constructed several programs in our Turing Machine lan-
guage. Some algorithms were chosen to enable comparison
with programs distributed with existing garbled circuit im-
plementations, while others were chosen to demonstrate the
flexibility of our programming paradigm.

• Bitwise AND (AND)

• “Millionaires” [13]/Unsigned Comparator (COMP)

• Binary Multiplication (MULT)

• Hamming Distance (HAM)

• Palindrome Detection (PAL)

• Knapsack Problem (KNAP)

Figure 9 shows the range of input sizes and state space re-
quired for each of these Turing Machines. We also note
which computations are oblivious by nature, as these ma-
chines will not require additional oblivious transformation
(§5.2).

For evaluation, a 64-bit 2.3 GHz processor with 8GB RAM
was used with default Java Virtual Machine parameters.

0 200 400 600 800 1000 1200
Security Parameter (bits)

0

20000

40000

60000

80000

100000

120000

140000

R
u
n
ti
m
e
 (
m
s)

AND
MULT
HAM
COMP

AND
MULT
HAM
COMP

Figure 6: Runtime comparison of HPKEET with increas-
ing security parameter. Largely dominated by modular ex-
ponentiation of client-side encryption and decryption.

0.0

0.2

0.4

0.6

0.8

1.0

R
u
n
ti

m
e
 (

m
s)

10000

10500

11000

11500

12000

Client

Server

Non
Oblivious

Manual
Oblivious

Auto
Oblivious

0
50

100
150
200
250
300

(a) Palindrome.

0.0

0.2

0.4

0.6

0.8

1.0

230000

235000

240000

245000

250000

Client

Server

Non
Oblivious

Manual
Oblivious

Auto
Oblivious

0
50

100
150
200
250
300

(b) Knapsack.

Figure 7: Comparison of runtime between two methods of
oblivious head movement.

Server time denotes the time to evaluate the Turing machine,
and client time denotes the time to construct the Turing Ma-
chine and retrieve the results from the returned results (as
shown in Figure 2). All runtimes are averaged over three
trials with a fixed seed to the pseudo-random number gen-
erator. Any results omitted indicate they did not complete
within our timeout threshold of 10 minutes.

6.1 Homomorphic Encryption
Figure 6 shows the total (client and server) runtime of vari-
ous algorithms as the security parameter increases from an
unencrypted Turing Machine to 1024 bits. Recall that the
security parameter is the number of bits of the prime num-
ber p that defines the group used for encryption. As the
security parameter increases, security is enhanced, because
the encryption becomes computationally harder to break.
However, the client-side computations to encrypt and de-
crypt messages dominate the run-time due to the expensive
modular exponentiation operations.

6.2 Oblivious Head Movement
Oblivious head movement requires that the movements of
the heads depend only on the length of the input, not on
its content. This restriction is placed to ensure the evalu-
ator does learn any side-information about the contents of
the tapes or the algorithm being performed. Many of our
implemented algorithms, specifically the ones most similar
to circuit algorithms, are already oblivious by nature. In or-



0.0

0.2

0.4

0.6

0.8

1.0

R
u
n
ti
m
e
 (
s) 20

40

60

80

100

120

140

160

0 1 2 3 4 5 6
Blowup Factor

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AND
COMP
PAL
MULT

AND
COMP
PAL
MULT

Figure 8: Runtime of auto-obliviated machines with in-
creasing blowup factor.

der to better understand how the oblivious head movement
requirement affects the runtime of the Turing Machine, we
formed two machines for each problem: one in which the
Turing Machine was manually made to be oblivious, and one
in which the Turing Machine was automatically made obliv-
ious using the construction described in §5.2. We performed
this experiment for both our Palindrome and Knapsack pro-
grams.

As shown in Figure 7, our results indicate that manually con-
structing an oblivious algorithm results in almost no change
in the runtime taken by the Turing Machine. However, the
simple O(n2) algorithm adds a significant memory and run-
time overhead.

We also note the sharp increase (three orders of magnitude)
in the number of steps taken by the evaluator in running the
Turing Machine, i.e. the number of transitions taken.

Knapsack Palindrome
Non oblivious 506 2050

Manual oblivious 546 3074
Auto oblivious 514602 8415250

Figure 9: Number of TM transitions taken by evaluator
under different methods of oblivious transformation.

These results suggest that the oblivious head movement se-
curity guarantees are reasonable if a programmer is able to
write their algorithm in an oblivious manner. This is often
possible by decomposing the problem into smaller oblivious
subtasks, and thus the programmer can avoid the overhead
required by auto-oblivious transformation.

As mentioned in §5.2, there is a construction to generate
an oblivious Turing Machine that runs in O(n logn) by Pip-
penger and Fischer, which is proven for a single tape Turing
Machine. For future work, we hope to adapt the Pippenger
and Fischer construction to multi-tape Turing Machines and
measure its relative efficiency.

6.3 State/Tape Blowup
State/Tape blowup is also necessary to ensure that running
the machine does not leak information about the contents
of the tapes to the evaluator. Without blowup, an attacker

0 5 10 15 20 25 30 35
Blowup Factor

0

20000

40000

60000

80000

100000

120000

140000

R
u
n
ti
m
e
 (
m
s)

AND
MULT
HAM
COMP

AND
MULT
HAM
COMP

Figure 10: Comparison of runtime with increasing param-
eters of state/tape blowup. MULT timed out for blowup
factors greater than 16.

could gain information about the distribution of time spent
in states and/or the symbols contained and being written to
the tapes.

Figure 10 demonstrates the effect of blowup as the parame-
ter increases from 1 (no blowup) to 32, increasing exponen-
tially. We find that even for Turing Machines with relatively
large numbers of states and transitions, such as Multiplica-
tion, the blowup introduce minimal overhead up to a factor
of 8. However, when combined with other transformations,
blowup does exacerbate inefficiencies in runtime, as shown
in Figure 8.

6.4 End-To-End Measurements
6.4.1 Combining All Transformations

Due to the large overhead incurred with auto-oblivious head
movement, we perform end-to-end tests of our system with
Turing Machines that are already constructed in an oblivious
manner.

Figure 11 indicate the runtime with various increasing val-
ues of the security parameter and blowup factor. These
results are encouraging because they demonstrate the fea-
sibility of executing a Blind Turing Machine with all the
necessary security guarantees and a runtime on the order of
minutes. However, these results in isolation are difficult to
understand, and so we compare our runtimes with the cur-
rent state of the art method for secure function evaluation
– garbled circuits – on a set of common algorithms.

6.4.2 Garbled Circuits Comparison
Figure 12 shows a comparison of BlindTM with two
well-known garbled circuits implementations, Fairplay and
FastGC. We compare with algorithms that were distributed
as examples with these systems. We note that Fairplay uses
a security parameter of 160 bits, whereas the newer FastGC
system uses a security parameter of 1024 bits. These results
indicate the BlindTM performs comparably to Fairplay, a
first-generation garbled circuits implementation. However,
BlindTM presents a higher overhead as compared with the
newer garbled circuit implementation FastGC, even with
BlindTM using a significantly smaller security parameter.



0.0

0.2

0.4

0.6

0.8

1.0

R
u
n
ti
m
e
 (
m
s) 50

100

150

200

250

300

SP=64, BU=2
SP=64, BU=4
SP=128, BU=2

AND COMP MULT HAM PAL
0

2

4

6

8

10

12

14

Figure 11: End-to-end runtime of programs. Includes ho-
momorphic encryption, blowup, and oblivious head move-
ment.

This is primarily due to the poor scalability of HPKEET;
mitigations of this factor are described in §6.5.

These results represent a preliminary comparison between
the garbled circuits and BlindTM model in that the tested
computations are easily expressible in circuits and thus more
likely to perform well in the garbled circuits construction.
We believe the Turing Machine programming paradigm is
more flexible and enables easier expression of more complex
algorithms such as sorting a list or dynamic programming
algorithm such as knapsack. In future work, we plan to
implement such algorithms in garbled circuits to allow for a
comparison.

Finally, it should be noted that theoretical optimizations of
garbled circuits have been published since the last release of
FastGC or Fairplay, but the authors were unable to find an
open-implementation of such systems.

6.5 Future Improvements
The practicality of the BlindTM system is limited by two
factors: the computational cost of using HPKEET for com-
parisons and the storage/representation overhead of using
a Turing Machine as described in §5. While automatically
creating an Oblivious Turing Machine, incurs a high over-
head, it can be mitigated by manually designing a Turing
Machine with the oblivious property. In addition to these
obstacles, the addition of a layer that transforms more com-
mon imperative languages into a Turing Machine may make
the BlindTM system easier to adopt. While many of the
costly parts of Turing Machine evaluation could be partially
solved in hardware, the focus of the following is to describe
improvements that use off-the-shelf computer processors.

The computational cost of HPKEET is extreme as can be
seen in Figure 12. While HPKEET provides stronger secu-
rity guarantees, the cost of these guarantees may outweigh
the value they provide. One solution would be to modify the
HPKEET method to make it more practical, possibly using
a different encryption scheme, such as Paillier encryption
[10] or elliptic curve cryptography [9].

Another method of mitigating the cost of HPKEET equality

0.0

0.2

0.4

0.6

0.8

1.0

R
u

n
ti

m
e

 (
m

s)

10000

20000

30000

40000

50000

60000

Original TM
BlindTM
Fairplay
FastGC

AND COMP HAM MULT
0

1000

2000

3000

4000

5000

Figure 12: BlindTM comparison with garbled circuits.
BlindTM trials used a fixed security parameter, blowup fac-
tor of 160 bits and 2, respectively.

tests is by removing HPKEET entirely. By using a larger
blowup factor for the state and tape blowup, the guarantees
of HPKEET, excluding the need for the comparison token,
can be provided. This mechanism has the advantage that
the Turing Machine comparisons for state change require no
computation and are just retrieval. Unfortunately, this in-
creased blowup factor – needing the original inputs to be a
negligible size with respect to the blownup space – exacer-
bates the overhead of the Turing Machine representation.

The representation of the Turing Machine as a direct map-
ping of state and input symbols to next state, output sym-
bols, and head movements allows the state/tape blowup to
be effective. Unfortunately, while the blowup factor does not
change the asymptotic complexity of the Turing Machine,
the practical runtime is effected by the increased memory
usage as can be seen in Figure 10. Naively, one could con-
struct a small symbolic function that takes the inputs and
maps them to outputs. This mechanism would also allow for
a more natural method of programming Turing Machines -
instead of creating a transition table representing all possi-
ble combinations of “a” and “b” and mapping them to “a+b”
for an addition operation, the programmer could just ex-
press “a+b” directly. Unfortunately, this method would pre-
vent state and tape blowup from being effective. The reason
that state and tape blowup is particularly effective is that
the evaluator cannot determine a pattern between the in-
puts and outputs as they are randomly reassigned. If some
abstract function were to be used to represent the control
logic, then that logic would reveal information about the in-
puts. Indeed, the method of defeating the state/tape space
blowup is by deduplicating values that are effectively the
same. Any method that allows for compression of the con-
trol logic would be effectively deduplicating entries, or oth-
erwise grouping entries by shared characteristics. Ideally,
the control logic table would be random in appearance to
the evaluator.

While a symbolic function representation may not ensure the
security guarantees of this project, this does not mean that a
higher level language could not be transformed into a Turing
Machine. One simple mechanism to do this transformation
would be to allow the programmer to write functions for



the control logic which are them evaluated on all possible
inputs before being transformed by the BlindTM system.
Another mechanism to transform higher level languages to
the Turing Machine representation here could be attempted
by using multiple tapes as registers or using multiple tapes
as stacks in a stack machine. Unfortunately, there is one key
programming characteristic would not be easy to represent
in a Turing Machine: arbitrary, constant-time access via
pointer. While modern architectures have a fixed number
of registers, which a Turing Machine could also have, the
ability to perform O(1) lookups by pointer in an arbitrarily-
sized memory would not be possible by the construction used
here. An alternative construction would be necessary to
account for the “head” movement/access pattern should a
RAM system be used.

7. CONCLUSION
This paper has described BlindTM, the first implementation
of a Blind Turing Machine. BlindTM is a system designed
for secure function evaluation (SFE) which models computa-
tion as Turing Machine. A client constructs their algorithm
and data as a Turing Machine and use a series of transforma-
tions (HPKEET, State/Tape Blowup, and Oblivious Head
Movement) to encrypt the Turing Machine. This “blind”
Turing machine can then be sent to an evaluator to be run,
and returned to the client while still encrypted. We believe
a secure and flexible system for SFE will be of increasing
importance as cloud services/PAAS grow in popularity.

There are several different directions to explore from this
work: the parameter space could be explored to find optimal
space/security trade-offs, further benchmarks that leverage
the way that Turing Machines handle memory could be de-
vised, and automating detection of Oblivious Turing Ma-
chines could be explored for example. The speed of the
Blind Turing Machine, while not faster than existing gar-
bled circuit implementations, compares with the speed of
the first-generation garbled circuits implementation tested,
which makes the efficiency promising, though our system is
not yet sufficient to supplant the position of garbled circuits
as the standard means of SFE.

While exploring the security properties of the Blind Turing
Machine model, we realized that the encryption provided by
the HPKEET scheme does not protect against all vectors
from the evaluator. The HPKEET phase primarily guaran-
tees security against attackers that do not have the autho-
rization token, which may limit applicability. Furthermore,
the overhead of using the HPKEET encryption is large. Fu-
ture directions of research include other implementation op-
tions, such as alternate HPKEET methods, or elimination
of the HPKEET phase while maintaining security through
the oblivious transformation and blowup phases. This may
yield an implementation that is comparably efficient with
modern garbled circuit implementations.

8. REFERENCES
[1] I. Damg̊ard. Towards practical public key systems

secure against chosen ciphertext attacks. In
Proceedings of the 11th Annual International
Cryptology Conference on Advances in Cryptology,
CRYPTO ’91, pages 445–456, London, UK, UK, 1992.
Springer-Verlag.

[2] C. Gentry. Fully homomorphic encryption using ideal
lattices. In Proceedings of the Forty-first Annual ACM
Symposium on Theory of Computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

[3] S. Goldwasser, Y. Kalai, R. Popa, V. Vaikuntanathan,
and N. Zeldovich. How to run turing machines on
encrypted data. In R. Canetti and J. Garay, editors,
Advances in Cryptology âĂŞ CRYPTO 2013, volume
8043 of Lecture Notes in Computer Science, pages
536–553. Springer Berlin Heidelberg, 2013.

[4] W. Henecka, S. Kögl, A. reza Sadeghi, T. Schneider,
and I. Wehrenberg. Tasty: Tool for automating secure
two-party computations. In In ACM Conference on
Computer and Communications Security (ACM
CCS’10, pages 451–462, 2010.

[5] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In Proceedings of the 20th USENIX Conference on
Security, SEC’11, pages 35–35, Berkeley, CA, USA,
2011. USENIX Association.

[6] H. Lipmaa. On the CCA1-security of Elgamal and
Damg̊ard’s Elgamal. In Proceedings of the 6th
International Conference on Information Security and
Cryptology, Inscrypt’10, pages 18–35, Berlin,
Heidelberg, 2011. Springer-Verlag.

[7] L. Malka. Vmcrypt: Modular software architecture for
scalable secure computation. In Proceedings of the
18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 715–724,
New York, NY, USA, 2011. ACM.

[8] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
- a secure two-party computation system. In In
USENIX Security Symposium, pages 287–302, 2004.

[9] V. S. Miller. Use of elliptic curves in cryptography. In
Lecture Notes in Computer Sciences; 218 on Advances
in cryptology—CRYPTO 85, pages 417–426, New
York, NY, USA, 1986. Springer-Verlag New York, Inc.

[10] P. Paillier. Public-key cryptosystems based on
composite degree residuosity classes. In Proceedings of
the 17th International Conference on Theory and
Application of Cryptographic Techniques,
EUROCRYPT’99, pages 223–238, Berlin, Heidelberg,
1999. Springer-Verlag.

[11] N. Pippenger and M. J. Fischer. Relations among
complexity measures. J. ACM, 26(2):361–381, Apr.
1979.

[12] S. Rass. Blind turing-machines: Arbitrary private
computations from group homomorphic encryption.
CoRR, abs/1312.3146, 2013.

[13] A. C. Yao. Protocols for secure computations. In
Proceedings of the 23rd Annual Symposium on
Foundations of Computer Science, SFCS ’82, pages
160–164, Washington, DC, USA, 1982. IEEE
Computer Society.

[14] A. C. Yao. How to generate and exchange secrets. In
Proceedings of the 27th Annual Symposium on
Foundations of Computer Science, SFCS ’86, pages
162–167, Washington, DC, USA, 1986. IEEE
Computer Society.


