
An Efficient Locking Scheme for Path-based File
Systems

Ritik Malhotra
University of California, Berkeley

ritik@berkeley.edu

ABSTRACT
Path-based file system drivers like FUSE, OSX-
FUSE, and CBFS have become increasingly popu-
lar tools for developers to create their own file sys-
tem. Developing a file system using one of these
drivers has many differences than developing one
from scratch, including the fact that these drivers
use paths to execute queries on files and folders in-
stead of file handles or inode addresses. This limi-
tation causes issues when trying to handle concur-
rent requests since these file systems cannot pro-
vide the same guarantees as non-path-based ones
since they don’t implement any locking mecha-
nisms out of the box. To fix this problem, we
propose an efficient and correct locking scheme to
allow path-based file systems to properly handle
concurrent requests.

Keywords
file systems, locking, FUSE, concurrency

1. INTRODUCTION
File system development is a difficult task for most
developers, especially because of the dependency
on writing file systems in the kernel-mode frame-
work and having to deal with its various idiosyn-
crasies. There are various quirks and problems and
a lot of boilerplate code that has to be written just
to get a barebones working version of a file system
up and running.

1.1 File System in Userspace
Fortunately, there have been various solutions to
alleviate the difficulty of writing such file systems
by different open source projects, commercial third-
party extensions, and more. These solutions allow
the developer to abstract the complexity of the
kernel and write file systems without having to
worry about some of the kernel’s problems. One
class of these solutions has emerged to be a popu-
lar choice for developers writing file systems in this

day and age - FUSE, which stands for File System
in Userspace [7]. FUSE, and its various incarna-
tions - OSXFUSE for the Mac OS X operating
system line [8] and Callback File System (CBFS)
for the Windows operating system line [6] - allow
a developer to write a file system completely in
user-space, without having to touch the kernel or
develop anything for it. For the sake of this paper,
we refer to this class of tools as FUSE, since these
solutions are all based off its original concept.

FUSE is able to accomplish this goal by installing
its kernel extension and having that be the middle-
man communication library between the file sys-
tem the developer develops in user-space, and the
corresponding virtual file system (VFS) module
that lives in kernel-mode and interacts with the
various file system method calls made by the op-
erating system. FUSE’s kernel extension acts as a
thin wrapper between the VFS and the developer’s
file system, simply acting as a unit that bounces
calls from one end to the other, all while taking
care of the kernel-mode quirks, edge cases, secu-
rity, and more as a generic abstract solution for
the developer to not have to think about.

On top of the simplicity FUSE provides, it has a
myriad of other benefits for the developer to take
advantage of, including:

• Access to multiple languages to write the file
system instead of being limited to using C
for a kernel-mode file system driver. The
FUSE file system a developer gets to write
is essentially treated as any other applica-
tion running in user-space. This gives the
developer the freedom to write it in any lan-
guage, provided that it follows the contract
set by the FUSE kernel extension and can
communicate back and forth with it.

• Access to the network. Doing network re-
quests in the kernel is not possible without
some complicated machinery, but is the com-
plete opposite with FUSE file systems. Since



they run like other applications, they also
have the freedom to pick up any regular li-
brary and use it in the file system, including
ones that handle network requests. This al-
lows for easier development of network file
systems and network-connected distributed
file systems, which are becoming more pop-
ular recently.

However, FUSE is not without its limitations and
has a few drawbacks versus writing a file system
purely from scratch [4], including:

• Much slower performance due to the heavy
context switching required between user-space
and kernel-mode. This is expected since each
call that comes to the FUSE kernel extension
has to be transported across the user-kernel
boundary to be queried on the user-space file
system before returning the appropriate data
to the caller (which is another round trip
through kernel-mode and back up the call-
ing application in user-space).

• Unable to get granular control over memory
and cache management. Since FUSE file sys-
tems don’t live in the kernel, we’re restricted
on the amount of low-level control we have
over things like memory management, data
caching, and other kernel-specific functions.

• Queries are done repeatedly via paths in-
stead of an ID-based or pointer-based sys-
tem. This is problematic since paths aren’t
the best form of identifying a node in a file
system, as we later discuss in this paper.

The last issue presented, related to path-based
queries, is the one we focus on in this paper. We
delve into this issue to determine the ramifica-
tions of such a system, what limitations it poses,
what potential solutions look like, how we solve
the problem, and the benefits from doing so.

1.2 Path-based Queries
One of the biggest differences with a FUSE file
system and a regular file system is the fact that
method queries are done via paths to file system
objects, rather than an inode identifier, a file han-
dle, or any other sort of pointer-based query method.
This design choice is done within FUSE’s kernel
extension, and is done by choice, not by some lim-
itation of the underlying kernel software. FUSE’s
mantra resides with keeping the kernel extension
thin in order to keep performance as high as pos-
sible and act purely as a pass-through layer. This
in turn means that FUSE doesn’t keep a mapping
between the path to an object and its inode ID,
but rather passes the path that it receives from

the VFS module up to the user-space file system
implementation. From there on, the user-space
file system is expected to keep its own consistent
mapping of paths to the appropriate data struc-
tures containing the information about the object
at that path.

This makes sense purely on a development side -
let the developers handle their own data structures
and interfere as little as possible. This is generally
a sign of a good API that abstracts out the right
things, and standalone sounds like a harmless fea-
ture. Unfortunately this concept introduces more
problems when combined with other aspects of the
file system, which we introduce later in this paper.

1.3 Concurrency
Like most regular file systems, FUSE file systems
are inherently designed to support concurrent op-
erations on it. The FUSE kernel extension han-
dles concurrent requests and passes them in a non-
blocking fashion up to the user-space file system
implementation and leaves it to handle proper con-
currency control, serialization, etc. This is fantas-
tic for performance reasons, but pushes the burden
of handling parallelism within the file system on to
the developer.

Again, standalone, this is a great feature for FUSE
file systems to support since it helps with perfor-
mance, but combined with other quirks of how
FUSE works, this poses a problem.

1.4 Concurrency in a Path-based File
System

When we combine both these concepts - concur-
rency and path-based querying - there’s a larger
issue that pops up: how do we properly serialize
requests that could potentially run into conflicts
or concurrent modification exceptions on the file
system’s core data structures.

To depict this problem, let’s take a look at an ex-
ample:

Algorithm 1 Example of Problem

1: procedure InterleavingThreadsExample
2: Thread 1 :
3: write(′/a/b′, DataChunk1)
4: Thread 2 :
5: rename(′/a′,′ /c′)
6: Thread 1 :
7: write(′/a/b′, DataChunk2)

This example shows two interleaving threads (pre-
sumably two different applications working on the
file system at the same time) acting on conflicting
data. Let’s take a look at what really happened



here: Thread #1 is undergoing a series of write()
requests to write data to the file at /a/b. It exe-
cutes the write requests in chunks defined by the
kernel, so it has to make multiple write() calls to
get all the data written to the file. Thread #2 is
unaware of thread #1’s intention to write data to
a file that is a child node of the folder thread #2
is modifying. Thread #2 continues its operation
and renames the folder at /a to /c. When thread
#1 makes another write() call to write the second
chunk of data, the file system is in an inconsistent
state from what thread #1 thought it was at after
writing the first chunk of data. The file at /a/b
no longer exists and is now located at /c/b. But
since thread #1 has no way of knowing that, it
receives an -ENOENT error (file not found) and
the write fails. Moreover, if the user-space file sys-
tem doesn’t have transaction-based writes imple-
mented, the file at /c/b (originally at /a/b) now
has incomplete data since the write transaction did
not finish.

This problem is a critical issue for any FUSE file
system, and only stems from the fact that the file
system is queried by paths to the object. If the
file system was queried by an ID or a pointer, this
problem wouldn’t arise because the method calls
would occur behind a level of indirection (the ID
or pointer), which wouldn’t have to deal with the
underlying path being modified during a transac-
tion. But in a path-based world, because the par-
ent folder of the object being written to was mod-
ified in a separate thread, the path in the second
write operation was no longer valid. On top of this
inconsistency, there’s no way for the FUSE file sys-
tem to communicate this underlying change to the
application in thread #1. Nor can thread #1 arbi-
trarily decide to ”correct” the path because there’s
no reasonable way for the file system to know what
the proper behavior is - does the application really
want to write to the new location of the file, or
does it actually want to go forward with a write
operation on the old path?

2. POTENTIAL APPROACHES
To tackle this problem, we first consider a few
approaches that are borrowed from other system
designs or are trivial to think of and consider.
The following section considers three different ap-
proaches, all of which are not suitable for this
problem, but are good primers to understand the
problem and borrow from when constructing the
actual solution.

2.1 Global Locking
The simplest way to tackle the problem of concur-
rency in a path-based query system is to disable
concurrency. By doing so, we effectively turn the
file system into a single-threaded system, which ef-
fectively mitigates the problem at hand. No longer

does the file system have to deal with interleaving
threads modifying related data and leaving the file
system in an inconsistent and corrupt state. If
the file system has a global access lock for all op-
erations, it immediately serializes all file system
method calls and turns the file system into a single-
threaded system.

But even this approach is limited as it still puts
the burden on the developer to ensure that certain
file system operations are transactional, like reads
and writes. Otherwise, the file system is still prone
to the same error described in the example above,
even if the requests are serialized.

On top of that, adding a global lock on the en-
tire file system also drastically hurts performance
and would render the file system useless for certain
applications that rely on concurrency. A perfor-
mance hit this drastic is unacceptable, so we have
to look for a better way to handle this situation.

2.2 Linux File System Locking Scheme
One approach to consider would be to use the lock-
ing scheme that the Linux kernel exposes for its file
systems. The Linux kernel’s file system locking
specifications are special in that they implement
what’s called advisory locking, which is a locking
scheme that is entirely optional for applications to
use and check for, but is exposed for applications
to use if they wish to do so. Underneath the advi-
sory locking scheme are rules that govern how the
file system handles acquiring and releasing locks
based on the operation being conducted, which,
as expected, is designed for a pointer-based query
file system and not a path-based query file system.

Unfortunately, this approach has two problems with
it when applied to a FUSE file system:

1. Advisory locking is unsuitable for our file
system due to its optional enforcement na-
ture. We need a solution that will provide
guaranteed lock enforcement; otherwise the
file system can go into an inconsistent state.
Linux file systems don’t run the same risk of
inconsistency without locks because they’re
inherently a pointer-based query system and
won’t run into the issue of stale paths like
FUSE file systems will.

2. The locking rules don’t match the require-
ments for what a path-based file system needs.
The trivial example presented earlier in this
paper fails the same way even when consid-
ering the Linux file system locking rules.

These two limitations render this approach a dead
end; however, this approach is a great starting



point to come up with a locking scheme for FUSE
file systems.

2.3 Snapshotting
Another approach is to use snapshots for every sin-
gle operation as a way of marking the state of the
file system at the start of every operation. This al-
lows operations to work concurrently on the same
file system data structures, but at different states.
This way, the operations are guaranteed to have
a consistent state of the file system at any given
point during their execution since they get full iso-
lation from other operations and are guaranteed
that no other operation will intrude on their snap-
shot.

While this makes sense, this approach has one flaw:
merging the snapshot’s changes back into the mas-
ter file system. The same challenge applies when
trying to merge the changes back into the master
state, which would need some sort of serialization
to ensure concurrent merges don’t conflict, or have
a conflict resolution algorithm to solve those con-
flicts. This approach eventually devolves back into
having a single global lock, so we must look else-
where and think of a better design.

3. SYSTEM DESIGN
We know that the main problem of locking in a
FUSE file system is the fact that as paths com-
pound on one another and rack up more and more
ancestors in the path, there are more areas for in-
consistencies to occur. To get around this issue
and ensure proper serialization we must design a
locking system to acquire locks for all the ances-
tors in a path that’s being operated on, so that
none of the ancestors of the path being operated
on can be changed from underneath in a separate
thread while the operation is happening.

3.1 Types of Locks
There are two types of operations that a file system
can perform on its objects: reads and writes on the
object’s data or metadata. The logical step for our
locking scheme would be to use a read/write lock
for each path. On top of that, we also propose
having two different kinds of locks in our scheme:

1. Path locks - These locks are responsible for
locking any operation being conducted on
the path where an object lives. This even
applies for operations as simple as accessing
a path.

2. Data locks - These locks are responsible for
locking any operation being conducted on
the actual data or metadata of an object.
To acquire a data lock on a path, a path-
read lock must have been acquired on the
path first.

This gives us a total of four locks - path-read, path-
write, data-read, and data-write - to work with.

Having two different types of locks is necessary to
get more granular isolation of operations. Oper-
ations that affect the path don’t affect the data
or metadata of an object, and the opposite holds
true as well. This allows operations that are sim-
ply accessing the path of an object and another
operation modifying the data of that same path
to happen simultaneously, which is not the norm
in most other file systems. This granularity still
results in correct serialization of dependent opera-
tions, while providing better parallelism and per-
formance than just having generic read/write locks
without this granularity.

3.2 Ancestor Locking
Ancestor locking is the main aspect of this locking
scheme that makes it different from other file sys-
tems. As mentioned before, to ensure that paths
remain consistent across file system method calls,
we need to impose locks on all ancestors of a path
being operated on [2]. For example, if an opera-
tion needs to be conducted on a path /a/b/c/d/e,
the operation will need to acquire path-read locks
on /, /a, /a/b, /a/b/c, and /a/b/c/d (and some
sort of lock on /a/b/c/d/e, depending on the oper-
ation) since each of those paths is being ”accessed”
to ensure that it remains consistent throughout the
duration of the operation.

We can illustrate how this ancestor locking mech-
anism prevents concurrency issues. Let’s say a
thread is trying to rename /a/b/c to /a/b/d while
another thread is trying to create /a/b/c/e. The
first thread acquires path-read locks on / and /a
and path-write locks on /a/b/c and /a/b/d. The
second thread tries to acquire path-read locks on
/, /a, and /a/b and data-write locks on /a/b/c
and /a/b/c/e. But the data-write locks the second
thread wants require path-read locks as a prereq-
uisite, which are then blocked by the first thread’s
path-write lock on /a/b/c. These two operations
will be serialized properly because they’re trying
to obtain a conflicting lock on /a/b/c.

3.3 Locking Order
The next thing to consider is the ordering of lock
acquisition. Without a proper ordering scheme, we
have no guarantee that our locking scheme won’t
result in a deadlock. For example, if we ever have
two threads that are trying to acquire two iden-
tical locks as one another, but execute the lock
acquisition in different orders, the file system will
run into a deadlock. With a consistent lock ac-
quisition ordering rule, we can guarantee that two
threads will never deadlock trying to acquire locks.
This is because it will be impossible for a thread
to acquire a lock in a different order than another



thread, which means that if a thread is waiting to
acquire a lock, the thread that has the lock will not
need to lock anything that the waiting thread has
already locked (otherwise the lock ordering rule
would have been violated).

To ensure consistent ordering, we propose acquir-
ing locks in ancestor-first order. So for example,
if we’re trying to acquire a lock on path /a/b/c,
we’ll acquire a lock on /, then /a, then /a/b, and
then finally /a/b/c. Ordering on the same level
(i.e. choosing between /a/b/c and /a/b/d) will be
done in lexicographic order. When unlocking, we
follow the exact opposite order of how locks were
acquired.

For example, if an operation is trying to acquire a
lock on /a/b/c, /a/b/d, and /a/e/f, the operation
would acquire the locks in the following order: /,
/a, /a/b, /a/e, /a/b/c, /a/b/d, /a/e/f. Unlocking
would be done in reverse order.

This is the only way we can order our locks without
having to use any other knowledge about the file
system other than what FUSE sends up to the
user-space implementation (which is the path).

3.4 Locking Scheme
With a solid foundation set up of how locks will
be managed, acquired, and released, we can now
define a clear scheme on how to actually do the
locking mechanics. For our purposes, all file sys-
tem operations fall into five classes:

1. Creating or deleting an object

2. Accessing an object’s data or metadata

3. Modifying an object’s data or metadata

4. Renaming an object

5. Moving an object (cross-directory rename)

We describe the locking scheme for each of these
classes below and depict the locking scenario with
an example.

3.4.1 Creating or deleting an object
Creating or deleting an object is an interesting case
in that the operation needs to ”modify” itself and
ensure that its parent is not modified during the
process. Modifying itself is self-explanatory - it
needs to either write or remove data from its own
path. Keeping its parent intact is necessary to
ensure that the parent doesn’t get deleted or re-
named mid-way, resulting in an inconsistent state.
To achieve this, we require a data-write and path-
write lock on the path being created or deleted, a
path-read lock on the parent, and a path-read lock

on all the other ancestors. The path-read lock on
the parent ensures that it won’t be modified during
the operation, but is still open to other operations
being conducted inside it (as long as they don’t
violate the other locks acquired).

The FUSE file system methods that fall under this
class are mknod(), mkdir(), unlink(), and rmdir().

Let’s take a look at an example:

Algorithm 2 Delete Locking Example

1: procedure unlink(/a/b/c.txt)
2: lock(/).path().read()
3: lock(/a).path().read()
4: lock(/a/b).path().read()
5: lock(/a/b).data().read()
6: lock(/a/b/c.txt).path().write()
7: lock(/a/b/c.txt).data().write()
8: Execute unlink() operations
9: unlock(/a/b/c.txt).data().write()

10: unlock(/a/b/c.txt).path().write()
11: unlock(/a/b).data().read()
12: unlock(/a/b).path().read()
13: unlock(/a).path().read()
14: unlock(/).path().read()

3.4.2 Accessing an object’s data or meta-
data

Accessing data or metadata on an object is a rela-
tively trivial case. It requires only data-read per-
mission on the object itself and nothing more since
it’s a non-destructive function. This means that a
data-read lock is required on the path being ac-
cessed and a path-read lock on all its ancestors.

The FUSE file system methods that fall under this
class are getattr(), getxattr(), listxattr(), statfs(),
read(), and readdir().

Let’s take a look at an example:

Algorithm 3 Get-Attributes Locking Example

1: procedure getattr(/a/b/c.txt)
2: lock(/).path().read()
3: lock(/a).path().read()
4: lock(/a/b).path().read()
5: lock(/a/b/c.txt).path().read()
6: lock(/a/b/c.txt).data().read()
7: Execute getattr() operations
8: unlock(/a/b/c.txt).data().read()
9: unlock(/a/b/c.txt).path().read()

10: unlock(/a/b).path().read()
11: unlock(/a).path().read()
12: unlock(/).path().read()

3.4.3 Modifying an object’s data or meta-
data



Modifying data or metadata on an object is very
similar to accessing data or metadata on it. In-
stead of the read permission required for accessing
data, this case requires data-write permissions in-
stead. This results in a data-write lock on the
path being modified and a path-read lock on all
its ancestors.

The FUSE file system methods that fall under this
class are chmod(), chown(), setxattr(), removex-
attr(), utimens(), truncate(), and write().

Let’s take a look at an example:

Algorithm 4 Truncate Locking Example

1: procedure truncate(/a/b/c.txt, 4096)
2: lock(/).path().read()
3: lock(/a).path().read()
4: lock(/a/b).path().read()
5: lock(/a/b).data().read()
6: lock(/a/b/c.txt).path().read()
7: lock(/a/b/c.txt).data().write()
8: Execute truncate() operations
9: unlock(/a/b/c.txt).data().write()

10: unlock(/a/b/c.txt).path().read()
11: unlock(/a/b).data().read()
12: unlock(/a/b).path().read()
13: unlock(/a).path().read()
14: unlock(/).path().read()

3.4.4 Renaming an object
Renaming an object is effectively the equivalent of
modifying an object’s path. We draw a distinc-
tion between renames and moves by drawing the
line at in-directory renames and cross-directory re-
names. A rename operation is defined as purely
a name change of an object (an in-directory re-
name), whereas a move operation is defined as a
parent folder change of an object and, optionally,
a name change (a cross-directory rename).

This operation requires touching three things: the
path being renamed, the new path being renamed
to, and the parent folder of the path. Since this
operation only deals with paths, we need a path-
write lock on the path being renamed, the path
being renamed to, and the parent folder of both of
these paths, and a path-read lock on all the other
ancestors.

The FUSE file system method for this class is re-
name(), but only in the case of an in-directory re-
name.

Let’s take a look at an example:

Algorithm 5 Rename Locking Example

1: procedure rename(/a/b/c.txt, d.txt)
2: lock(/).path().read()
3: lock(/a).path().read()
4: lock(/a/b).path().read()
5: lock(/a/b).data().read()
6: lock(/a/b/c.txt).path().write()
7: lock(/a/b/c.txt).data().write()
8: lock(/a/b/d.txt).path().write()
9: lock(/a/b/d.txt).data().write()

10: Execute rename() operations
11: unlock(/a/b/d.txt).data().write()
12: unlock(/a/b/d.txt).path().write()
13: unlock(/a/b/c.txt).data().write()
14: unlock(/a/b/c.txt).path().write()
15: unlock(/a/b).data().read()
16: unlock(/a/b).path().read()
17: unlock(/a).path().read()
18: unlock(/).path().read()

3.4.5 Moving an object (cross-directory re-
name)

Moving an object is the most complicated class
that we have to consider. Moving an object touches
four different things: the original path, the original
path’s parent, the new path, and the new path’s
parent. Each of these needs a path-write lock, and
all their other ancestors require a path-read lock.

On top of this, these operations also require vari-
ous error checks to be intertwined within the lock-
ing scheme to ensure correctness. We have to check
for the following two error cases to ensure no cir-
cular renames are happening:

1. If the source object’s parent folder is equal
to the destination object or is a descendant of
the destination object, return -ENOTEMPTY.

2. If the destination object’s parent folder is
equal to the source object or is a descendant
of the source object, return -ELOOP.

These error checks need to be made after the ap-
propriate locks have been acquired to ensure there
aren’t any race conditions with other competing
threads. And since the locks are implemented as
reentrant locks, if one of these error conditions
does exist and we do have a circular rename, the
file system won’t go into a deadlock state since
it’ll be the same thread trying to acquire a lock it
already has (which will be allowed thanks to the
reentrant property of the locks we’re using).

The FUSE file system method for this class is also
rename(), but only in the case of a cross-directory
rename.

Let’s take a look at an example:



Algorithm 6 Move Locking Example

1: procedure rename(/a/b/c, /a/d/e)
2: lock(/).path().read()
3: lock(/a).path().read()
4: lock(/a/b).path().read()
5: lock(/a/b).data().read()
6: lock(/a/d).path().read()
7: lock(/a/d).data().read()
8: lock(/a/b/c).path().write()
9: lock(/a/b/c).data().write()

10: lock(/a/d/e).path().write()
11: lock(/a/d/e).data().write()
12: if object(/a/b) = object(/a/d/e) then
13: return -ENOTEMPTY
14: if object(/a/b) = desc(/a/d/e) then
15: return -ENOTEMPTY
16: if object(/a/d) = object(/a/b/c) then
17: return -ELOOP
18: if object(/a/d) = desc(/a/b/c) then
19: return -ELOOP
20: Execute rename() operations
21: unlock(/a/d/e).data().write()
22: unlock(/a/d/e).path().write()
23: unlock(/a/b/c).data().write()
24: unlock(/a/b/c).path().write()
25: unlock(/a/d).data().read()
26: unlock(/a/d).path().read()
27: unlock(/a/b).data().read()
28: unlock(/a/b).path().read()
29: unlock(/a).path().read()
30: unlock(/).path().read()

4. EVALUATION
The evaluation of this locking scheme is split up
into two parts: correctness and performance. Cor-
rectness is discussed with proofs to show that the
locking scheme works correctly in all situations.
Performance is displayed by analyzing the system
under heavy concurrent operation loads. Due to
the nature of this problem, the performance isn’t
as important as the correctness of the scheme is,
since without this locking mechanism FUSE file
systems are simply prone to errors.

4.1 Correctness
The most important part of this locking scheme
is to prove correctness. We have already shown
in the above examples that this locking scheme is
correct when applying locks for each operation. In
this section, we prove that this scheme is techni-
cally correct if it doesn’t run into any deadlocks.
To do this, we apply a modified version of the Sys-
tem V Linux file system locking proof [9] to our
system here.

First, we define any moment in which we have a
partial ordering of the objects as A < B iff A is an
ancestor of B. We assume that that ordering can
change, but the following rules must hold true:

1. If a non-move operation holds a lock on A
and attempts to acquire a lock on B, A will
remain the parent of B until we can acquire
the lock on B. This is because only a move
operation can change the parent of an object
and for it to do so, it would need to lock the
parent, in this case A (which is locked).

2. If a move operation holds all its locks, the
ordering of objects in the file system will not
change. This is because all other renames
and moves that would potentially change the
ordering for the objects that the move op-
eration cares about will be blocked by the
path-read locks held on all the ancestors.

3. Locks are always acquired in an ancestor-
first, lexicographic order, so two operations
acquiring conflicting locks can never dead-
lock with one another.

Given these rules, let’s consider a trivial deadlock
case in which all operations are blocked on acquir-
ing some lock, but already hold at least one lock.
By rule #3, any operation holding a lock can only
be waiting for a lock that is lower on the ordering
list. Therefore, the operation holding the ”largest”
lock (the lock that would be first on the ordering
list) can always make forward progress making this
deadlock not possible.

Furthermore, any contended lock has to be held
by an operation that has a child lock that is also
contended. Suppose that the lock is held by an
operation that is not a move operation. Then the
lock this operation is blocked on belongs to a child
of that object because of rule #1. This means that
one of the blocking operations is a move opera-
tion because otherwise, the set of contended locks
would be infinite. Each of them would have a con-
tended child, which is impossible since we assume
there are no loops and no object is its own descen-
dant.

Lastly, consider a contended lock blocking a move
operation. One of its descendants has to be locked
by the move operation (otherwise we hit the in-
finite set of contended locks case again). This
doesn’t make sense because for this situation to
happen, the move operation would have had to ac-
quire locks out of order. Rule #2 says that the or-
der of objects in the file system can’t have changed
and rule #3 says that ancestors are locked first.
This is a contradiction, so a deadlock is impossi-
ble.

4.2 Performance
To further evaluate the system, we also do a quan-
titative analysis of the impact the locking scheme
has on the file system. Before jumping into the
numbers, it’s important to note two important facets



about performance and how it relates to other file
systems, which we discuss in the following sections.

4.2.1 Performance is not a critical metric
Performance is not a critical aspect of this dis-
cussion. Contrary to other papers, performance is
not a key metric of success for this locking scheme.
With the current state of affairs of FUSE file sys-
tems, without a proper locking scheme, FUSE file
systems are simply incorrect and will not operate
as expected against concurrent operations. There-
fore, the benchmark to compare any quantitative
performance metrics is against a broken system,
which doesn’t make sense for this discussion. In-
stead, we compare it to a FUSE file system which
has concurrency disabled (i.e. single-threaded mode),
which isn’t as interesting, but at least gives us an
indication of what to expect from before and after.

4.2.2 Our locking scheme is not relatable to
other file systems’ locking schemes

The locking system that we’re measuring in this
paper is not related to other file system’s locking
systems. Other file systems that implement lock-
ing schemes do so for external locking. External
locking in this case refers to exposing an external
API for developers of applications to call to lock
file system objects. For example, Linux file sys-
tems follow an advisory locking specification that
applications can use to lock objects in the file sys-
tem, but is not required.

This is not the same as the locking system de-
scribed in this paper. Our locking system is de-
signed as an internal locking mechanism that pro-
tects internal file system data structures from deal-
ing with concurrent modification exceptions and
for keeping state consistent. The easiest way to
think about this is if we removed the external lock-
ing components of other file systems, they would
still operate correctly. But if we removed our in-
ternal locking components from a FUSE file sys-
tem, the file system would no longer work correctly
when bombarded with concurrent operations.

4.2.3 Analysis environment
With that said, we can still take a look at a few
key metrics to determine the efficacy of our system
when compared to the baseline FUSE file system
running in single-threaded mode. We conduct all
our quantitative analysis and collect all metrics on
a 15” Macbook Pro Retina (2012 model) with a
quad-core 2.3 GHz Intel Core i7 processor, 16GB
1600 MHz DDR3 RAM, and a 256 GB Apple SSD.
A sample FUSE file system was created, running
purely in memory. The file system contained 256
files and folders, with the folder tree going up to
four levels deep. A sample test suite was also cre-
ated favoring a heavy write workload, consisting
of 50% write operations and 50% read operations.

Figure 1: Operations per Second

The operations were a mix of all file system meth-
ods.

4.2.4 Analysis of operations per second
The first interesting metric is taking a look at the
operations per second the file system can handle.
In a single-threaded file system, we observe that
the number of operations per second stays con-
stant as we add more concurrent operations, but
in the case of a multi-threaded file system with our
locking scheme, we see much better results, as seen
in Figure 1 above.

This logarithmic curve is expected since the growth
of operations per second starts to slow down as
we get more concurrent operations. The reasoning
behind this is due to the increased amount of lock
contention as we get higher concurrency, which is
a concept explored in the next section.

4.2.5 Analysis of lock contention
The next metric to look to is the amount of times
a lock is contended due to a concurrent operation.
Figure 2 below depicts the analysis and shows that
lock contention grows linearly as the number of
concurrent operations increases. Again, this is what
we expect since the higher number of concurrent
operations we have, the more the locks will be held
and be contended for.

Figure 2: Number of Times a Lock is Con-
tended



5. FUTURE RESEARCH
The locking approach outlined in this paper is a
good start to allowing concurrent operations in a
FUSE file system; however, improvements can al-
ways be made. A few potential avenues of future
research include:

• More granular locking for each type of op-
eration. Our implementation splits up the
locking structure into two locks - path and
data locks - which provide a higher level of
granularity than just having a single lock for
each path. There may be more scope in look-
ing into if we can split the locks even more
depending on what data is dependent on one
another. For example, when writing data to
a file, the write() operation is reliant on hav-
ing access to the data blocks and access to
update the file’s size metadata field (and oth-
ers, depending on the implementation of the
write() function), but may not need access
to certain other metadata fields. In this ex-
ample, we could potentially granularize the
locks such that writes don’t have to lock up
all metadata fields, so other operations can
read and modify metadata fields that aren’t
related to write().

• Implementing the locking scheme directly in
the FUSE kernel extension instead of using
it as a library in the user-space file system
implementation. This would improve perfor-
mance since all locking (and some error han-
dling) would be handled in the kernel rather
than in user-space, which would allow the
kernel extension to better queue up and send
requests to the user-space implementation.

• Implement the concept of an inode in the
FUSE kernel extension and send up inode
IDs rather than paths. This would eliminate
the locking problem entirely since FUSE file
systems would operate like regular file sys-
tems and we’d be able to take advantage of
existing locking solutions. This would re-
quire the most amount of investigation and
work, but is the best avenue for future re-
search.

6. CONCLUSION
The existing state of FUSE file systems is not at
the level we’d want for production use. Without
a proper locking system to handle concurrent re-
quests, these file systems are unreliable and present
a problem that may not be immediately obvious
to the developer. The few existing FUSE file sys-
tems that do implement their own locking systems
are forced to make their own rules, sink expensive
developer time into doing so, and don’t follow a
strict standard. This is problematic for a feature
that’s expected to exist right out of the box.

We propose a solution to this issue and present
a correct and efficient internal path-based locking
scheme for all FUSE file systems to follow. Our
solution provides granular locking that allows for
more concurrency than a simple system. We also
prove its correctness and show the performance
increases with our locking system versus without
it.

Acknowledgement
We wish to thank John Kubiatowicz for helpful
feedback on an earlier poster of this work and
Brian Miller for his help and guidance around file
systems theory.

References
[1]Frank Schmuck and Roger Haskin. “GPFS: A

Shared-Disk File System for Large Comput-
ing Clusters”. In: USENIX Proceedings of the
Conference on File and Storage Technologies
(2002), pp. 231–244. url: http://www.cse.
buffalo.edu/faculty/tkosar/cse710_spring14/

papers/gpfs.pdf.
[2]Sanjay Ghemawat, Howard Gobioff, and Shun-

Tak Leung. “The Google File System”. In: As-
sociation for Computer Machinery Symposium
on Operating Systems Principles (2003). url:
http : / / static . googleusercontent . com /

media/research.google.com/en/us/archive/

gfs-sosp2003.pdf.
[3]Sage A. Weil et al. “Ceph: A Scalable, High-

Performance Distributed File System”. In: (2006).
url: http://www.ssrc.ucsc.edu/Papers/

weil-osdi06.pdf.
[4]Sage A. Weil. Linus vs. FUSE. 2011. url: http:

//ceph.com/dev-notes/linus-vs-fuse/.
[5]Paul Krzyzanowski. Distributed File Systems

Design. 2012. url: https://www.cs.rutgers.
edu/~pxk/417/notes/15-nas.html.

[6]Callback File System. url: https://www.eldos.
com/cbfs/.

[7]Filesystem in Userspace. url: http://fuse.
sourceforge.net/.

[8]FUSE for OS X: The easiest and fastest way
to create file systems for OS X. url: https:
//osxfuse.github.io/.

[9]Linux File Systems Documentation: Directory
Locking. url: https://www.kernel.org/doc/
Documentation/filesystems/directory-locking.

[10]O. Rodeh and A. Teperman. “zFS - A Scalable
distributed File System using Object Disks”.
In: (). url: http://ibm.co/138oGvt.


