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Abstract

The value of stream processing systems stems largely
from the timeliness of the results these systems provide.
Early stream processors followed the record-at-a-time
approach, servicing each data point as soon as it ar-
rives at the system. While these systems provide good
latency, their behaviors become less desirable when ap-
plications require high throughput, fault tolerance, or
usage of stateful or blocking operators. More recently,
systems are developed to follow the micro-batch ap-
proach, where many records are processed together as
small batches, providing the missing features seemingly
at the cost of latency.

Given the situation, we look into a micro-batch
streaming system called Spark Streaming, and investi-
gate how well the micro-batch architecture can handle
latency-sensitive workloads. We instrumented Spark
Streaming to understand where time goes and where
development effort should be focused on. In this pa-
per we make three contributions. First, we provide
an analysis of the performance of Spark Streaming,
showing the average time breakdown within the sys-
tem. Second, we identify the performance and scala-
bility bottlenecks of Spark Streaming and pinpoint the
underlying deficiencies of the system. Last, we pro-
pose and evaluate several optimizations to reduce the
system overhead and achieve lower latency while main-
taining throughput.

1 Introduction

Data analytics applications such as intrusion detection,
web search and monitoring, require the computation
of results in a timely fashion in order to provide inter-
activity and responsiveness. As enterprise workflows
grow increasingly complex and applications become
increasingly dependent on other applications, the la-
tency guarantees of their processing systems become
a major concern. For instance, many systems today
are designed to meet specific performance metrics or
SLOs [14]. Applications that do not yield good perfor-
mance may delay the execution of other systems and

lead to loss of revenue and/or bad user experience.

Many data analytics systems [2–4, 7–12, 16, 17, 19,
20,23] have been developed to provide easy-to-use and
practical frameworks for stream processing, and they
tend to follow one of the two popular approaches to
act on inputs. Systems like Storm or TelegraphCQ
handle streams of data by creating pipelines for record-
at-a-time processing. In this environment, data flows
through the system (potentially through different ma-
chines) and is continuously processed and augmented.
Other systems like Spark Streaming and Trill rely on
micro-batches. In these systems, records are coalesced
into small groups before being processed together as
batch jobs.

It is widely believed that to achieve low latency, ap-
plications should use the record-at-a-time approach,
while for high throughput, the micro-batch model is
more appropriate. The reason is that even though
record-at-a-time systems can start processing data as
soon as it is received, processing more records at a time
will amortize the overheads associated with processing.
However, because records are not processed right away,
the latency per record is higher on average. In this
paper, we are generally concerned with end-to-end la-
tency, which the time between the application sending
to data and the application receiving the output.

The trade-offs between latency and throughput be-
come less simple as applications are scaled out to run
in a distributed fashion. In a distributed environment,
the record-at-a-time approach has many disadvantages
when compared with the micro-batch approach. First,
record-at-a-time systems are not suitable for stateful
or blocking operators, as these operators by nature will
unboundedly increase memory usage or stall the sys-
tem. Although techniques such as punctuations [21]
can be used, they place extra burden on the applica-
tion. For micro-batch systems, because batches are of
finite size, behaviors of stateful and blocking operators
are much easier to define. Second, record-at-a-time sys-
tems require replication or upstream backup techniques
to tolerate failures. Neither of these solutions are desir-
able, because the former requires the usage of fail-over
hardware, and the latter usually leads to high recovery
times. When records are batched, fault tolerance can
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be implemented with methods such as backing up to
a database [20] or keeping track of lineage information
of batches [23]. Finally, the programming model for
micro-batch systems is very similar to that of a tradi-
tional batch system, making the process of developing
streaming applications more familiar to developers.

Because of the advantages in the micro-batch model
in distributed settings, we want to explore the possi-
bilities of using this model to provide better end-to-
end latencies. In this paper, we perform an in-depth
analysis of Spark Streaming, a micro-batch streaming
engine, and evaluate the system’s ability to provide
low-latency and high throughput stream processing. In
particular, we intend to answer the question: “Are the
performance limitations of Spark Streaming a conse-
quence of its architecture, or the result of engineer-
ing decisions?” Upon evaluating the system, our an-
swer is: both. Although it is true that the percentage
of the end-to-end latency spent in useful work is low,
especially for small computations, some of the over-
heads can be reduced relatively easily. We focus on
two such areas, task overheads and data storage speed,
and present our results after the optimizations.

While the focus of our analysis is in Spark Stream-
ing, we believe that our analysis and conclusions can
inform the design and development of other stream-
ing systems using the micro-batch architecture. The
reason we chose Spark Streaming is that there is a
fast-growing ecosystem of frameworks such as GraphX,
MLlib, and SparkSQL being developed for Spark, the
engine on top of which Spark Streaming is built. As
a result, our work can potentially have large impact,
since developers will be able to take advantage of both
the rich tools as well as low end-to-end latency without
sacrificing throughput.

The paper is organized as follows: in Section 2 we
provide an overview of the architecture and workflow of
Spark Streaming. In Section 3 we motivate this work
with a performance study of Spark Streaming across
two main dimensions: end-to-end latency and through-
put. In Section 4 we present optimizations aimed at
solving some of the architectural deficiencies identified
in the previous section. In Section 5 we present some of
the lessons gathered during this work and discuss some
of the architectural changes we believe are required to
make Spark Streaming provide lower latencies. In Sec-
tion 6 we describe how some other contributions relate
and complement our work. Finally, in Section 7 we
summarize our research and discuss the next steps.

2 Background

In this section, we provide a short description of Spark
Streaming’s architecture as well as relevant terminolo-
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Figure 1: Diagram of a Spark Streaming work flow.
A Receiver and an Executor may execute in the same
node.

gies needed to understand our work.

Spark [22] is a general-purpose engine for large-scale
cluster computing. It operates on Resilient Distributed
Datasets (RDDs), an abstraction that represents read-
only collections of objects partitioned across a set of
machines. RDDs can be created from raw data or other
RDDs, and keep track of the coarse-grained operations
(e.g., map, reduce) performed on its underlying data as
lineage information, so that partitions can be recom-
puted if they are lost due to failures. Another feature
of RDDs is that they can be persisted in memory, al-
lowing efficient iterative computations.

Spark Streaming, the focus of our work, is a stream
processor built on top of Spark. It implements an ab-
straction called discretized streams (D-Streams), which
takes advantage of RDDs and their lineage properties
to divide potentially infinite streams of data into fi-
nite chunks and provide an interface to perform com-
putation over it. The abstraction allows a micro-batch
approach to streaming data, yielding high throughput,
scalability and fault-tolerance.

The execution of a Spark Streaming job works as de-
picted in Figure 1. First, data is generated at a source
(e.g., tweets from Twitter). As the data is pushed into
Spark Streaming, it is received by a Receiver, which in
turn stashes it in memory. After every set amount of
time called the block interval, the Receiver takes the
data stashed in memory and generates a block with it.

Once a block is generated, the Receiver informs
a Spark Streaming’s central component called Driver
about this block. The Driver is responsible for holding
metadata about reported blocks from all Receivers. Af-
ter a separate, larger fixed amount of time called the
batch interval or batch window, the Driver takes all
blocks that have been communicated by the Receivers
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and that have yet to be processed and generates a batch
job with them. Generated jobs are passed to the Sched-
uler (not shown in diagram) to be scheduled and run
on machines available in the cluster.

Every batch job is divided into one or more stages.
Each stage can be a map stage or reduce stage. Stages
have to be processed in sequence, so the more stages
required for a job, i.e. the more reduce operations used
by the application, the longer a job will take to execute.

Each stage operates on a RDD. The RDDs are parti-
tioned by the blocks generated during the batch inter-
val, and can be processed in parallel. The computation
on a partition is called a task. Tasks are sent from the
Scheduler to run in stateless environments called Ex-
ecutors. Executors are usually deployed in the same
nodes as Receivers; in fact, Receivers are implemented
as long-running tasks.

At the heart of the micro-batch approach taken by
Spark is the trade-off between the amount of records
Spark can process per unit of time and the time the sys-
tem takes to return results to the user. On one hand,
waiting for more records to generate bigger batches al-
lows Spark Streaming to amortize its overheads. On
the other hand, the more time the system waits for
data, the less responsive the system becomes.

Internally, Spark Streaming makes extensive use of
the producer-consumer design pattern, where separate
threads offload work to each other through queues. For
example, as blocks are generated at the Receiver, they
are pushed to a queue by a producer thread. The corre-
sponding consumer thread constantly polls the queue,
and stores the dequeued block as well as sends meta-
data about the block to the Driver. As well, commu-
nications between different components of the system
is done through the Actor model, where components
(“actors”) talk to each other by sending messages to
each other’s message queues.

3 Motivation

To better understand the performance and limitations
of the Spark Streaming architecture, we conducted a
benchmark study of the system. We added instrumen-
tation code that allowed us to track the timestamps
of a subset of the input data as it flows through the
system.

A synthetic workload was used for our performance
testing on Spark Streaming. This workload consists of
an application that listens for a stream of text records.
The records have sizes between 15-25 bytes, and each
holds a unique ID and a timestamp of time when the
data was generated. For each micro-batch, the applica-
tion computes the difference between the current time
and the time specified by the record, and use it to de-

fine the end-to-end latency of that record.

This workload only requires one stage per batch,
since no aggregations are needed. As well, the work
done by each task is very lightweight, since it only
parses numbers and perform subtractions. Despite the
near-trivial computation, we believe that this appli-
cation does is comparable with computations carried
out on streaming systems. Due to latency constraints,
fast streaming applications cannot be overly complex.
They are likely to use filtering and simple aggregations,
which are operations that can scale linearly with the
resources available. Also, often work can be completed
more quickly with smart pipelining or different levels
of parallelism, both of which are out of the scope of
this paper. Our goal is to look at the code path that
every workload uses, and identify and minimize the
bottlenecks.

To run this benchmark, we first developed a record
generator that can generate the type of workload de-
scribed previously. Our record generator takes a record
size and a data rate as input, listens on a socket for
connections. For each incoming connection, it contin-
uously generates as many records as needed to reach
the specified data rate per second, until the connection
or the generator is killed.

We deployed the generator and the Spark Streaming
application on a dedicated cluster of machines, each
equipped with a 16-core Intel Xeon CPU E5-1680 v2 @
3.00GHz and 64GB of RAM. Each Receiver was run on
a separate machine, and connected to a data generator
for input.

The results of our experiment are shown in Figure 2.
This graph displays the average end-to-end latency ob-
tained when running Spark Streaming with five differ-
ent batch window values and two different throughput
levels. Changing the batch window configuration al-
lows us to tune the responsiveness of the system: a
lower value means that each records on average spends
less time in the Receiver, waiting to be put into a
batch and subsequently processed by a task. Varying
the number of records generated by the stream source
(throughput) allows us to understand how Spark be-
haves when it has to do more or less work per unit of
time and how that affects latency.

As expected, as we instruct Spark Streaming to
spawn tasks more frequently – smaller batch window –
the average end-to-end latency time decreases. How-
ever, at some point decreasing the batch window has a
negative effect on the resulting latency.

We also find that as we increase the throughput, the
end-to-end latency increases. When analyzing the rea-
son, we determined that Spark Streaming’s Receiver
can be a source of slowdown. For instance, we found
that one Receiver is not able to receive more than
roughly 30 MB/s, or 1.5M records/s. This has to do
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Figure 3: Execution time breakdown for a batch win-
dow of 10ms at 90MB/s. The timestamp of the data
is collected when 1) the data generator generates the
record, 2) the Receiver receives the record, 3) the
record is put inside a block, 4) the block is stored and
communicated to the Driver, 5) the Driver puts the
block metadata inside a batch, 6) the batch is sched-
uled, and 7) the record is processed by a task.

with the fact that the Receiver receives and stores data
in a sequential fashion within a single-threaded loop.
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Figure 4: CDF of latencies for a batch window of 10ms
at 90MB/s and 30MB/s.

As a result, for batch windows less than 10ms we found
the system to be unstable. Because Spark Streaming
is not able to process records as quickly as the rate of
arrival of new records, the end-to-end latency increases
indefinitely.

Next, to understand where time is spent, we decom-
posed the execution time of Spark Streaming to dif-
ferent phases, based on our instrumentation. We chose
the top left point of Figure 2, i.e. batch window of 10ms
and throughput of 90MB/s, and show the breakdown
in Figure 3. This graph provides several insights. First,
at most 11% of the execution time is useful time. Sec-
ond, roughly 20% of the time is spent waiting for data
to be transmitted from the source of the data to the
Receiver. This time has to do with the single-threaded
loop design of reading tuples from the network. Third,
more than one third of the time is spent between gen-
erating a block of data and informing the Driver about
blocks received. This time stems from the fact that
the Receiver reserves one single thread to continuously
store blocks and send the respective metadata to the
Driver. The approach does not seem to scale to work-
loads with a high number of blocks generated per unit
of time. Lastly, as expected, the time spent to schedule
a micro-batch record is 11ms. Given a batch window
of 10ms, each record will have to wait roughly 10ms to
be scheduled.

Figure 4 shows a CDF of the end-to-end latencies
for different throughput levels. The graph shows that
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a considerably-sized tail of records is served with high
latency, implying high variance in end-to-end latency.

One caveat is that the record we choose to track is
always the first record in the first block of every batch.
This means the record is one of the first records arrived
for the batch, and among the ones that waited the
longest. Therefore, the median end-to-end latencies for
the shown data points should be the displayed latency
minus half of block interval as well as batch interval.

Overall, we believe these results motivate the need
for an architecture that can scale and adapt to bursts
of data in order to consistently provide acceptable la-
tencies.

4 Implementation

From Figure 3, we gained an understanding of how dif-
ferent components of the Spark Streaming architecture
contribute to the end-to-end latency. In this section,
we focus on optimizing two areas: the overhead of run-
ning tasks, and the time it takes for a Receiver to store
a block and inform the Driver.

4.1 Task Overheads

According to Figure 3, around 11%, or 7.0ms is spent
on average executing a task. However, since our syn-
thetic benchmark performed near-trivial computation,
most of the time spent in running the task is due to
the overheads in running a task.

To breakdown the process of running desks, we mod-
ified the Receiver so that it generated a block regard-
less of the number of records received. We then ran the
system on empty input, using an application that re-
quired a single stage. The application is launched with
1 Receiver, running on the same machine as the Driver.
Since there was no input, the computation itself was
effectively a no-op. After profiling this workflow, we
found that from the Driver’s perspective, the average
time of running a task, i.e. the time between the task is
scheduled and the time between the result is received,
was 5.0ms. The difference of 2.0ms was likely due to
the fact that there was only 1 Receiver, running on the
same machine as the Driver, under a very light load.

As we looked deeper into the 5.0ms, we found that
approximately 3.6ms out of this time was in deserial-
izing the task. These numbers suggest that if we can
reduce the task deserialization time, there will be a
considerable improvement to the overheads of running
tasks.

Having discovered that a significant portion of the
time running small tasks is spent in deserialization,
we further measured the time it took for individual
components of deserialization to complete. Figure 5
summarizes the process of task deserialization on the

Deserialize()

serializedTask

taskFiles taskJars taskBytes

task

Deserialize()

updateDependencies()

Figure 5: How a task is deserialized on the Executor.
Examples of new dependencies can be new libraries
needed to run the current task.
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Other
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Figure 6: Breakdown of average time spent deserializ-
ing a task before and after adding lazy instantiation of
configuration object and caching task binaries.

Executor. The Executor receives a task in the form of
an array of bytes called serializedTask. This array is
deserialized into a tuple of taskFiles, taskJars, and
taskBytes, the first two of which are passed into a
method called updateDependencies(), while the lat-
ter is further deserialized into a task object. The task
object contains information such as the function to run,
the RDD to use, and the partition of the RDD to op-
erate on.

The left part of of Figure 6 shows a time breakdown
of deserialization. As can be seen in the graph, the
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majority of the time in this case is in updating depen-
dencies and deserializing taskBytes. We next examine
each of these two components in more detail.

4.1.1 Update Dependencies

In updateDependencies(), Spark creates a configura-
tion object, and use it when dependencies need to be
updated, for example to download additional libraries
used by the task. However, this object is created re-
gardless of whether new dependencies are introduced,
and this objection creation is very costly in CPU cy-
cles. Since a streaming application rarely introduces
new dependencies once it starts to run, this method is
incurring unnecessary costs. To solve this problem, we
changed the object to be lazily instantiated, so that
no cycles are wasted creating the configuration object
unless new dependencies are introduced.

4.1.2 Deserialize Binary

In order to reduce the amount of duplicate data trans-
ferred, Spark wraps the function and the RDD of a task
into a broadcast variable, and serializes the broadcast
variable as a part of taskBinary. This way, those in-
formation are not sent a part of the task, but is pulled
by the Executor when it reads the value of the broad-
cast variable. The advantage of broadcast variable is
that once it is pulled by the Executor, the value of the
variable is cached in its memory. Therefore, if multi-
ple tasks in the Executor use the same function and
RDD, only the first task will need to pull the informa-
tion from the Driver, and the rest can read it from the
cache, reducing network traffic.

This approach, however, is still too wasteful in a
streaming environment. Similar to the rarity of new
dependencies, the types of RDDs and functions to op-
erate on them change little from batch to batch. With
the current approach, one round trip is still required
per batch to fetch the function and RDD, even though
information could be derived from a previous batch.
As the batch interval shrinks, this inefficiency becomes
more apparent.

To eliminate this round trip, we experimented with
caching of information on the functions and RDDs.
The cache is implemented by keeping track of previ-
ously broadcasted information on the Driver, and re-
send the previous broadcast variable if possible rather
than creating a new one every time. Broadcast vari-
ables are automatically cached on the Executor side,
so this methodology removes the extraneous communi-
cation with the Driver.
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Figure 7: Average time spent in running no-op tasks
before and after the optimizations in deserialization.

4.2 Block Storage

As mentioned in Section 2, Spark Streaming heavily
uses the producer-consumer pattern, both through its
usage of queues with pushing and polling threads as
well as the Actor model. This pattern has many ad-
vantages, namely modularity, and the ability to ex-
plicitly shows bottlenecks in the pipeline. If a down-
stream processing is slow, a pushback mechanism can
be used, where the upstream is blocked from insert-
ing more items into the queue until the queue has free
space.

We looked more closely at the section of the system
responsible for storing blocks and sending their meta-
data to the Driver, and found the pushback to be the
culprit. More specifically, one thread coalesces records
into blocks, and puts them into a queue. Another
thread polls the queue, and performs the storage and
Driver communication. The consumer in this queue
cannot keep up with the producer, introducing delays.
To solve this problem, we spawned more threads to act
as consumers.

4.3 Evaluation

The improvements of the two optimizations in task de-
serialization are also shown in the right half of Figure
6. After the changes, deserialization time for a task
decreased from 3.6ms to 0.2ms. The impact of the two
changes on overall task runtime is reflected in Figure 7.

To show the effect of reducing task runtimes, we per-
formed a micro-benchmark running a single stage with
many tasks. The results are shown in Figure 8. For
10K and 100K tasks, lazy instantiation of the configu-
ration object achieves a speedup of 2-3 times.

To examine how the number of consumers storing
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Figure 8: Amount of time spent running a single Spark
stage consisting of many tasks without and with lazy
instantiation of configuration object.

blocks changes latency, we ran a benchmark with the
Receiver and Driver on the same machine, on a data
rate of 60MB/s, batch interval of 10ms, and block in-
terval of 2ms. The average time taken to store a block
and inform the Driver with respect to the number of
consumer threads are shown in Figure 9. As we can
see, although two consumers perform better than one
consumer, more than two consumers in this case does
not necessarily improve the latency.

4.4 Limitations

While caching task binaries sound simple in theory,
they are more complicated to implement in practice.
For example, in our implementation, the Driver caches
the serialized format on the function and RDD, and
use it to test equality. For serializations across batches
to match, we prevented fields such as IDs that are
unique across objects to be serialized. Even though
this change does not affect correctness, it will compli-
cate other components such as logging that use those
information.

Furthermore, our caching technique only works for
batches with single stages. When there are multiple
stages, i.e. when shuffles or aggregations are involved,
the lineage information of the RDD tends to change
from batch to batch, making it difficult to hit a previ-
ously broadcasted version.

Finally, the largest limitation to our findings is ar-
guably the fact that we only benchmarked the before
and after results on a single machine. This limitation is
both due to time constraints as well as volatility of the
distributed environment. For example, since the clocks
are synchronized across machines, the differences be-
tween timestamps generated by different machines are
less useful, especially when they are in the order of
milliseconds.
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Figure 9: The average time taken to store blocks and
send the Driver their metadata, with respect to the
number of consumer threads polling generated blocks
from the queue. The Receiver and Driver are on the
same machine, with data rate of 60MB/s, batch inter-
val of 10ms, and block interval of 2ms.

5 Lessons and Discussion

Having conducted various benchmarks of Spark
Streaming for this research, we have found various pa-
rameters that can be used to tune the performance
of the system. These parameters include the number
of Receivers, the batch window size, the size of input
records, and whether the input data is serialized. In
this section we will describe in detail about their im-
pacts on the end-to-end latency or throughput. We
believe these parameters reflect configuration param-
eters common to micro-batch streaming systems and
thus these lessons are generally applicable.

Number of Receivers In our synthetic benchmark
using 20-byte records, a single Receiver is able to take
in at most around 30MB/s, or 1.5M records/s, even
after we modified the code to immediate drop instead
of storing the data. While the throughput does not
seem very high, 1.5M records is 2.5 times the 600K
records per second per node recorded by the original
Spark Streaming paper. This insight tells us that when
evaluating throughput of a system, both the volume of
data as well as the size of input data should be taken
into consideration.

To overcome the bottleneck in data intake, the solu-
tion can be as simple as increasing the number of Re-
ceivers. It is also possible to obtain the performance
gain by setting the number of Receivers larger than the
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number of physical machines.

Size and Number of Input Records As explained
by the previous subsection, the size and number of in-
put records affect the system’s performance in terms
of throughput. As the size of the records increases, the
throughput of the system in volume will also increase
linearly to a point, since more data is processed per
record. Conversely, as the size of input decreases, the
Receiver eventually reaches a bottleneck in the number
of records that it can handle (around 1.5M/s).

Size of Batch Interval While the micro-batch ap-
proach increases throughput at the expense of latency
by coalescing input data before processing, the size of
the batch interval does not form a linear relationship
with the throughput. In fact, the best latency is ob-
tained when the batch interval is set to slightly larger
than the time it takes to computationally process a
batch. This difference accounts for overheads in task
spawning, scheduling, and noise. In practice, instead of
using trial and error, it would be best if the system can
dynamically adjust the duration of the batch interval
based on inputs. Dynamic batch sizes in addition will
have the ability to adjust to sudden changes in data
incoming rates.

Input Serialization In Section 3, we evaluated the
system using plain text input records. However, in real
world applications, applications may choose to serialize
their input data for better network latency. Serializing
input data means they have to be deserialized during
computation, so this decision concerns the trade-off be-
tween CPU and network I/O.

In the case of Spark Streaming, if the input data is
serialized, it has the option to be directly stored inside
the system as a block, bypassing the block interval and
logic to convert stored records into blocks. Not surpris-
ingly, this approach increases the rate at which Spark
Streaming can intake data significantly. For the same
benchmark with 20-byte records, Spark Streaming can
sustain a throughput of 80MB/s, or 16M records per
second using a single Receiver.

The disadvantage of sending data directly as blocks
is that they need to be coalesced at the application,
i.e. the application needs to group input records to-
gether and send them as a block to Spark Streaming.
This number should be relatively large: when Spark
Stream receives blocks only containing single records,
its throughput dropped to around 375KB/s, or 75K
records/s.

Others There are also a number of areas which we
did not explore, either due to time or resource con-
straints. First, likely due to the reason that we only

had access to 16 machines, scheduling and network
communication were never bottlenecks. Second, as we
are targeting very low latency streaming workloads, we
did not benchmark in detail the performance of the
system running applications that involve shuffles and
aggregations, i.e. multiple stages per batch. Finally,
we did not look into the implications of low latency in
the Spark Streaming architecture when fault tolerance
becomes a concern.

6 Related Work

High Throughput Trill [9] is a recent query pro-
cessor for analytics that uses a tempo-relational model,
enabling it to support a wide range of latencies for both
online and offline data. It achieves high performance
by using a streaming batched-columnar data represen-
tation, to provide data locality and reduce data access
time. The original Spark Streaming [23] paper also
highlights its high throughput, along with other desir-
able features including fault-tolerance, straggler miti-
gation, fast recovery, and scalability. Our work builds
on top of this belief in high throughput, without re-
moving any of the features in the system.

Adaptive Batch Sizes TelegraphCQ [10] is a sys-
tem designed for a volatile environment, and can make
per-tuple and per-operator routing decisions to balance
load. [13] studies the effect of batch sizes and other pa-
rameters on the throughput and end-to-end latency of
the system, and proposes an algorithm based on Fixed-
Point Iteration to automatically adapt batch sizes as
the circumstance varies. Although there is currently
no such mechanism implemented in Spark Streaming,
adaptive batch sizes can be very useful in determining
the right value for the best trade-offs.

Faster computation Some past work has focused
on reducing time to compute results. Systems like
BlinkDB [1] perform computations on samples of the
data and return prematurely with error bars, while
ideas like online aggregation [15] show current results
as the query goes to completion. We see these tech-
niques as complementary to our work, as they can be
used to reduce the overall time of streaming computa-
tions. Others systems such as Incoop [6] and Slider [5]
perform computation incrementally in order to avoid
repeating previous computations.

Scheduling Extensive research has been done on
how to improve the scheduling of tasks in MapReduce
frameworks. Systems like Sparrow [18] focus specif-
ically on scenarios where the number of tasks to be
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scheduled is very large. Even though we haven’t identi-
fied the scheduler of Spark Streaming as an immediate
bottleneck, we believe that methods like decentralized
scheduling can be useful. As tasks become shorter, the
scheduler may be forced to schedule more tasks per
unit of time.

7 Conclusion and Future Work

This paper presents an analysis of low-latency stream
processing in Spark Streaming, a space that we have
found the system as well as the underlying micro-batch
approach lacking in practice. We analyzed the average
time breakdown of data processing, identified the bot-
tlenecks, and implemented a number of optimizations
for the system as well as proposed several tuning sug-
gestions for the architecture.

Much of this work is still in progress. We have en-
countered numerous challenges along the way, includ-
ing time constraint, unfamiliar code base, and inabil-
ity to reproduce results across even minor versions of
Spark Streaming. Nevertheless, we are encouraged by
our discoveries, and we plan to continue working on
this problem and evaluating the solutions that we have
proposed.
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