
EECS 262a
Advanced Topics in Computer Systems

Lecture 20

VM Migration/VM Cloning
November 10th, 2014

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs262

11/10/2014 2cs262a-F14 Lecture-20

Today’s Papers
• Live Migration of Virtual Machines

C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, A.
Warfield. Appears in Proceedings of the 2nd Symposium on Networked
Systems Design and Implementation (NSDI), 2005

• SnowFlock: Rapid Virtual Machine Cloning for Cloud Computing
H. Andrés Lagar-Cavilla, Joseph A. Whitney, Adin Scannell, Philip Patchin,
Stephen M. Rumble, Eyal de Lara, Michael Brudno,and M. Satyanarayana.
Appears in Proceedings of the European Professional Society on Computer
Systems Conference (EuroSys), 2009

• Today: explore value of leveraging the VMM interface for
new properties (migration and cloning), many others as
well including debugging and reliability

• Thoughts?

11/10/2014 3cs262a-F14 Lecture-20

Why Migration is Useful
• Load balancing for long-lived jobs (why not short lived?)

• Ease of management: controlled maintenance windows

• Fault tolerance: move job away from flaky (but not yet
broken hardware)

• Energy efficiency: rearrange loads to reduce A/C needs

• Data center is the right target

11/10/2014 4cs262a-F14 Lecture-20

Benefits of Migrating Virtual Machines
Instead of Processes

• Avoids `residual dependencies’

• Can transfer in-memory state information

• Allows separation of concern between users and
operator of a datacenter or cluster

11/10/2014 6cs262a-F14 Lecture-20

Background – Process-based Migration
• Typically move the process and leave some support for it

back on the original machine
– E.g., old host handles local disk access, forwards network traffic
– these are “residual dependencies” – old host must remain up and in use

• Hard to move exactly the right data for a process – which
bits of the OS must move?

– E.g., hard to move TCP state of an active connection for a process

11/10/2014 7cs262a-F14 Lecture-20

VMM Migration
• Move the whole OS as a unit – don’t need to understand

the OS or its state

• Can move apps for which you have no source code (and
are not trusted by the owner)

• Can avoid residual dependencies in data center thanks to
global names

• Non-live VMM migration is also useful:
– Migrate your work environment home and back: put the suspended VMM

on a USB key or send it over the network
– Collective project, “Internet suspend and resume”

11/10/2014 8cs262a-F14 Lecture-20

Goals / Challenges
• Minimize downtime (maximize availability)

• Keep the total migration time manageable

• Avoid disrupting active services by limiting impact of
migration on both migratee and local network

11/10/2014 9cs262a-F14 Lecture-20

VM Memory Migration Options
• Push phase

• Stop-and-copy phase

• Pull phase
– Not in Xen VM migration paper, but in SnowFlock

11/10/2014 10cs262a-F14 Lecture-20

Implementation
• Pre-copy migration

– Bounded iterative push phase
» Rounds
» Writable Working Set

– Short stop-and-copy phase

• Be careful to avoid service degradation

11/10/2014 11cs262a-F14 Lecture-20

Live Migration Approach (I)
• Allocate resources at the destination (to ensure it can

receive the domain)
• Iteratively copy memory pages to the destination host

– Service continues to run at this time on the source host
– Any page that gets written will have to be moved again
– Iterate until a) only small amount remains, or b) not making much forward

progress
– Can increase bandwidth used for later iterations to reduce the time during

which pages are dirtied

• Stop and copy the remaining (dirty) state
– Service is down during this interval
– At end of the copy, the source and destination domains are identical and

either one could be restarted
– Once copy is acknowledged, the migration is committed in the

transactional

11/10/2014 12cs262a-F14 Lecture-20

Live Migration Approach (II)
• Update IP address to MAC address translation using

“gratuitous ARP” packet
– Service packets starting coming to the new host
– May lose some packets, but this could have happened anyway and TCP

will recover

• Restart service on the new host
• Delete domain from the source host (no residual

dependencies)

11/10/2014 13cs262a-F14 Lecture-20

Tracking the Writable Working Set
• Xen inserts shadow pages under the guest OS, populated

using guest OS's page tables

• The shadow pages are marked read-only

• If OS tries to write to a page, the resulting page fault is
trapped by Xen

• Xen checks the OS's original page table and forwards the
appropriate write permission

• If the page is not read-only in the OS's PTE, Xen marks
the page as dirty

11/10/2014 14cs262a-F14 Lecture-20

Writable Working Set

11/10/2014 15cs262a-F14 Lecture-20

OLTP Database

• Compare with stop-and-copy:
– 32 seconds (128Mbit/sec) or 16seconds (256Mbit/sec)

11/10/2014 16cs262a-F14 Lecture-20

SPECweb

• Compare with stop‐and‐copy:
– 32 seconds (128Mbit/sec) or 16seconds (256Mbit/sec)

11/10/2014 17cs262a-F14 Lecture-20

Design Overview

11/10/2014 18cs262a-F14 Lecture-20

Handling Local Resources
• Open network connections

– Migrating VM can keep IP and MAC address.
– Broadcasts ARP new routing information

» Some routers might ignore to prevent spoofing
» A guest OS aware of migration can avoid this problem

• Local storage
– Network Attached Storage

11/10/2014 19cs262a-F14 Lecture-20

Types of Live Migration
• Managed migration: move the OS without its participation

• Managed migration with some paravirtualization
– Stun rogue processes that dirty memory too quickly
– Move unused pages out of the domain so they don’t need to be copied

• Self migration: OS participates in the migration
(paravirtualization)

– Harder to get a consistent OS snapshot since the OS is running!

11/10/2014 20cs262a-F14 Lecture-20

Complex Web Workload: SPECweb99

11/10/2014 21cs262a-F14 Lecture-20

Low-Latency Server: Quake 3

11/10/2014 22cs262a-F14 Lecture-20

Summary
• Excellent results on all three goals:

– Minimize downtime/max availability, manageable total migration time,
avoid active service disruption

• Downtimes are very short (60ms for Quake 3 !)

• Impact on service and network are limited and reasonable

• Total migration time is minutes

• Once migration is complete, source domain is completely
free

11/10/2014 23cs262a-F14 Lecture-20

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

11/10/2014 24cs262a-F14 Lecture-20

BREAK

11/10/2014 25cs262a-F14 Lecture-20

Virtualization in the Cloud
• True “Utility Computing”

– Illusion of infinite machines
– Many, many users
– Many, many applications
– Virtualization is key

• Need to scale bursty, dynamic applications
– Graphics render
– DNA search
– Quant finance
– …

11/10/2014 26cs262a-F14 Lecture-20

Application Scaling Challenges
• Awkward programming model: “Boot and Push”

– Not stateful: application state transmitted explicitly

• Slow response times due to big VM swap-in
– Not swift: Predict load, pre-allocate, keep idle, consolidate, migrate
– Choices for full VM swap-in: boot from scratch, live migrate,

suspend/resume

• Stateful and Swift equivalent for process?
– Fork!

11/10/2014 27cs262a-F14 Lecture-20

SnowFlock: VM Fork

Stateful swift cloning of VMs

• State inherited up to the point of cloning
• Local modifications are not shared
• Clones make up an impromptu cluster

VM 0

Host 0

VM 1

Host 1

VM 2

Host 2

VM 3

Host 3

VM 4

Host 4

Virtual
Network

11/10/2014 28cs262a-F14 Lecture-20

Fork has Well Understood Semantics

if more load:
fork extra workers

if load is low:
dealloc excess
workers

trusted code
fork
if child:
untrusted code

partition data
forkN workers
if child:
work on ith slice of data

if cycles available:
forkworker
if child:
do fraction of long

computation

Parallel Computation Load‐balancing Server

Opportunistic
Computation

Sandboxing

11/10/2014 29cs262a-F14 Lecture-20

0

100

200

300

400

0 4 8 12 16 20 24 28 32

VM Fork Challenge – Same as Migration!

• Transmitting big VM State
– VMs are big:

OS, disk, processes, …
– Big means slow
– Big means not scalable

• Same fundamental bottleneck issues as VM Migration –
shared I/O resources: host and network

Suspend/resume latency

Number of VMs

Se
co

nd
s

11/10/2014 30cs262a-F14 Lecture-20

SnowFlock Insights

• VMs are BIG: Don’t send all the state!

• Clones need little state of the parent

• Clones exhibit common locality patterns

• Clones generate lots of private state

11/10/2014 31cs262a-F14 Lecture-20

SnowFlock Secret Sauce

Metadata
“Special” Pages
Page tables
GDT, vcpu
~1MB for 1GB VM

Virtual

Machine

VM DescriptorVM DescriptorVM Descriptor Multicast

?

?

State:

Disk, OS,
Processes

1. Start only with the basics2. Fetch state on‐demand3. Multicast: exploit net hw parallelism4. Multicast: exploit locality to prefetch

Clone 1

Private

State

Clone 2 Private State

5. Heuristics: don’t fetch if I’ll overwrite

11/10/2014 32cs262a-F14 Lecture-20

Why SnowFlock is Fast
• Start only with the basics

• Send only what you really need

• Leverage IP Multicast
– Network hardware parallelism
– Shared prefetching: exploit locality patterns

• Heuristics
– Don’t send if it will be overwritten
– Malloc: exploit clones generating new state

11/10/2014 33cs262a-F14 Lecture-20

Clone Time

0
100
200
300
400
500
600
700
800
900

2 4 8 16 32

Devices
Spawn
Multicast
Start Clones
Xend
Descriptor

Clones

M
ill
is
ec

on
ds

Scalable Cloning: Roughly Constant

Clone 32 VMs

in 800 ms

11/10/2014 34cs262a-F14 Lecture-20

Page Fetching, SHRiMP 32 Clones 1GB

0
1
2
3
4
5
6
7
8
9

Unicast Multicast Unicast Multicast

M
ill
io
ns
 o
f P

ag
es

Requests
Served

Heuristics OFF

Heuristics
ON

10K40MB sent instead

of 32GB

11/10/2014 35cs262a-F14 Lecture-20

Application Evaluation
• Embarrassingly parallel

– 32 hosts x 4 processors

• CPU-intensive
• Internet server

– Respond in seconds

• Bioinformatics
• Quantitative Finance
• Rendering

11/10/2014 36cs262a-F14 Lecture-20

Application Run Times

≤ 7% Runtime Overhead
~ 5 seconds

0

20

40

60

80

100

120

140

Aqsis BLAST ClustalW distcc QuantLib SHRiMP

Se
co

nd
s

Ideal SnowFlock

11/10/2014 37cs262a-F14 Lecture-20

Throwing Everything At It
• Four concurrent sets of VMs

– BLAST, SHRiMP, QuantLib, Aqsis

• Cycling five times
– Clone, do task, join

• Shorter tasks
– Range of 25-40 seconds: interactive service

• Evil allocation

11/10/2014 38cs262a-F14 Lecture-20

Throwing Everything At It

Fork. Process 128 x 100% CPU. Disappear.
30 Seconds

0

5

10

15

20

25

30

35

40

Aqsis BLAST QuantLib SHRiMP

Se
co

nd
s

Ideal SnowFlock

11/10/2014 39cs262a-F14 Lecture-20

Summary: SnowFlock In One Slide
• VM fork: natural intuitive semantics

• The cloud bottleneck is the IO
– Clones need little parent state
– Generate their own state
– Exhibit common locality patterns

• No more over-provisioning (pre-alloc, idle VMs, migration,
…)

– Sub-second cloning time
– Negligible runtime overhead

• Scalable: experiments with 128 processors

11/10/2014 40cs262a-F14 Lecture-20

Is this a good paper?
• What were the authors’ goals?
• What about the evaluation/metrics?
• Did they convince you that this was a good

system/approach?
• Were there any red-flags?
• What mistakes did they make?
• Does the system/approach meet the “Test of Time”

challenge?
• How would you review this paper today?

