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ABSTRACT

Spark [6] is a cluster framework that performs in-memory
computing, with the goal of outperforming disk-based en-
gines like Hadoop [2]. As with other distributed data pro-
cessing platforms, it is common to collect data in a many-
to-many fashion, a stage traditionally known as the shuf-
fle phase. In Spark, many sources of inefficiency exist in
the shuffle phase that, once addressed, potentially promise
vast performance improvements. In this paper, we identify
the bottlenecks in the execution of the current design, and
propose alternatives that solve the observed problems. We
evaluate our results in terms of application level through-
put.

1. INTRODUCTION

In traditional MapReduce frameworks, the shuffle phase is
often overshadowed by the Map and Reduce phases. In
fact, shuffling is commonly integrated as part of the Re-
duce phase, even though it really has little to do with the
semantics of the data. However, shuffling data in a many-
to-many fashion across the network is non-trivial. The
entire working set, which is usually a large fraction of the
input data, must be transferred across the network. This
places significant burden on the OS on both the source and
the destination by requiring many file and network 1/Os.
To achieve high performance, distributed coordination is
important for load balancing purposes. Especially under
big data workloads, this is a known problem. [1]

1.1 Existing Solutions

Several solutions have been proposed to alleviate the stress
placed on the OS. Because the shuffle phase is agnostic to
the semantics of the data, an extra processing stage can sig-
nificantly reduce the size of the data actually transferred.
Compression of Map output files before they are shuffled
across the network is popular in most MapReduce frame-
works. Another common technique is to use combiners,
which begin reducing on the Map side as soon as the Map
output is ready.

However, the effectiveness of both techniques is highly de-
pendent on the structure of the input data and the appli-
cation. In particular, compression is much less effective on
arbitarily formatted text than on primitive types in key-
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value pairs. Many applications perform simple arithmetic
reductions on the Map output, in which case combiners
serve to lessen the load of shuffling by reducing the amount
of data transferred. In contrast, in applications that con-
catentate or even amplify Map outputs, combiners may
end up inflating the amount of data shuffled, rather than
deflating it.

Both of these solutions act on a very high level, and are
general enough to be applicable to all MapReduce frame-
works. However, these frameworks are ultimately very dif-
ferent systems that provide different use cases and offer
different properties. A small implementation detail in one
system can lead to vast performance differences when com-
pared to another system. Prior work [1] has demonstrated
that Hadoop faces completely different performance char-
acteristics under different sets of parameters on both the
Map side and the Reduce side. Thus, in optimizing the
performance of such frameworks, it is crucial to identify
the bottlenecks and instrument an implementation specific
to each system.

1.2 Spark

We choose to optimize shuffle file performance in the Spark
distributed computing platform. The underlying reason
for our choice is threefold: first, Spark is not only open-
source, but also relatively young. This allows us to pro-
pose changes much more easily than a more mature system
like Hadoop, the framework that popularized the MapRe-
duce model in the first place. Additionally, because Spark’s
shuffle performance has not received nearly as much atten-
tion as other systems’ have, there is more opportunity in
instrumenting a significant improvement.

Second, an early evaluation of Spark against Hadoop in a
typical workload that does not take advantage of Spark’s
in-memory computing reveals that Spark’s performance is
actually subpar. Part of the motivation of the paper is
to understand the reason behind this, and implement an
optimization that at worst narrows the discrepancy in per-
formance between the two systems under these workloads.

Third, Spark, originally a research project that resided in
the academic space, is gaining attention in the industry



as the new generalized system which may one day replace
Hadoop MapReduce, the current industry standard. This
creates demand for Spark to have performance character-
istics no worse than the existing status quo.

The rest of the paper is organized as follows. Section 2 de-
scribes prior work relevant to our project. Section 3 details
how other systems differ from Spark in terms of shuffling,
and how the bottlenecks observed are specific to Spark.
Section 4 describes our approach in mitigating these bot-
tlenecks, and Section 5 evaluates the changes we propose.
Finally, in Section 6, we discuss how future work comple-
ments what is currently lacking in our instrumentation.

2. RELATED WORK

The problems inherent in the Spark shuffle phase are shared
among many other distributed systems. At its heart, the
shuffle phase can variably stress the CPU, memory, disk,
and network capacities of the cluster; any one of these as-
pects may become a bottleneck for the computation.

One of the most complete attempts at a solution to this
problem is TritonSort [3], whose explicit goal is to elim-
inate the bottleneck issue by attempting to ensure that
all computational aspects are bottlenecked simultaneously.
Unfortunately, due to the authors’ highly specific prob-
lem choice of sorting well-distributed data and the well-
behaved, carefully laid-out compute cluster, their opti-
mizations do not easily generalize to Spark, which must
explicitly work on heterogeneous datasets and node distri-
butions. For example, they assume that every worker is
processing data at an equal rate, but stragglers in MapRe-
duce are not only possible, but very common.

While the solutions presented in TritonSort are difficult to
generalize, the problems discovered during the analysis of
their system are still highly relevant. Per-node network
bandwidth is limited, and the high-bandwidth all-to-all
communication required by a shuffle operation is further
inhibited by TCP incast [1], network queue buildup, and
limited memory for buffers. Additionally, disk throughput
decreased noticeably (25%) after writing one stage (of a
2-phase sort) to disk. Though the authors attribute this
phenomenon to the lack of remaining space of the inner
sectors of the disks, we saw a very similar disk perfor-
mance problem in Spark due to file buildup, discussed in
Section 3.

Another paper which took a careful look at the cost of
large scale data movement is the C-Store column-oriented
distributed DBMS [5]. In particular, C-Store examined
the potential gain of compressing individual columns of
structured data, as opposed to the row-based compression
possible in traditional DBMSs. As compression is essen-
tially the process of finding patterns within data, it is clear
that columns individually are more amenable to compres-

sion than the alternate representation of a row, due to the
increased type and content homogeneity within a single
column. C-Store was additionally able to achieve further
compressibility by sorting columns individually. While the
Spark data model is more general than C-Store’s struc-
tured data model — enabling arbitrary Java objects to act
as elements of an RDD — it is very common to use tuples
(e.g., key-value pairs), a property that allows us to exam-
ine columnar compression as an optimization to the Spark
shuffle phase (Section 4).

3. BACKGROUND

In this section, we discuss the approaches taken by exist-
ing MapReduce systems in optimizing the performance of
the shuffle phase, and extend the relevance of these ap-
proaches to Spark. We observe that the bottleneck that
Spark currently faces is a problem specific to the existing
implementation of how shuffle files are defined.

3.1 Hadoop

3.1.1 Map

When a Map task finishes, its output is first written to
a buffer in memory rather than directly to disk. Only
after the buffer exceeds some threshold does it spill to
disk. The outputting of Map results to disk is there-
fore specified by two parameters: io.sort.mb, the size
of the in-memory buffer, which defaults to 100MB, and
io.sort.spill.percent, the threshold of the buffer
before its content is spilled to disk, which defaults to 80%.
Thus, by default, if thgérg)ut of a Map task is 10GB, then
1

100M B * 80%
files per Map task.

we end up with = 125 intermediary shuffle

However, it is common for a fraction of the input to be
shaved before being written to a shuffle file. As an exam-
ple, a tweet contains many fields, many of which may not
be relevant to a particular MapReduce job, in which case
the irrelevant fields are discarded, leaving only the ones of
interest.

Further, the remaining data can also be compressed, en-
abled by setting mapred.compress.map.output to
true. The compression library, specified by mapred.map
.output.compression.codec, can be one of gzip, bzip2,
or LZO, each of which have different compression ratios
and speeds. Additionally, a user-defined combiner function
specifies how the Map output can be combined, as long as
the number of spills is at least the value of min.num
.spills.for.combine, which defaults to 3.

Finally, for each Map task, rather than sending the output
files as spilled files, Hadoop merges them into a single file
in sorted order, partitioned by the number of reducers on
the receiving end. The maximum number of streams to
merge at once is governed by io.sort.factor, which
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Figure 1: Network, CPU, and I/O characteristics in Spark (before)

defaults to 10.

3.1.2 Reduce

Although the Reduce phase is distinct from the Map phase
in terms of functionality, these two stages overlap in time.
During the copy phase of the Reduce task, each Map task
informs the tasktracker as soon as it finishes, and then
pushes its output to the appropriate Reduce task. The Re-
duce task can copy from up tomapred.reduce.parallel
.copies threads at once, 5 by default. Importantly, task-
trackers do not delete Map output as soon as the transfer
is complete, but instead keep them persisted in disk in case
the reducer fails.

As in the Map phase, the Reduce phase also maintains an
in-memory buffer for shuffle files, governed by mapred. job
.shuffle.input.buffer.percent, the percentage of
heap space for this buffer, defaulting at 70%. The con-
tent of the buffer is spilled to disk when at least one of
two things happens: the percent of buffer occupied ex-
ceeds mapred. job.shuffle.merge.percent (66% by
default), or when the number of Map outputs exceeds
mapred.inmem.merge.threshold (1000 by default).

This spilled files are also merged into fewer, larger files, as
in the Map phase. The maximum merge factor is also
specified by io.sort.factor. The final merge needs
not be from disk alone; it can read from a mixture of in-

memory and on-disk segments. The sorted output is now
ready to be streamed into the reduce function.

3.2 Spark
3.2.1 Map

Instead of maintaining a common in-memory buffer, Spark
Map tasks write their output directly to disk on comple-
tion, relying on the operating system’s disk buffer cache
to avoid an excess amount of disk writes. More specif-
ically, each Map task writes one shuffle file per Reduce
task, which corresponds to the logical Block in Spark.

The concept of a Block here is reused from the more general
Spark data model, where all data sets (RDDs and shuffle
output) are composed at the finest granularity by individ-
ual Blocks. Shuffle files originally were decomposed into
Blocks in order to share the same management, directory,
and transferral code with RDDs — however, in Spark today
there is a separate code path for all of these operations, for
performance reasons.

Thus, each map task writes R shuffle files, where R is the
number of Reduce tasks. Unlike Hadoop, however, these
are not intermediary files, as Spark does not merge them
into a single, partitioned one. It is worth noting that,
in general, both M and R are often larger in Spark than
in Hadoop due to Spark’s lower scheduling overhead per
task. In practice, M could be 5000 and R could be 1024,



amounting to over 5 million shuffle files in total. As we
shall see, the sheer number of shuffle files written is a major
source of performance degradation.

As in Hadoop, Spark provides the option to compress Map
output files, specified by the parameter spark.shuffle
.compress. The compression library, specified by spark
.io.compression.codec, can be by default Snappy or
LZF. At the same time, however, compression is also po-
tentially a source of memory concerns. In particular, LZF
requires 400KB of buffer for each open file, multiplied by
R per Map task. Since, at any given time, there are C' con-
current Map tasks per machine, where C' is the number of
cores allocated to Spark, the amount of memory used by
LZF is 400KB * RC. For example, with R = 1024 Reduce
tasks and C' = 8 cores, this becomes 3.2GB per machine.
Under memory constraints, Snappy, which uses only 33KB
of buffer for each open file, can greatly reduce the risk of
running out of memory.

3.2.2 Reduce

A stark difference between Spark and Hadoop in the Re-
duce phase is that Spark requires all shuffled data per Re-
duce task to fit into memory when the Reduce task de-
mands it. This could happen if the Reduce task involves a
groupByKey, or a reduceByKey that, for instance, concate-
nates values. When the memory required of each Reduce
task exceeds what it is allocated, then an out of memory
exception is thrown and the entire job must be aborted. To
avoid running out of memory on the Reduce side, the ap-
plication must specify a high enough value for R, possibly
through trial and error. The lack of a spilling mechanism
in Spark is in fact a major problem faced by many users.

Another important difference between the two systems is
that the Spark Reduce phase does not overlap with the
Map phase. In other words, shuffling in Spark is a pull op-
eration, rather than a push operation as in Hadoop. This
implies that the collective memory required by all concur-
rent Reduce tasks must be available at any given time of
the Reduce phase, since the Reduce phase is no longer
spaced out over time.

In addition, each Reduce task must maintain a network
buffer for fetching Map outputs. The size of this buffer is
specified by spark.reducer.maxMbInFlight, with a
default value of 48MB. The strain on memory contributed
by this buffer is negligible, however.

3.3 Identifying Bottlenecks in Spark

To investigate the bottlenecks faced by Spark under typical
workloads, we ran a simple job that finds the most popular
text in a tweet, given an input dataset of 1TB distributed
across 16 m2.4xlarge EC2 nodes. (More details in Section

5.)

The results are shown in Figure 1. The network is clearly
not the bottleneck; at any given point, the throughput
of both outgoing and incoming traffic is on the order of
10Mbps, even though the available bandwidth is on the
order of 1Gbps. Neither is CPU; each node has 8 cores,
such that if the job was CPU-bound, then the %CPU used
by Spark would consistently hover slightly below 800%.
This is not the case in our experiment. Similarly, disk
throughput is on the lower order of 10MBps, which is still
nowhere near the upper bound at around 80MBps. On the
other hand, the % time of Spark waiting on disk I/O is not
only very high (near 100%), but also subject to high vari-
ability. This suggests that Spark performance was mainly
suffering from heavy random I/Os.

It is worth noting that these results verify the hypothesis
that a large number of shuffle files imposes a heavy load
on the operating system. In the previous subsection, we
demonstrated that the total number of shuffle files can be
on the order of millions. Although this can be mitigated by
increasing the number of nodes such that the stress from
creating many files can be diffused across the nodes, each
machine is still responsible for a sizeable number of shuffle
files.

During the Map phase, we hash shuffle files into a set of
64 subdirectories created on each disk. This can cause
a large number of random writes when each shuffle file
is relatively small. In the Reduce phase, there are two
possible sources of random reads. First, requests for indi-
vidual shuffle blocks arrive in a random order as they are
requested concurrently by all executing reducers. Second,
if the inode cache is too small to hold the working set of
all shuffle files, then an extra random read for the inode
will be incurred for each read of a shuffle block.

One solution is to emulate Hadoop’s behavior by writing
out a set of smaller files to the same directory and sub-
sequently merging them in a second pass. Another is to
create larger shuffle files in the first place. Both solutions
would reduce the number of random writes during the Map
phase as well as the number of inodes necessary to index
the shuffle blocks. The first solution requires both more
modification to Spark as well as a second pass over all
shuffle data. Therefore we mainly investigated the second
solution.

4. OUR APPROACH

4.1 Columnar Compression

Following the success of C-Store’s columnar compression,
we attempted to apply the same scheme to Spark’s shuf-
fle phase in order to offload some of the burden from the
network and disk onto the CPU. As Spark’s data model is
very general, allowing data to be arbitrary serializable Java
objects, it is not possible to decompose data into columns
in general. However, from common usage patterns, we ob-
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Figure 2: Columnar Compression

serve that it is very common to use a tuple of primitive
data types or Java objects during the shuffle phase. This
is especially typical in jobs involving shuffles, as Spark re-
quires data to be a tuple of (key, value) pairs in order to
perform aggregation or joins.

In order to assess the potential benefit of columnar com-
pression, we ran a microbenchmark that compares the com-
pressibility of a set of realistic key-value examples taken
from the Spark website and user group, when the keys and
values were compressed both individually (column-based)
and together (row-based). Figure 2 shows the gain of col-
umn compression relative to row compression for our ex-
amples using multiple compression schemes. Surprisingly,
column compression was rarely significantly better than
row compression, and occasionally worse. We attribute
this to two factors specific to Spark.

First, the most compressible portion of the data is usually
not the biggest contributor to overall size in the first place.
For example, in the common word count example, tuples
are of the form (word, 1), so they can be easily aggregated
by summation over the values. Using run-length encoding,
we can use an extremely small number of bytes for the
count column — however, the majority of the data is present
in the much less compressible "word” column, so the gain
is not particularly impressive.

Second, serialized objects tend to have a lot of repeated
overhead per object. However, the use of dictionary com-
pression is equally effective at reducing this overhead when
the objects are in individual columns as when they are
combined, since the dictionary replacement needs to be
performed once per object either way. All of the examined
compression algorithms utilize a dictionary.

Due to the lack of significant results for using columnar
compression, we did not investigate it further. In addi-
tion to the unimpressive compressibility, splitting data into

columns on the map side and reconstructing them back
into rows on the reduce side requires a significant amount
of additional metadata and computation. It is possible
that column-oriented reduction algorithms like those pre-
sented in C-Store (i.e., methods that don’t require recon-
structing rows) could be used to mitigate the computa-
tional overhead, but we did not investigate these.

4.2 Shuffle File Consolidation

In our analysis in Section 3, we demonstrated that Spark
creates a large number of shuffle files (M*R) and verified
that this number placed a significant strain on the operat-
ing system, on both the Map phase and the Reduce phase.
In this subsection, we pursue one of the alternatives we pro-
posed: rather than instrumenting Spark to spill contents of
an in-memory buffer, thus introducing an additional merge
phase, our solution is to write fewer, larger files in the first
place.

The main reason behind this decision is a practical one. In-
troducing an extra phase involves a much more significant
overhaul of the Spark workflow. Even after introducing a
radical change in the system, there is no guarantee that
Hadoop’s workflow is by nature superior to Spark’s. In
fact, the values of M and R in Hadoop are usually much
smaller, as we described previously. Since the number of
shuffle files in Spark currently scales with M*R, a smaller
number of Map tasks and Reduce tasks may provide more
justification for the way Spark handles shuffle files on the
Map side.

At the same time, it is important to observe that we can-
not simply lower these values in the Spark configuration
due to memory constraints previously discussed. Thus, it
is our decision to not simply adopt the strategies of other
mature MapReduce frameworks, but rather investigate a
solution more specific to Spark. Our goal is to optimize
Spark shuffle performance, rather than to investigate the
performance characteristics of a radically redesigned work-
flow, a project that is no less interesting but far beyond
the scope of this paper.

Shuffle file consolidation refers to maintaining a shuffle file
for each partition, which is the same as the number of
Reduce tasks R, per core C rather than per Map task
M. In other words, all Map tasks running on the same
core write to the same set of files in tandem, one for each
Reduce task. The scaling property of consolidating shuffle
files this way is much more desirable. Every machine needs
to handle only C*R number of shuffle files rather than
M*R. More concretely, given realistic numbers of C' = 8,
M = 5000, and R = 1024, shuffle file consolidation scales
the number of files from 5000 * 1024 = over 5 million to 8
* 1024 = 8196, a decrease of around 3 orders of magnitude.

To observe the differences in performance, we ran a pre-
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Figure 3: Network, CPU, and I/O characteristics in Spark (with shuffle file consolidation)

liminary experiment that is identical to the one we ran for
Spark before applying shuffle file conslidation. The results
are shown in Figure 3. The most significant improvements
are observed during the Reduce phase. In particular, the
I/O wait time is much lower than before, and the disk
throughput is sustained on the order of 1MBps. Further,
the CPU is also much more static above 400%, implying
that less idle time is spent waiting for I/O. All of these ob-
servations collectively suggest that Spark does much less
random I/O by creating fewer shuffle files.

More concretely, during the Reduce phase, each node fetches
a fewer number of shuffle files from each other node. Be-
cause of the way the shuffle files are hashed into multiple
directories, they tend not to be co-located on disk. Fur-
ther, even if the shuffle files are written sequentially to disk
during the Map phase, each Reduce task fetches only the
partitions that correspond to itself. This order of fetch-
ing is very different from the order of writing the shuffle
files in the first place, which implies that random I/O’s
during shuffle file fetches are inevitable given the order of
execution of Map tasks and Reduce tasks in Spark.

Nevertheless, this provides a stronger case for reducing the
number of shuffle files to be fetched. This is especially
important in Spark because the Reduce phase begins only
after the Map phase has finished, suggesting that remote
fetches on one machine may be synchronized among all

executing Reduce tasks on other machines, inflating the
aggregate random access throughput required.

This alone, however, does not explain the vast differences
in the I/O wait time observed in Figure 3. We suspect
that this is because the in-memory inode cache is now able
to provide much stronger locality. With many shuffle files,
the inode cache cannot possibly maintain all metadata in
memory. As a result, the working set of inodes maintained
in the inode cache is only a small fraction of what is re-
quired to read all shuffle files from disk. This leads to
an additional random I/O for the inode in each shuffle file
fetch, amplifying the stress on the operating system during
the shuffle phase.

With much fewer shuffle files, we conjecture that most, if
not all, the inodes in the working set of shuffle files can now
fit into the file system’s inode cache. Thus, maintaining a
smaller number of shuffle files not only incurs fewer shuffle
file reads, but also allows Spark to exploit stronger locality
benefits offered by the underlying file system.

Beyond the conclusions we draw from these graphs, a few
anomalies can be identified, and here we make an attempt
to explain them. In terms of CPU, there is a lull between
the Map phase and the Reduce phase. This could simply
be due to the variability in the nature of any experiment
run in a distributed environment. More specifically, the



Virtual cores | 8

RAM 68.4GB
Disks 2x 840GB
Network 1 Gbps

Table 1: Experiment Configurations

particular node from which we draw these data from is
probably held back by other stragglers. Immediately be-
fore the lull, the CPU usage actually briefly stepped down
from above 400% to 100%. We attribute this behavior to
the fact that Spark speculation transfers Map tasks from
slow nodes to fast nodes that have already completed their
original allocation. Then, the momentary step down in
CPU usage may be the result of this node suddenly taking
over a small number of tasks from other stragglers after
completing its own at full speed.

Similarly, there is a lull in network throughput between the
Map phase and the Reduce phase. The explanation for this
is the same as the one given for the lull in CPU usage. A
more interesting observation in the network graph is the
behavior during the Reduce phase. In particular, there
are exactly 16 spikes in the network throughput of both
the outgoing and incoming connections. Each spike most
likely represents a fetch from each node, as there are ex-
actly 16 nodes in the cluster in this particular experiment.
The variability of network throughput is also much lower
in both phases. While we do not have a satisfactory ex-
planation for this, we suspect it is related to the fact that
each node is now spending less time performing random
1/0s during shuffle file read and writes, thereby allowing
network traffic in either direction to be less volatile.

5. EVALUATION
5.1 Experimental Setup

We ran our tests on Amazon Cloud Compute clusters. We
used 16 m2.4xlarge instances (details shown in Table 1).
All nodes were located in the us-east-1 region (Virginia)
and the same Availability Zone. Maximum observed disk
throughput was around 80 MB/s and maximum inter-node
network throughput was 120 MB/s.

In all workloads, our initial data was stored in Amazon
S3. During a microbenchmark, each node was able to fully
saturate its inbound network connection by reading from
S3. Intermediate shuffle data was split between the two
physically attached disks.

5.2 Workloads

We examined two workloads (Table 2) at opposite ends of
the shuffle file spectrum. Both workloads were based on
real data and use-cases from a Spark user. In both cases,
the data was composed of a set of JSON records. The job

Workload 1 | Workload 2
Input data size 100GB 1TB
Total shuffle data size 102GB 0.9TB
Compressed shuffle data | 78GB 80GB
# Mappers 5052 8192
# Reducers 2048 512

Table 2: Experiment Workloads
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Figure 4: Spark shuffle file consolidation scaling
with Workload 1

parsed the record, split it based on one field, performed a
group-by-key operation (invoking a full data shuffle), and
then did some minor post-processing. One workload con-
sisted of data that was highly compressible, allowing CPU
to be used to greatly reduce disk and network bandwidth.
The other workload was not compressible, meaning com-
pression had very little impact and almost all of the input
data had to be shuffled across the network.

We ran our experiments over both workloads, but have
omitted the results for Workload 2 in many cases as they
mirrored the results for Workload 1. We felt that workload
1 was more generalizable, considering the extraordinary
compressibility of shuffle files in workload 2 (1 TB to 80
GB).

5.3 Experiment 1: Scaling

Hadoop is well-known for having linear strong scaling, which
is made possible by its simple shared-nothing model. Spark
seeks to emulate the scaling of Hadoop, despite its in-
creased complexity and out-of-band coordination. In order
to examine the impact of the OS file system performance
degradation on the scaling of the number of nodes, we ran
the same job with the same amount of data on 4, 8, and
16 nodes. Each run used LZF compression, which is the
Spark default, with 58 GB of RAM allocated in total be-
tween the 8 cores. The results from this experiment are
shown in Figures 4 and 5, for Workloads 1 and 2 respec-
tively.
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One facet of the file system degradation issue that we im-
mediately discovered was that the problem does not appear
at all until the number of shuffle files reaches around one
million, and subsequently becomes much worse as the num-
ber of files increases further. For example, it takes around
35 minutes to run Workload 1 on 16 nodes without consol-
idation, but it takes over 6x longer on 4 nodes, rather than
the expected 4x degradation. Figure 4 shows that shuf-
fle file consolidation fixed this scaling problem, such that
Spark now demonstrates linear strong scaling. Figure 4
additionally shows that consolidation led to around a 2x
improvement on Workload 1, even for 16 nodes.

This 2x improvement is possible because even with 16
nodes, there were over 600,000 shuffle files per machine,
which did trigger the file system slowdown. Compare these
results to the results of Workload 2 in Figure 5, which
had significantly fewer shuffle files. As the slowdown was
not triggered in the 16 node case, the runtimes of with-
consolidation and without-consolidation were approximately
equal. Only when the number of files became sufficiently
high in the 8 and 4 node runs did performance degrade
significantly.

Additionally, it is of note that the Map phase was roughly
the same between runs with and without consolidation and
always experienced strong linear scaling; only the Reduce
phase experienced a slowdown and poor scaling. Exam-
ination of the stacks of executing Reduce tasks during
without-consolidation runs suggests that a large portion
of time was spent waiting for file system metadata-related
operations, such as File.length(). This, combined with the
high I/0 wait times experienced during the Reduce phase
(which were eliminated with consolidation) suggest that
the inode data must be retrieved from disk during the Re-
duce phase, which is likely causing a large part of the slow-
down.

5.4 Experiment 2: Hadoop
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Figure 6: Performance of Hadoop and Spark, with
and without shuffle file consolidation

The particular job we examined — consisting of reading
data from S3, parsing it, performing a cogroup, and writ-
ing it to HDFS — is in reality a workload more suitable
for Hadoop than Spark. As a one-time bulk job, we could
not take advantage of Spark’s in-memory caching, its low-
overhead recovery mechanism, its reduced scheduling over-
head, or its higher level primitives. Nevertheless, we were
interested in how Spark compares to Hadoop.

This experiment was run on all 16 nodes using Workload 1
with no compression enabled (as Spark and Hadoop don’t
share default compression schemes, and this is not the
highly compressible workload anyway). We compared our
normal Spark job with a completely analogous one written
in Scalding [4], which is a Scala library that compiles into
Hadoop jobs, similar to Pig. As both jobs were written in
Scala and with APIs that look very similar, we are con-
fident in the equivalence of the two programs in terms of
high level operations.

To our surprise, the Spark job with consolidation actu-
ally outperformed Hadoop, while Spark without consol-
idation performed significantly worse (Figure 6). There
are two possibilities on why Hadoop may have performed
worse here. First, simple misconfiguration; through the
course of our work we became very familiar with the Spark
settings that had to be tuned; on the other hand, we
only ran Hadoop a relatively small number of times be-
fore it worked with reasonable performance. This does
speak for Hadoop’s relative ease of configuration: the ini-
tial configuration did work, just with poor performance.
On the other hand, Spark’s initial configuration would
throw out-of-memory exceptions at the beginning of the
Reduce phase due to having too few reducers, so tuning
was not only important, but also necessary.

A second factor in Hadoop’s performance is, naturally,
its more expensive shuffle operation compared to Spark.
As this job is almost entirely just a shuffle, Hadoop’s ex-



No consolidation Consolidation
File system ext3 ext3 ext4d
Map phase 9.5 min 10.2 min 13.9 min 8.1 min
Reduce phase 7.8 min 25.3 min 19.7 min 7.7 min
Total 17.3 min 35.5 min 33.6 min 15.8 min

Table 3: Performance of Spark on ext3 vs ext4 (16 nodes)

ternal sort-merge approach costs significantly more CPU
and disk bandwidth. We believe this was the main cause
of Hadoop’s Map phase being significantly slower than
Spark’s, both with and without consolidation.

On the other hand, Hadoop does have an optimization that
Spark currently omits: shuffle data is prefetched by reduc-
ers while the Map phase is still running. This accounts for
the smaller time spent in the Reduce phase in Hadoop’s
case. In reality, the Reduce phase overlaps with the en-
tirety of the Map phase; the segmented part in Figure 6
shows only the time spent after the map phase ended. We
would have initially predicted this prefetching to have a
very good performance impact for this job, which is bound
by its shuffling. However, we found that the Hadoop task
was actually bound by CPU, similar to Spark, which was
exacerbated by the need to sort all of the shuffie data.

5.5 Experiment 3: File Systems

Shuffle file consolidation aims to ease the random 1/0 ac-
cess overheads. Therefore, the costs associated with these
access patterns are highly dependent on the underlying file
system. So far, all of the results presented are derived from
running Spark on nodes with ext4. In this experiment we
run the same jobs on both ext3 and ext4 in hopes of iden-
tifying interesting patterns.

Table 3 presents the duration of each phase in both ext3
and ext4, with and without shuffle file consolidation. The
configurations used in this experiment are as follows: all
Spark jobs are run on a 16-node m2.4xlarge cluster with
LZF compression enabled and the less compressible Work-
load 1.

The results for this experiment are unexpected. The base-
line of Spark running on ext3 is much faster than ext4
in both phases, while Spark with shuffle file consolidation
enabled runs much faster on ext4 than on ext3. Our op-
timization actually worsened the performance of Spark on
ext3 by a significant factor. Fortunately, the shuffle file
consolidation on ext4 still has the lowest job completion
time out of all other options, including Spark without con-
solidation on ext3. Although Spark performance on ext4
with consolidation does not appear to lead the other op-
tions by significant margins on this particular workload,
we believe the performance gap will be amplified as we
scale up the size of the input data, and thus the number

of Reduce tasks needed.

Why is shuffle file consolidation much more effective in ext4
than in ext3? We offer a preliminary conjecture on the dif-
ferences between the two file systems’ allocation schemes.
Ext3 is an extended version of the traditional UNIX file
system with journaling support. Due to backward com-
patibility reasons, ext3 is not radically different from its
predecessor, and therefore continues to maintain files in
terms of inodes. Under this scheme, the number of I/Os
increase, although logarithmically, with the file size. Be-
cause of this, large files are especially susceptible to frag-
mentation.

The main advancement from ext3 to ext4 is the introduc-
tion of extents. Extents, a range of continguous physical
blocks, replace the block mapping scheme used in ext3 and
its predecessors. In particular, a single ext4 inode can store
up to 4 extents, each of which can map up to 128 MiB of
contiguous space per disk block. This feature is especially
favorable to large files, which no longer require many disk
seeks to read. Backward compatibility is also a concern
in ext4’s design, and therefore ext4 continues to use the
inode interface shared with the file systems that preceded
it.

In our case, it is easy to see why shuffle file consolidation
offers a more significant performance improvement on ext4
than on ext3. Rather than creating many small, scattered
shuffle files, we create much fewer, larger files. On ext3,
these larger files may not fit into the first 12 direct address
blocks on the inode, and therefore may have to rely on
single, or even double, indirect address blocks, inflating
the number of I/O’s needed per file read. Further, there is
no guarantee that the physical blocks representing the file
are physically contiguous, though ext3 makes an effort to
achieve physical locality.

In contrast, extents in ext4 provide much stronger physical
locality benefits for large files. In particular, each large
shuffle file can be read almost sequentially in its entirety,
provided that it fits into an extent.

On the other hand, our data also suggests that the baseline
Spark (without optimization) is significantly slower on ext4
than ext3. This appears to demonstrate a limitation of
ext4 in handling a large number of small files.



6. FUTURE WORK

Our work on analyzing the current bottlenecks and the im-
pact of shuffle file consolidation is still very much a work in
progress. We intend to examine the kernel behavior more
closely to discover exactly why shuffle file consolidation
causes a slowdown in the ext3 file system. We addition-
ally need to assess the new bottlenecks with the removal
of the operating system file overheads. In the workloads
examined, we believe the new bottleneck to be CPU, as
it remains between 400% and 800%, while there are only
4 physical cores per node. This is likely due to the rela-
tively high overhead of parsing and disassembling JSON
inputs, so a workload that does less computational work
may reveal bottlenecks in the other resources (network or
disk).

With 16 nodes, we did not see TCP incast or network
buffers as a significant issue. We suspect, however, that
these issues would arise with much larger clusters. Al-
though a surprising number of Spark clusters run between
4 and 16 nodes, our work does not reveal the nature of the
higher end clusters of 100s or 1000s of nodes.

The shuffle operation performed by MapReduce has been
stable for about four years now. While we compared our re-
sults in an end-to-end manner with MapReduce, a more di-
rect comparison with MapReduce’s shuffle algorithm could
be beneficial, as it produces even fewer actual files at the
cost of requiring a sort (but this sort can be used for future
operations such as streaming joins).

Similarly, we could investigate the option of pushing shuffle
files prior to the completion of the Map phase, as MapRe-
duce does. This has the potential to halve the total job
time in an ideal situation where the Reduce phase takes
no CPU work and the map and shuffle phases can be com-
pletely overlapped. Examining the actual performance im-
plications in real situations could be very useful.

A final optimization to consider is performing a completely
in-memory shuffle when the size of the shuffle data is less
than the cluster’s collective memory. Preliminary tests
that used ramfs showed that the file number overhead in
disk-based file systems is not present in ramfs (i.e, Spark
with shuffle file consolidation ran at the same rate as with-
out). Additionally, disk throughput and seek latency would
become a non-issue. The only challenges with this ap-
proach are degrading gracefully when shuffle data exceeds
memory and correctly allocating memory between the RDD
cache, mappers/reducers, and the shuffle data. Failure to
do so correctly could lead to out-of-memory errors.

7. CONCLUSION

By identifying the shuffle phase bottlenecks specific to Spark,
we have explored several alternatives to mitigate the oper-
ating system overheads associated with these bottlenecks.

The most fruitful of which is shuffle file consolidation, a
simple solution that led to a 2x improvement in overall job
completion time. In addition to demonstrating that the
performance of Spark with this optimization is compara-
ble with that of Hadoop, our data also suggests that the
performance of Spark scales linearly with the number of
nodes.

We have submitted a patch to Spark for shuffle file con-
solidation. However, due to the performance regression
on ext3, the feature is not enabled by default. The fact
that Amazon EC2, a very popular environment for dis-
tributed computation, provides ext3 as the default file sys-
tem presents a non-trivial hurdle for Spark users to ex-
ploit the performance improvement of this optimization.
A short term solution is to change the Spark EC2 scripts
to automatically mount ext4d on each machine on cluster
start-up, an effort already in progress. A longer term solu-
tion is to further investigate the root cause of performance
regression and instrument a change in the optimization
code itself to account for file systems that do not rely on
extents.
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