
MLbase: Distributed Machine Learning Made Easy

Xinghao Pan, Evan R. Sparks, Andre Wibisono

ABSTRACT
MLbase is a system designed to address many of the prob-
lems that arise when applying Machine Learning techniques
at scale. MLbase provides end users with a simple, declar-
ative query language to build and apply models, while at
the same time providing developers of machine learning al-
gorithms the tools they need to implement and deploy their
algorithms over a cluster of machines with minimal com-
plexity. Our initial prototype includes implementations of
several such algorithms, some of which have not been pre-
sented in a distributed setting. MLbase also provides a novel
query optimizer designed to to take best-practices machine
learning workflows, execute them efficiently across a cluster
of machines, and automate model selection.

1. INTRODUCTION
The application of state of the art machine learning tech-

niques is often difficult for end users. Many algorithms
have parameters that need to be carefully tuned in order to
achieve good performance, yet there is often no systematic
rule for choosing the correct parameter values. As a result,
tasks such as parameter tuning and model selection are often
left to the experts in the field. At the same time, experts in
the field are often most comfortable developing cutting edge
algorithms in platforms like MATLAB or R, which are well
known not to scale easily to problems that need to be solved
across multiple machines [26, 1]. With MLbase, a prototype
of the system recently proposed in CIDR [22], we present
a solution to these challenges using three important ideas:
clean interfaces, high level machine learning primitives, and
a query language/optimizer designed to simplify life for the
end user. By forcing a clean interface between ML develop-
ers and the system in the form of machine learning primi-
tives, as well as between the query language and the system
in the form of contracts, we enable query optimization and
automated model selection. By extending traditional cluster
computing frameworks with additional primitives tailored to
machine learning developers, we simplify the lives of those
developers and make it easy to develop and deploy new al-
gorithms at scale. In doing so, we offer implementations of
several distributed machine learning algorithms, several of
which have not been presented in a distributed setting. By
offering a consistently defined interface to these underlying
algorithms, we enable support for a general query language
to build new models, and an optimizer capable of perform-
ing intelligent model selection. Our system consists of a set
of primitives, implementations of several machine learning
algorithms, a contract subsystem, and a query optimizer de-

Listing 1: An example MLbase program.
data = load (’/ tmp/ f e a t u r e 1 . txt ’)
t a r g e t = p r o j e c t (data , 1)
dset = p r o j e c t (data , [2 , 3 , 4 , 5 , 6])
mode l object = l ea rn (target , dse t)
p r i n t (mode l object)

t e s t d s e t = load (’/ tmp/ f e a t u r e 2 . txt ’)
r e s u l t s = p r e d i c t (model object , t e s t d s e t)
p r i n t (r e s u l t s)

signed to select the best model for a user’s data, all built in
Scala with Spark [31] as the system’s runtime.

2. LANGUAGE
The highest level of interaction with the system is the

query language presented by MLbase. In its current form,
it supports just a few basic operations – the loading of
datasets, the projection of features from that dataset, the
training of a model on the dataset, and the ability to make
new predictions using that model on new input data. This
simplicity means that even a casual end user should be ca-
pable of building and running models with our system. An
example MLbase program is shown in Listing 1.

This program loads data from file, selects a target feature
for classification or regression, as well as training features,
trains a model on this data, displays a model summary, and
then loads and and generates predictions on a new dataset.
Our system compiles and expands this program into a a
logical learning plan that is represented as a directed acyclic
graph.

In particular, we expand the learn step into a machine
learning workflow that searches across model families and
their parameters for models which optimally fit the user’s
data.

Our work includes a parser and compiler for this lan-
guage, which includes primitives for assignment, data load-
ing, projection, sampling, prediction, and printing. These
commands can be chained into arbitrarily large programs,
and multiple models can be learned from multiple datasets
in one script. Further, predictions from multiple models can
be presented to the user for deeper analysis. The specifics of
how these queries are processed and how models are found
optimally is presented in our discussion of the optimizer in
Section 6.

3. PRIMITIVES
In this section we describe two types of primitives that

we expose to the machine learning developer to write his
distributed algorithms in. The first, MapReduce, is a well-
known distributed programming paradigm which has been
used to great success in parallelizing many machine learning
algorithms. However, MapReduce suffers from some short-
comings that make it impossible or unnatural to use as a
primitive for certain classes of machine learning algorithms.
This motivates our development of the second primitive,
Batch Map, to overcome these issues.

3.1 MapReduce
MapReduce is a sequence of two operations, map and re-

duce, that apply a transformation to data and aggregate the
results. Given a dataset of key-value pairs S = {(k1, v1), . . . ,
(kn, vn)}, the map operation applies a function f to each
data point (ki, vi) to produce a sequence of key-value pairs
f(ki, vi) = {(k′1, v′1), . . . , (k′m, v

′
m)}. The number m ≡ mi

of key-value pairs in the output can differ for each input
(ki, vi), and different input pairs can produce output val-
ues with the same key. The reduce operation takes in the
output of the map operation, which is the union of all the
output sets

⋃n
i=1 f(ki, vi), and collects the values v′ indexed

by the same key k′. The reduce operation then applies an
aggregator function g to each set {v′ : k′ = k} of output val-
ues corresponding to the same output key k. This allows
MapReduce to return a collection of values, one for each
output key.

In [8], it was shown that several machine learning algo-
rithms can be cast in this framework. Both the map and re-

duce primitives are readily available in Spark, and exposed
for use by developers in MLbase.

3.2 Batch Map
In using the MapReduce programming framework, the de-

veloper is constrained to computing with functions f that
are decomposable over the input data points. This effectively
prevents the implementation of algorithms that exploit the
joint structure of multiple data points.

Furthermore, as the map primitive is defined to operate
over a single dataset, it is impossible to have interactions be-
tween multiple distributed data structures (except through
a highly expensive join operation). As we will argue in Sec-
tion 5, the ability to have such interactions is advantageous
for both computational efficiency and fault tolerance in im-
plementing distributed machine learning algorithms.

To address these issues, we propose a BatchMap primitive
that allows operations on the (locally available) partitions of
all distributed data structures. Recall that since our system
is implemented in Spark, we represent our data as resilient
distributed datasets (RDDs). Suppose we have a collection
of RDDs X1, X2, . . . , Xs, not necessarily of the same type

or size, partitioned across K machines. Let X
(k)
i be the

partition of the i-th RDD stored on the k-th machine.
Let f be a function that takes in a collection of subsets of

data and performs some computation on the data to produce
a collection of results. Then the operation

BatchMap(f,X1, . . . , Xs)

returns an RDD Xs+1 whose partitions are

X
(k)
s+1 = f(X

(k)
1 , . . . , X(k)

s).

We also preserve the partitioning of RDDs, by storing the

partition X
(k)
s+1 formed by f(X

(k)
1 , . . . , X

(k)
s) on the k-th ma-

chine.
In effect, the BatchMap primitive provides the developer

to manipulate data object on any slave machine, as if he
were performing computations on an individual machine,
but with his operations homogeneously replicated across all
slave machines. Since developers typically develop and pro-
totype single-machine, sequential algorithms before attempt-
ing to deploy in a distributed setting, we believe the BatchMap
primitive provides a natural and powerful abstraction for de-
velopers to think about parallelization. By imposing fewer
constraints, we also lower the effort required of the devel-
oper to convert his sequential algorithm into a distributed
one.

While BatchMap is a generic primitive, in practice when
implementing our algorithms, we often treat the RDDs as
blocks of dense or sparse vectors. This usage of BatchMap

lends itself naturally to matrix-oriented algorithms that are
common in machine learning.

In order to efficiently support our algorithms under BatchMap,
we had to modify the DAGScheduler component of Spark
and add a caching layer to handle exponential growth in the
depth first search traversal of the lineage structure of the
RDDs we constructed.

4. CONTRACTS
While our Machine Learning primitives make up one half

of the equation connecting the machine learning algorithms
to the system, the Contracts make up the other half. Moti-
vating the Contracts is the notion that new Machine Learn-
ing algorithms should be callable in a standard and well-
defined way. Thus, the burden is on the ML developer to
specify this interface. Contracts are represented as XML
files in a “Library” that the system has access to. Included
in each contract is the name and model family of each algo-
rithm, class names of their associated implementation, and a
list of parameters associated with the algorithm. These pa-
rameters are typed, and may contain hints about how they
are to be tuned for a particular algorithm. For example,
in searching for an optimal solution to Logistic Regression,
it may make sense for callers to vary the lambda parame-
ter multiplicatively. Each contract conforms to a predefined
contract schema, which allows for automatic translation of
the contracts to Scala objects, which we use to enumerate
possible model configurations and search over their param-
eter space. Listing 2 contains an example contract.

While the introduction of Contracts to the system in-
creases overhead for the ML developer, the potential that
is presented by them is enormous. By providing a consis-
tent and well defined interface to every algorithm in the
system, we enable programmatic access to every algorithm
registered with the system. This directly enables our abil-
ity to perform optimization across model families as in Sec-
tion 6. Future enhancements to contracts will enable the ML
developers to provide hints about runtime complexity and
memory requirements to the system, as well as hints about
what feature transformations may yield better models.

5. ALGORITHMS
We use the primitives described in Section 3 to implement

several distributed machine learning algorithms on top of

Listing 2: Example contract for Logistic Regression.
<?xml ve r s i on =”1.0”?>
<contract>

<modelFamily>
<className>

org .dmx .ml . Log i s t i cReg r e s s i on
</className>
<parameters>

<enumerationParameter>
<name>optimizationType</name>
<values>

org .dmx .ml . opt imiza t i on . GradientDescent
</values>

</enumerationParameter>
<rangeParameter>

<name>optimizat ionType . learningRate</name>
<range>

<min>0.01</min>
<max>100</max>

</range>
<s t epS i ze >10</s tepS i ze>
<stepType>mul t i p l i c a t i v e </stepType>

</rangeParameter>
</parameters>

</modelFamily>
</contract>

MLbase. In this section we briefly describe the algorithms
that we have implemented and how we implement the dis-
tributed version of the algorithms using our set of primitives.
More details on the algorithms and how we convert them
into distributed algorithms can be found in Appendix A.

5.1 LogitBoost
In the supervised learning setting, boosting is a general

framework for combining a set of “weak” learners into a
“strong”learning algorithm with better guarantees [27]. When
the weak learners are easy to train, boosting is an efficient
method to construct a good learning algorithm. For super-
vised classification problems, where the goal is to predict the
sign y ∈ {−1,+1} of an input data x = (x(1), . . . , x(d)) ∈
Rd, the weak classifiers are usually taken to be decision
stumps, i.e. f(x) = sign(x(j) − t) for some dimension 1 ≤
j ≤ d and threshold t ∈ R. The boosting algorithm forms a
weighted sum of the weak classifiers, F (x) =

∑M
m=1 cmfm(x)

for some weights cm ∈ R, and the resulting classification
function is sign(F (x)).

LogitBoost [15] is a boosting algorithm that attempts to
find the best decision stumps f1, . . . , fM and the correspond-
ing weights c1, . . . , cM by minimizing the logistic loss func-
tion over a given set of training points. The sequential ver-
sion of LogitBoost is a greedy algorithm that finds the next
best decision stump f and weight c to be added to the cur-
rent function F . Each iteration can be performed in O(nd)
time, where n is the number of training points and d is the
dimension of the feature vectors, if the values along each fea-
ture dimension are pre-sorted; see Appendix A.1 for more
details.

However, in a distributed environment, each slave machine
only has access to a subset of the data, so finding the op-
timal weak classifier efficiently is non-trivial. This problem
is aggravated if we are restricted to using the map primi-
tive, as each map operation only has access to a single data
point. Fortunately, we do not require that the weak clas-
sifier learned at each iteration be the optimal solution, but
only that it decreases the logistic loss. We now propose two

methods that use our BatchMap primitive for finding new
weak classifiers in a distributed setting.

Locally best weak classifier.
The first method is to have each slave machine propose a

weak classifier that minimizes the logistic loss evaluated over
its local data points. The local logistic loss is also used as a
proxy for the global logistic loss. Thus, the master simply
picks the “best” locally trained classifier (which results in
the largest decrease in the local logistic loss) to be added to
the LogitBoost model.

This scheme is fast because each machine only needs to
perform local computation with no synchronization over-
head. However, there are a number of potential problems
with this method. For instance, there is no guarantee that
the globally optimal feature dimension and threshold will
be selected by any of the local optimizations. In particular,
the chosen classifier weights are locally, but not necessar-
ily globally, optimal, and as such may not be guaranteed to
lower the global logistic loss. Moreover, by approximating
the global objective by local objective functions, the master
may not be taking the globally optimal decision.

Reweighted (random) classifier.
To overcome the issues with the previous scheme, we pro-

pose a second method where a slave machine may at ran-
dom propose a classifier with random feature dimension and
threshold. We assume that the local logistic loss is still a suf-
ficiently good approximation for global logistic loss, in the
sense that among all proposed classifiers, the classifier that
minimizes the global logistic loss is in the top κ classifiers
with lowest local logistic loss, for some parameter 1 ≤ κ ≤ K
that we can tune. We distribute these top κ classifiers to all
slaves to compute their global logistic loss as well as the glob-
ally optimal classifier weight. The master then selects the
globally best classifier and adds it to the LogitBoost model
with the recomputed weight.

Unlike the first scheme proposed above, this method guar-
antees that the global objective function is decreasing at
each iteration. This comes at a higher communication cost
because recalculating the weights requires computation over
all the points across all the machines. However, in prac-
tice we do not see big performance difference between the
locally-best scheme and this method.

5.2 DP Means
The Dirichlet process (DP) [29] is a popular non-parametric

Bayesian mixture model that allows for flexible clustering of
data without having to determine a priori the number of
clusters. The inference process for DPs typically involves
some form of Gibbs sampling (via the Chinese restaurant
process, or CRP) or a variational approximation.

Recent work in [23, 21] explored the behavior of the CRP
Gibbs sampler for exponential families DP mixture models,
in the limit when p(· | µk) goes to 0. Under small vari-
ance assumptions, the CRP Gibbs sampler reduces to the
k-means algorithm, but with a twist: any datapoint which
is not“close” to any cluster mean is placed in its own cluster.
This algorithm, named DP means, achieves fast yet flexible
hard clustering.

However, both the CRP Gibbs sampler and DP means
suffer from the need to sequentially process data points.
Each datapoint may potentially create a new cluster, which

must then be taken into account when processing the subse-
quent datapoint. In this project, we extend the DP means
algorithm to give a distributed implementation using our
BatchMap primitive.

5.2.1 Distributed DP means
To the best of our knowledge, the algorithm we propose

in this paper is the first to parallelize/distribute DP means
over a cluster.

Instead of sequentially sampling datapoints, our distributed
algorithm introduces a distributed, conservative cluster cre-
ation process. Given the current global set of means µc,
each slave machine simulates the cluster assignment step by
iterating through its data points, and locally creating a new
cluster centered at xi whenever it encounters an uncovered
datapoint xi.

The set of new local cluster means are then sent to the
master, which simulates the cluster assignment on the pro-
posed cluster means, promoting a local cluster mean to a
global mean whenever an uncovered local cluster mean is
found.

As new global clusters are created, some of the local clus-
ter means xi’s may now be covered by the new global clus-
ters. There may, however, be some data points on the slave
machines that had been assigned to the simulated local clus-
ter xi, but remain up to 2λ after from any global cluster
mean. Thus, we send the new set of global centers to all
slave machines, and repeat the cluster creation process after
discarding all simulated local clusters, until no datapoint is
left uncovered.

By the end of the cluster creation process, every datapoint
is guaranteed to be covered by some cluster. Next, we run
the cluster assignment step of DP means once. Since all data
points are now covered, no new clusters will be generated,
and the assignment can take place in parallel.

Finally, we update the means by collecting the sufficient
statistics (

∑
i I(zi = c),

∑
i I(zi = c)xi) for each cluster c,

and computing the new mean µc ←
∑

i I(zi=c)xi∑
i I(zi=c)

.

We execute the distributed cluster creation operation us-
ing the BatchMap primitive. While we could have used the
standard map primitive, by using BatchMap we can reduce
the potential number of new clusters proposed, and mini-
mize the load on the master in synchronizing the clusters’
creation, thus achieving a more scalable solution.

5.3 SVM
Support vector machine (SVM) is a classical supervised

classification algorithm that attempts to find the maximum
margin hyperplane separating the two classes of the data [30].
For input data x ∈ Rd, SVM finds a separating hyperplane
parameterized by a weight vector w ∈ Rd and an offset b ∈ R
such that the classification function f(x) = sign(w>x + b)
predicts the label y ∈ {−1,+1} while maximizing the dis-
tance from the data points to the hyperplane. Sequential
single-node SVM is typically solved via a stochastic itera-
tive algorithm that requires multiple passes over the train-
ing data. When our dataset is large and distributed across
machines, this method incurs a substantial communication
overhead.

We implement distributed SVM as a consensus algorithm
using our BatchMap primitive. The algorithm is based on a
technique from convex optimization called Alternating Di-
rection Method of Multiplier (ADMM) [6], and it proceeds

as follows. Suppose our training data is stored as an RDD
partitioned across K machines. In each iteration, we per-
form the following steps:

1. Each machine k computes an estimate vk of the best
classifier based on its local view of the data.

2. The master node combines the estimates v1, . . . , vK
and compute the best global classifier w.

3. Each machine k computes a penalty zk of how much
its estimate vk deviates from the global estimate w.
We go back to step 1 in the next iteration.

Thus, the distributed SVM algorithm needs to keep track
two RDDs, v and z, which are recomputed and reassigned
at each iteration. The computation of v (local classifiers) at
each iteration depends on the training data RDD and the
RDDs v and z from the previous iteration. This step can
be accomplished by our BatchMap primitive. The computa-
tion of w (global classifier) depends on the RDDs v and z,
and this step can be performed using the standard reduce

operation. Finally, the computation of z (synchronization
penalty) at each iteration depends on the new RDD v and
the previous RDD z; this step can also be performed using
the BatchMap primitive.

6. OPTIMIZER
When a user submits their query to the system, all vari-

able references are resolved and the query is compiled into
a directed acyclic graph of logical operations. These oper-
ations are then expanded to form a logical machine learn-
ing workflow. Our goal here is to select the best model
for a user’s data, and so we perform a search over possible
model families and their parameterizations and use a cross-
validation procedure to select the best-fitting model.

Optimization is broken down into two stages. First, we
optimize a physical learning plan based on the logical learn-
ing plan derived from a user’s query. Second, we perform our
search over model and parameter space to best fit a user’s
workflow.

6.1 Logical Learning Plan
In its current form, our optimizer provides support for

learning an optimal model for classification, but can be ex-
tended to support other types of supervised, and eventually
unsupervised learning tasks. When a user submits a query
to learn a new model, the system expands that query into a
logical learning plan. That is, the “learn” portion of a user’s
query is expanded into a logical learning plan that consists
of the following:

1. Subsampling – input data is subsampled.

2. Contract Loading and Expansion – Contracts are loaded
from the Library and selected based on whether they
are appropriate for the learning problem at hand.

3. Search – parameter space is enumerated and searched.
Each enumeration is called a “model configuration”

4. Cross-validation – potential model configurations are
cross-validated and their performance is evaluated in
this cross-validated scenario.

5. Model selection and Final Model Construction – the
best candidate model configuration based on average
cross-validated out-of-sample performance is selected,
and the model is estimated on all of the user’s input
data.

These steps represent a machine-learning best practices work-
flow. Over time, this workflow will be expanded to handle
tasks like feature engineering and data normalization where
appropriate.

6.2 Physical Learning Plan
Once a logical learning plan is constructed, the system au-

tomatically optimizes a query to make efficient use of the re-
sources presented to it by the runtime, in our case, the Spark
system. The physical optimizations made by this compo-
nent of the system fall into three broad categories: caching,
equivalent operation reordering, and lineage awareness.

Because our runtime is the Spark system, we represent
our datasets as resilient distributed datasets (RDDs). These
datasets are loaded into distributed memory and operations
on them are evaluated lazily. In our system, RDDs that are
frequently used are cached to speed up future operations on
the same data. For example, we cache the sampled datasets
that are used during cross-validation.

Three important operations in our system are sampling,
projection, and merge. Projection allows a user or the sys-
tem to select a subset of columns in an RDD to operate on
(for example, when selecting features to train their model
on). Sampling allows the system to select a subset of rows
in an RDD, with or without replacement. Merging in this
sense (not to be confused with a database merge-join) is de-
fined as column-wise concatenation of two datasets that have
the same number of rows. This can be useful for combin-
ing features from two files or two different sets of features.
The astute reader will note that projection, selection, and
merging are order independent in many cases. For example,
selecting the first ten rows of a dataset, then projecting the
second and third columns is exactly equivalent to project-
ing the second and third columns then selecting the first 10
rows. However, in our system, the speed of projection is
linearly dependent on the number of rows in the dataset,
while selection by row index is quick. As such, our system
automatically reorders these order independent operations
where appropriate. However, in workflows where eventually
the entire dataset will be accessed under the same projec-
tion, we select an optimal physical plan based on minimizing
repeated access to the same RDD tuples.

Our query language allows users to load and select data
from multiple sources (different files on Amazon S3, HDFS,
or a local filesystem, for example). However, because users
often only want to learn models on data from a few sources,
we introduce a set of optimization rules designed to avoid
reading data from the same file more than once, and to avoid
applying multiple transformations to a dataset where one
would suffice. Simply speaking, we track which expressions
are derivative of the same rows in a master dataset and
combine these expressions (via a merge operation) as early
as possible in the execution graph.

For example, in the case of the query presented in listing 1,
since both the target feature and the training features come
from the same file, the system merges these as early as pos-
sible, and the result is a dataset that combines both training
and target features. Indeed, the two projection operations

LoadExpr
@2058413053

PredictExpr
@-701503803

PrintExpr
@345168298

LoadContractsExpr
@581148518

ExpandContractsExpr
@1292824952

SearchExpr
@905521505

ProjectExpr
@-2025046754

SampleExpr
@-558209743

TrainExpr
@-267220911

PrintExpr
@-46994493

MergeColExpr
@2062019779

LoadExpr
@1170909372

Figure 1: An optimized physical learning plan.

that are specified by the user can be turned be turned into a
combination of column indexes followed by a single projec-
tion. A physically optimized version of the query presented
in Section 1 is shown in Figure 1.

6.3 Model Search
Model family and parameter selection are difficult prob-

lems, particularly for novice users. Our optimizer has the
objective to find the best possible model for the input data.
We define best-possible model as the model that has the
best possible out-of-sample performance. As has been of-
ten discussed [5], this means choosing a model family that
adequately captures features of the data while avoiding over-
fitting. We can optimize over the possible space of model
parameters thanks to the hints presented by the ML devel-
oper in the contracts. For example, in the contract shown in
Section 4, we can see that logistic regression has a step func-
tion parameter, and that that parameter should be searched
multiplicatively with a step size of 10. That is, the values
0.01, 0.1, 1.0, and so on, will be attempted when search-
ing over this space. The contracts also support enumerated
parameters and additive range parameters, and will soon
support functional parameters. In its current implementa-
tion, the optimizer will search over all possible configuration
options allowed for by the contracts and select the best per-
forming model built on its subset of the data. It should be
noted that out-of-sample classification accuracy is only the
relevant metric to use for classification models, and as such
that is the only class of model supported by the optimizer
at this time. However, we do intend to support regression
models as well as unsupervised learning models in the future
using similar techniques.

The model search algorithm operates on subsamples of the
dataset and selects the model with the best cross-validated
performance as determined by Algorithm 1.

In Figure 6.3, we show estimated out-of-sample perfor-
mance using this method in the LogitBoost and SVM fam-
ilies on an initial sample size of 100,000 points using the
same synthetic data that we use for the classifiers in Sec-

Algorithm 1: Cross-validated optimization algorithm.

Data : Datapoints X, contract, configuration,
sampleSize 0.05, iterations 10

Result: Estimated out of sample performance
1 Initialized testData ← sample(X, sampleSize);
2 Initialize oosPrediction ← [];
3 for i ∈ iterations do
4 samp ← sample(X, sampleSize);
5 model ← fitModel(samp, contract, configuration);
6 modelAccuracy ← calcAccuracy(model, testData);
7 oosPrediction[i] ← modelAccuracy

8 end
9 return mean(oosPrediction)

tion 7. We can see that the best models in this case are
those from the SVM learners with a lambda ranging from
1× 10−6 to 1× 10−2. The optimizer chose lambda = 0.001,
which corresponded to an out-of-sample accuracy of 86.61%.
This was the second-best model in the out-of-sample experi-
ment – the best model was for lambda = 1×10−5 which had
an out-of-sample accuracy of 86.69%. While not perfect, the
optimizer managed to pick a reasonable model based only
on the cross-validation procedure we employed on a subset
of the data.

0

0.2

0.4

0.6

0.8

1

O
O

S
Ac

cu
ra

cy

Optimizer Out−of−sample Predictions
vs. True Out−of−sample Accuracy

Lo
git

Boo
st

(n=
1)

Lo
git

Boo
st

(n=
10

)

Lo
git

Boo
st

(n=
10

0)

SVM (la
mbd

a=
1e
−6

)

SVM (la
mbd

a=
1e
−5

)

SVM (la
mbd

a=
1e
−4

)

SVM (la
mbd

a=
1e
−3

)

SVM (la
mbd

a=
1e
−2

)

SVM (la
mbd

a=
1e
−1

)

SVM (la
mbd

a=
1)

SVM (la
mbd

a=
10

)

SVM (la
mbd

a=
10

0)

Predicted OOS
Actual OOS

Student Version of MATLAB

Figure 2: Sample model selection optimization.

Each model is submitted to the system for fitting using
akka Actors – a paradigm for asynchronous concurrent pro-
gramming that is popular in the Scala community. The
asynchronous nature of the Actor paradigm enables us to
submit multiple jobs to the Spark cluster asynchronously,
and wait for results to come back. This allows us to support
timeouts for model configurations that may never converge,
as well as future syntax enhancements to the MLbase query
language. For example, an end user might want to have the
“best model after 5 minutes”, or “best model after trying
1,000 possible models.” By architecting the system with Ac-
tors handling model-building, we are able to support these
types of queries with trivial language extensions.

7. EVALUATION
We evaluate our system across two important dimensions:

complexity and scalability.

7.1 Experimental Setup
Our experimental setup consists of a Spark cluster on

Amazon EC2 with instance type m1.large. Data is copied
to HDFS before each experiment is executed. We scale the
number of cores used in our experiments with the Spark
spark.cores.max setting.

PSVM runs on this cluster using MPICH2. In this setup,
data copied to nodes via RSYNC before our experiments
were executed.

MATLAB experiments for LogitBoost and DPMeans were
conducted on a 2012 model Macbook Pro Retina with an In-
tel core i7 processor and 8GB of RAM. The MATLAB exper-
iments for SVM were conducted on a 2010 model Macbook
Pro with an Intel core i5 processor and 4GB of RAM. The
difference in machine environment is due to the need to use
CVX in MATLAB for the SVM experiments.

Data for DP means clustering was generated by sampling
data points xi from 27 three-dimensional normal distribu-
tions N (µk, I3×3), with µk ∈ {0, 3, 9}3. The distributions
are truncated to a finite support of radius 3 from the mean
(any data point xi with ‖xi − µk‖2 > 3 is re-sampled) to
model the finite support of DP means clusters.

Data for the LogitBoost and SVM experiments was gener-
ated from a 100-dimensional normal distribution with zero
mean and a diagonal covariance matrix. The diagonal en-
tries of the covariance matrix were sampled independently
from the χ2

1 distribution. The label yi for each feature
vector xi was generated by first sampling a random hy-
perplane w ∈ R100 and b ∈ R (common to all the data
points) from the standard normal distribution, and then tak-
ing yi = sign(w>xi + b). The labels were further corrupted
by independent sign flips with probability 0.1. This results
in an ideal classification accuracy of approximately 90%.

7.2 Complexity
While it is clear that the end-user query system is easy to

use, we have not yet shown how easy it is to write a complete
algorithm for the ML developers. In Table 1 we provide a
summary of the number of lines of Scala code required to im-
plement several popular Machine Learning algorithms and
compare both to MATLAB and to existing parallel imple-
mentations of these algorithms, if they are publicly available.

We can clearly see that the Scala versions of these im-
plementations, built using our ML primitives, are about as
concise as the MATLAB representations, and if an open-
source distributed implementation exists the Scala version
is always significantly smaller than that version. The main
exception to this is the case of SVM, where the MATLAB
implementation is significantly smaller. This is due to the
use of CVX, a MATLAB plugin for solving a general con-
vex optimization problem [10, 19]. However, CVX currently
only works well for small problems, both in terms of compu-
tation time and memory requirements. This is demonstrated
by the much weaker scaling property of CVX compared to
Spark and MLbase; see Figure 8. We also note that the
MLbase implementation of SVM is still an order of magni-
tude more simple than PSVM, which contains nearly 5000
lines of custom C++ code that operates via MPI, and only
supports SVM fitting.

7.3 Scalability

Algorithm MATLAB MLbase Mahout Other Ratio
Logistic Regression 82 99 577 X 1.21
SVM 23 256 X 4697 11.13
DPMeans 86 288 X X 3.35
LogitBoost 116 380 X X 3.28

Table 1: Lines of code comparison of algorithm implementations. Ratio indicates ratio of lines of code of
MLbase to MATLAB.

An important question is whether these algorithms actu-
ally scale. Can we run jobs across multiple machines with
near-linear speedup? Can we handle more data because of
our ability to spread work out over a cluster? In this section,
we evaluate if our algorithms are able to achieve strong and
weak scalability.

7.3.1 Strong scaling
An algorithm is said to be strongly scalable if, for a fixed

problem size, its run time decreases as more machines are
used. Ideally, the run time should be at least inversely pro-
portional to the number of machines. Strong scalability is
important as it implies that we can obtain solutions faster as
long as we can bring more machines to bear on the problem.

LogitBoost.
We tested our two versions of distributed LogitBoost using

a fixed dataset size of 200,000 data points on Spark clusters
of 1, 2, 5, 10, 15 and 20 machines. For comparison, we also
ran the sequential LogitBoost on MATLAB using the same
200,000 data points on a single machine. Figure 3 shows the
speedup comparison of our two LogitBoost implementations
on Spark, compared with the MATLAB implementation, ob-
tained by dividing the running time for one machine by the
running time for variable numbers of machines.

Figure 3: Speedup of distributed LogitBoost in the
strong scaling setting.

With 20 machines, both Spark implementations are either
faster or almost as fast as the MATLAB implementation.

DP Means.
DP means was tested with a dataset consisting of 270,000

data points. In addition to our distributed implementation

on Spark, we also implemented both the original sequential
DP means and our batched cluster creation algorithm in
MATLAB.

Figure 4: Speedup of distributed DP means in the
strong scaling setting.

The run time for sequential DP means in MATLAB is ap-
proximately 1500 seconds, and for readability reasons, have
been left out of the plot. On the other hand, the batched
cluster creation program in MATLAB performs much bet-
ter, completely in just over 100s. Neither MATLAB version,
however, scales as we increase the number of machines.

Our Spark implementation of distributed DP means does
decrease its run time as more machines are added. We do
note that the reduction in run time plateaus and possibly
increases; however, we do not yet have a good explanation
to why this is so, and further investigation is required.

Figure 4 shows the speedup comparison of our DP means
implementation on Spark, obtained by dividing the running
time for one machine by the running time for variable num-
bers of machines.

SVM.
We tested our distributed implementation of SVM on a

fixed dataset of 200, 000 points on Spark clusters of 1, 2, 5,
10, 15 and 20 machines. We also ran two other algorithms
for comparison. The first one is the single-node MATLAB
SVM solver using CVX. The second one is PSVM, a parallel
implementation of SVM that achieves good performance by
performing a low-rank approximation of the input data [7].
For these experiments we used the parameter rank_ratio

of 1/
√
n, where n = 200, 000 is the number of data points.

This is the value that is suggested in the PSVM paper, and
it corresponds to an approximation of the input data by a

rank-
√
n matrix.

Figure 5: Speedup of distributed SVM in the strong
scaling setting.

PSVM achieves excellent performance and scaling prop-
erty, but it is unclear to what extent this can be attributed
to the low-rank approximation that it performs. Our total
runtime is about twice as high as total runtime for PSVM,
and does not scale as well. The running time for our Spark
implementation of SVM initially decreases as we add more
machines, but as in the case of DP means, it eventually flat-
tens out as the number of machines increases. This might be
due to the communication overhead between the machines,
but it requires further investigation. Figure 5 shows the
speedup comparison of both our Spark implementation and
PSVM, obtained by dividing the running time for one ma-
chine by the running time for variable numbers of machines.

7.3.2 Weak Scaling
An alternative notion of scalability is weak scaling, where

the number of machines increases proportionally to the data
set size, so that each machine has a fixed size of dataset. The
implication of having a weakly scalable algorithm is that the
computation time is bounded and largely independent of the
data set size, so it is possible to work with arbitrarily large
data sets by having sufficiently many machines.

LogitBoost.
We again evaluate both distributed versions of LogitBoost

implemented in Spark, together with the sequential Logit-
Boost in MATLAB. Cluster sizes of 1, 2, 5, 10, 15, and 20
machines were used, with 50,000 data points on each ma-
chine. The run times for each implementation across differ-
ent data set sizes is shown in Figure 6.

As the data set sizes are increased, the run times of the
distributed LogitBoost implementations increase slowly. In
comparison, the MATLAB sequential LogitBoost implemen-
tation’s run time increases at least linearly with the data set
size. For data sets with more than 500,000 data points, se-
quential LogitBoost is handily beaten in run time by the
distributed implementations.

DP Means.

Figure 6: Weak scalability of LogitBoost. The run-
ning time of LogitBoost grows slowly as we add more
machines to deal with increasing data size.

Spark cluster sizes of 1, 2, 5, 10, 15, and 20 machines were
used, with 270,000 data points per machines, for evaluating
the weak scalability of DP means. In Figure 7, it is clear
that the original sequential DP means is highly inefficient
when implemented in MATLAB.

Figure 7: Weak scalability of distributed DP means.
There is little degradation in DP means’ run time
if we keep the data size on each slave machine con-
stant.

Even if we use the batched cluster creation algorithm in
MATLAB, we still get a linear increase in run time. Impres-
sively, the run time of our distributed Spark implementation
is hardly affected by the number of data points, demonstrat-
ing weak scalability.

SVM.
We run the SVM experiments on Spark clusters with 1,

2, 5, 10, 15, and 20 machines with 200,000 data points per
machine. We compare our distributed SVM implementa-

tion with the MATLAB CVX solver and the PSVM algo-
rithm. As shown in Figure 8, our Spark implementation
achieves excellent weak scaling property that beats PSVM.
The computation time of CVX, on the other hand, scales
superlinearly and it is not usable for larger problems.

Figure 8: Weak scalability of distributed SVM. Our
Spark implementation achieves better scaling prop-
erty than PSVM. CVX is not scalable to larger prob-
lems.

8. RELATED WORK
In related work, the Weka [4], MADLib [20], and Ma-

hout [3] projects attempt to make machine learning accessi-
ble. Weka is a collection of machine learning tools for data
mining that simplifies their usage by providing a simple user
interface, but requires expert knowledge of machine learn-
ing to use does not work in a cluster environment. Mahout
aims is to build a set of scalable ML routines for Hadoop,
and MADLib provides an ML library for relational database
systems. Neither system addresses the difficult but neces-
sary challenge of optimizing the learning algorithms. Google
Predict [2] is Google’s proprietary web-service for predic-
tion problems, but restricts the maximum training data-size
to 250MB. SystemML [18] from IBM Research provides a
system of machine learning primitives based on linear alge-
bra operations and attempts to optimize optimal plans with
these primitives in a multi-stage MapReduce environment,
but does nothing to ease the life for the end user and does
not perform automated model selection.

[11] presents a parallel Monte Carlo sampler for Dirichlet
processes (DPs). To the best of our knowledge, this is the
first theorectically sound distributed sampling procedure for
DPs. However, in the distributed form, the sampler requires
movement of data across the network, which we consider to
be an expensive operation. Supporting distributed sampling
for DPs in the framework of [11] without excessive network
traffic is a possible future research direction.

A distributed Gibbs sampling for DPs is implemented in
Mahout [3]. However, a fixed maximum number of clusters
is assumed. This is not truly a Dirichlet process, but more
akin to a finite mixture model with a Dirichlet prior over
mixture priors.

Distributed boosting algorithms have been proposed by
various parties [13, 24]. In such algorithms, weak classi-
fiers are first trained using the locally available data set
on each slave machine, much like our BatchMap training
of LogitBoost. Most recently, [25] proposed boosting us-
ing MapReduce, by intelligently combining weak classifiers
trained independently on slave machines. We point out that
the training was performed over data subsets (i.e. using a
BatchMap-type primitive), rather than over individual data
points (i.e. using a map-type primitive).

There have been plenty of efforts to parallelize SVM ef-
ficiently, both in primal and dual forms. Many of these al-
gorithms, such as the P-packSVM [32], require special con-
siderations on the distribution and partitioning of the data,
while other approaches such as PSVM [7] only work with
a subset or an approximation of the data. In this project
we choose to implement a distributed version of SVM using
ADMM [6] for the simplicity of the algorithm and the low
complexity overhead, as well as the good performance that
we observe in practice. In our experiments, we compare the
performance of our distributed SVM implementation with
PSVM, which performs a low-rank approximation of the in-
put data to achieve good performance.

9. CONCLUSION
We have presented MLbase, a complete system to make

development of machine learning models in a distributed
computing environment easier for developers and end users.
We have introduced new primitives in our distributed pro-
cessing environment, which enables faster and more con-
cise development of machine learning algorithms, and im-
plemented three new algorithms – two of which do not seem
to have publicly available distributed implementations. We
have also described and implemented a model optimization
strategy designed to handle model selection, and defined in-
terfaces between the optimizer subsystem and the machine
learning algorithms. Our results look promising from sev-
eral perspectives – first, we have shown that our system
allows for reasonably good scaling of several distributed al-
gorithms, without sacrificing too much in terms of model
accuracy. Second, we have shown that an optimization sys-
tem can be implemented to select models across families and
does a pretty good job picking an ideal model configuration
based on our test data. We intend to continue to explore
the potential presented by this system in our future work.

10. ACKNOWLEDGEMENTS
This project is part of a larger research effort underway

in the AMPLab, and could not have been possible without
the help of several people. Denny Britz, Ameet Talwalkar,
Tim Kraska, John Duchi, and Joey Gonzalez all contributed
ideas, design, algorithmic insight, or code.

11. REFERENCES
[1] BigMemory Project. http://bigmemory.org/.

[2] Google Prediction API.
https://developers.google.com/prediction/.

[3] Mahout. http://mahout.apache.org/.

[4] Weka. http://www.cs.waikato.ac.nz/ml/weka/.

[5] H. Akaike. Factor analysis and aic. Psychometrika,
52(3):317–332, 1987.

[6] S. Boyd, N. Parikh, E. Chu, B. Peleato, and
J. Eckstein. Distributed optimization and statistical
learning via the alternating direction method of
multipliers. Foundations and Trends in Machine
Learning, 3(1), 2011.

[7] E. Y. Chang, K. Zhu, H. Wang, H. Bai, J. Li, Z. Qiu,
and H. Cui. Psvm: Parallelizing support vector
machines on distributed computers. In NIPS, 2007.
http://code.google.com.

[8] C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng,
and K. Olukotun. Map-reduce for machine learning on
multicore. Advances in neural information processing
systems, 19:281, 2007.

[9] C. Cortes and V. N. Vapnik. Support-Vector
Networks. Machine Learning, 20(3):273–297, 1995.

[10] I. CVX Research. CVX: Matlab software for
disciplined convex programming, version 2.0 beta.
http://cvxr.com/cvx, Sept. 2012.

[11] R. P. A. Dan Lovell and V. K. Mansinghka. Parallel
markov chain monte carlo for dirichlet process
mixtures. In Big Learn workshop, NIPS’12, 2012.

[12] J. C. Duchi and Y. Singer. Efficient online and batch
learning using forward-backward splitting. Journal of
Machine Learning Research, 10:2873–2898, 2009.

[13] W. Fan, S. Stolfo, and J. Zhang. The application of
adaboost for distributed, scalable and on-line learning.
In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and
data mining, pages 362–366. ACM, 1999.

[14] Y. Freund and R. Schapire. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences,
55(1):119 – 139, 1997.

[15] J. Friedman, T. Hastie, and R. Tibshirani. Additive
logistic regression: a statistical view of boosting (with
discussion and a rejoinder by the authors). The annals
of statistics, 28(2):337–407, 2000.

[16] D. Gabay. Applications of the method of multipliers to
variational inequalities. In M. Fortin and R. Glowinski,
editors, Augmented Lagrangian Methods: Applications
to the Solution of Boundary Value Problems,
chapter IX, pages 299–340. North-Holland, 1983.

[17] D. Gabay and B. Mercier. A dual algorithm for the
solution of non linear variational problems via finite
element approximation. Computers and Mathematics
with Applications, 2:17–40, 1976.

[18] A. Ghoting, R. Krishnamurthy, E. Pednault,
B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan. Systemml: Declarative machine
learning on mapreduce. In Proceedings of the 2011
IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 231–242, Washington,
DC, USA, 2011. IEEE Computer Society.

[19] M. Grant and S. Boyd. Graph implementations for
nonsmooth convex programs. In V. Blondel, S. Boyd,
and H. Kimura, editors, Recent Advances in Learning
and Control, Lecture Notes in Control and Information
Sciences, pages 95–110. Springer-Verlag Limited, 2008.
http://stanford.edu/~boyd/graph_dcp.html.

[20] J. M. Hellerstein, C. Ré, F. Schoppmann, Z. D. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, and A. Kumar. The madlib analytics library or

mad skills, the sql. Technical Report
UCB/EECS-2012-38, EECS Department, University
of California, Berkeley, Apr 2012.

[21] K. Jiang, B. Kulis, and M. Jordan. Small-variance
asymptotics for exponential family dirichlet process
mixture models. In Advances in Neural Information
Processing Systems 25, pages 3167–3175, 2012.

[22] T. Kraska, A. Talwalkar, J.Duchi, R. Griffith,
M. Franklin, and M. Jordan. Mlbase:a distributed
machine learning system. In In Conference on
Innovative Data Systems Research, 2013.

[23] B. Kulis and M. I. Jordan. Revisiting k-means: New
algorithms via bayesian nonparametrics. CoRR,
abs/1111.0352, 2011.

[24] A. Lazarevic and Z. Obradovic. The distributed
boosting algorithm. In Proceedings of the seventh
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 311–316. ACM,
2001.

[25] I. Palit and C. Reddy. Scalable and parallel boosting
with mapreduce. Knowledge and Data Engineering,
IEEE Transactions on, 24(10):1904–1916, 2012.

[26] M. J. Quinn, A. G. Malishevsky, and N. Seelam.
Otter: Bridging the gap between matlab and
scalapack. In HPDC, pages 114–, 1998.

[27] R. Schapire. The strength of weak learnability.
Machine Learning, 5(2):197–227, 1990.

[28] B. Schölkopf, C. Burges, and A. Smola, editors.
Advances in Kernel Methods - Support Vector
Learning. MIT Press, 1998.

[29] Y. W. Teh. Dirichlet process. In Encyclopedia of
Machine Learning, pages 280–287. 2010.

[30] V. N. Vapnik. Statistical Learning Theory. Wiley,
1998.

[31] M. Zaharia, M. Chowdhury, M. Franklin, S. Shenker,
and I. Stoica. Spark: cluster computing with working
sets. In Proceedings of the 2nd USENIX conference on
Hot topics in cloud computing, pages 10–10. USENIX
Association, 2010.

[32] Z. A. Zhu, W. Chen, G. Wang, C. Zhu, and Z. Chen.
P-packsvm: Parallel primal gradient descent kernel
svm. In W. Wang, H. Kargupta, S. Ranka, P. S. Yu,
and X. Wu, editors, ICDM 2009, The Ninth IEEE
International Conference on Data Mining, Miami,
Florida, USA, 6-9 December 2009, pages 677–686.
IEEE Computer Society, 2009.

APPENDIX
A. MORE DETAILS ON THE ALGORITHMS

In this section we provide more details on the machine
learning algorithms that we described in Section 5.

A.1 LogitBoost
AdaBoost [14] is a popular Boosting algorithm that can

be interpreted as minimizing the exponential loss function

LAdaBoost(F) =
1

n

n∑
i=1

exp(−yiF (xi))

over the training points S = {(x1, y1), . . . , (xn, yn)}. Logit-
Boost [15] is another variant of boosting that seeks to min-

imize the logistic loss

L(F) =
1

n

n∑
i=1

log(1 + exp(−yiF (xi)), (1)

which is equivalent to maximizing the log-likelihood of the
data under the binomial generative model

P(y = 1 | x) =
exp(F (x))

1 + exp(F (x))
.

Since the logistic loss is a more conservative approximation
to the 0−1 loss compared to the exponential loss, in practice
LogitBoost is usually observed to be more robust to noisy
data and outliers compared to AdaBoost.

In the remainder of this section, we first describe the
greedy algorithm for optimizing the loss function (1), and
then provide more details on the two distributed LogitBoost
schemes that we proposed in Section 5.1.

A.1.1 Sequential LogitBoost
Fix the number of weak classifiers M . Performing an ex-

act minimization of the loss (1) over functions of the form

F (x) =
∑M
m=1 cmfm(x) is intractable. Therefore, we use a

greedy algorithm where we sequentially find the next best
weak classifier and weight. Specifically, for each 1 ≤ m ≤
M − 1, once we have a partial function Fm(x) = c1f1(x) +
· · ·+ cmfm(x), we seek to find the best fm+1 and cm+1 via

(fm+1, cm+1) = argmin
f,c

L(Fm + cf),

where the minimization is over all decision stumps f and
weights c ∈ R. In order to perform this computation effi-
ciently, we further approximate the logistic loss function by
a second-order Taylor expansion: for each s ∈ R and for
small t ∈ R, the value log(1 + e−s−t) is approximately

log(1 + exp(−s))− exp(−s)
1 + exp(−s) t+

1

2

exp(−s)
(1 + exp(−s))2 t

2.

Then for small c, we can replace the function L(Fm+cf) by

L(Fm)− c

n

n∑
i=1

yipif(xi) +
c2

2n

n∑
i=1

pi(1− pi)f(xi)
2,

where pi = 1/(1 + exp(−yiFm(xi))). Thus, recalling that
f(x)2 = 1 since f is a decision stump, we find (fm+1, cm+1)
by minimizing the quantity

L̃(f, c) = −c
n∑
i=1

yipif(xi) +
c2

2

n∑
i=1

pi(1− pi).

Since L̃(f, c) is quadratic in c, we can solve it explicitly.
For each fixed function f , the optimal weight c is given by

c∗f =

∑n
i=1 yipif(xi)∑n
i=1 pi(1− pi)

,

yielding the objective value of

min
c
L̃(f, c) = −

(∑n
i=1 yipif(xi)

)2
2
∑n
i=1 pi(1− pi)

.

Each decision stump f(x) = sign(x(j) − t) is characterized
by an index 1 ≤ j ≤ d and threshold t ∈ R. Therefore,

finding the optimal decision stump fm+1 now amounts to
solving the following optimization problem:

min
f,c
L̃(f,c) = − 1

2
∑n
i=1 pi(1− pi)

×

{
max
1≤j≤d

max
t∈R

(n∑
i=1

yipi sign(x(j)− t)
)2}

.

(2)

Note that even though the threshold t can take any real
values, for each fixed j there are only at most n distinct
values of the objective function (2), one for each interval
between any two consecutive projections of the xi’s on to
the j-th dimension. Thus, we can solve the inner maximiza-
tion problem above by trying all n possible values for the
threshold t, and then picking the value of j that gives the
best optimal value. This computation can be performed in
O(nd) time if the values along each feature are pre-sorted.

A.1.2 Distributed LogitBoost
We now describe how to perform the computation for the

two proposed distributed LogitBoost algorithms.

Locally best weak classifier.
Recall that in this method, each slave machine proposes

a weak classifier that minimizes the logistic loss evaluated
over its local data points. Formally, suppose the training
set S is partitioned into disjoint subsets S1, . . . , SK , where
each partition Sk is stored in a separate machine. In a slight
abuse of notation, we write i ∈ Sk to mean the data point
(xi, yi) ∈ Sk. We define the local objective on the k-th
machine as

L̃k(f, c) = −c
∑
i∈Sk

yipif(xi) +
c2

2

∑
i∈Sk

pi(1− pi).

Each machine finds the locally best classifier (f
(k)
m+1, c

(k)
m+1)

that minimizes the local loss function L̃k(f, c). The master
then selects the classifier with the best average local objec-

tive: we set (fm+1, cm+1) = (f
(k∗)
m+1, c

(k∗)
m+1), where

k∗ = argmin
1≤k≤K

1

|Sk|
L̃k(f

(k)
m+1, c

(k)
m+1).

Reweighted (random) classifier.
In this scheme, we pick the top κ local classifiers with

lowest local logistic loss, for some parameter 1 ≤ κ ≤ K
that we can tune. We distribute these top κ classifiers to
all slaves to compute their global logistic loss as well as the
globally optimal classifier weight. The master then selects
the globally best classifier and adds it to the LogitBoost
model with the recomputed weight.

Formally, each slave machine can either propose its locally
best classifier

(f
(k)
m+1, c

(k)
m+1) = argmin

f,c
L̃k(f, c),

or choose a random decision stump f along with its locally
optimal weight. Without loss of generality, we may assume

(f
(1)
m+1, c

(1)
m+1), . . . , (f

(κ)
m+1, c

(κ)
m+1) are the top κ classifiers with

lowest local logistic losses. For these κ classifiers, we keep
their decision stumps but recompute the optimal weights as

c̃
(k)
m+1 =

∑n
i=1 yipif

(k)
m+1(xi)∑n

i=1 pi(1− pi)
.

The master then chooses, among the κ reweighted classi-
fiers, the one that minimizes the global objective: we set

(fm+1, cm+1) = (f
(k∗)
m+1, c̃

(k∗)
m+1), where

k∗ = argmin
1≤k≤κ

L̃(f
(k)
m+1, c

(k)
m+1).

A.2 DP Means
The Dirichlet process (DP) [29] is a popular non-parametric

Bayesian mixture model that allows for flexible clustering of
data without having to determine a priori the number of
clusters. The inference process for DPs typically involves
some form of Gibbs sampling (via the Chinese restaurant
process, or CRP) or a variational approximation.

Recent work in [23, 21] explored the behavior of the CRP
Gibbs sampler for exponential families DP mixture models,
in the limit when p(· | µk) goes to 0. Under small vari-
ance assumptions, the CRP Gibbs sampler reduces to the
k-means algorithm, but with a twist: any datapoint which
is not“close” to any cluster mean is placed in its own cluster.
This algorithm, named DP means, achieves fast yet flexible
hard clustering.

However, both the CRP Gibbs sampler and DP means
suffer from the need to sequentially process data points.
Each datapoint may potentially create a new cluster, which
must then be taken into account when processing the subse-
quent datapoint. In this project, we extend the DP means
algorithm to give a distributed implementation using our
BatchMap primitive.

We first describe Dirichlet processes, the CRP Gibbs sam-
pler and DP means update operations, before describing our
distributed DP means algorithm.

A.2.1 Dirichlet process
There are multiple formulations of the Dirichlet process.

We present in this section the infinite mixture model view
of DPs. In particular, we consider DPs to be an infinite
mixture of exponential family distribution models parame-
terized by their means.

To define an infinite mixture model, we first draw an infi-
nite number of means {µk}∞k=1 from a conjugate prior H,

µk | H ∼ H(·).

Next, we define the model mixing weights {πk}∞k=1 drawn
from a stick-breaking process as follows:

βk | α ∼ Beta(1, α), πk | {βk} = βk

k−1∏
l=1

(1− βl)

where α is the concentration parameter of the DP.
Now to draw an observation xi, we first pick a model

from the infinite mixture model. Letting zi be the indicator
variable for the model of xi, we draw

zi | {πk} ∼ Mult(π), xi | zi, {µk} ∼ p(· | µzi).

Equivalently, if we let G0 ∼ DP (α,H) be a draw from
the Dirichlet process, then we can write G0 =

∑∞
k=1 πkδµk ,

where δµk is a Dirac distribution at µk. Note that G0 is an
infinite discrete distribution over the mean parameters. The
generative process for {xi} is equivalently,

G0 ∼ DP (α,H)

νi ∼ G0

xi ∼ p(· | νi).

Figure 9: Graphical model for Dirichlet process.

The graphical model of DP as an infinite mixture model
is shown in Figure 9.

A.2.2 CRP Gibbs sampler
The CRP sampler proceeds in two steps. First, the indi-

cator variable zi of each datapoint xi is sampled, given the
cluster assignment z−i = {zj}\zi of all other variables and
cluster means, according to the distribution:

P(zi = c | z−i, xi, µ) ∝ p(xi | µc)
∑
j 6=i

I(zj = c),

P(zi = cnew | z−i, xi, µ) ∝
∫
p(xi | µ) dG0 α.

Next, the cluster means are updated by sampling from the
posterior distribution:

p(µc | x, z) ∝ G0(µc) p(xi | µc)

A.2.3 DP means
It can be shown [21] that when the variance of the under-

lying distribution goes to 0, the cluster assignment step in
the CRP Gibbs sampler becomes a hard assignment:

zi ← argmin
c∈{1,...,k,cnew}

D̃φ(xi, c)

where

D̃φ(xi, x) =

{
Dφ(xi, µc) if c = 1, . . . , k,

λ if c = cnew,

and Dφ(xi, µc) is the Bregman divergence from xi to µc as-
sociated with the exponential family, and λ is a user-defined
threshold. Hence, if the Bregman divergence of xi to every
cluster mean is greater than λ, we create a new cluster with
mean exactly at xi.

The sampling of the mean parameter reduces to compu-
tation of the posterior mean:

µc ←
∑
i I(zi = c)xi∑
i I(zi = c)

The resultant algorithm can be seen as a coordinate de-
scent on the objective function

k∑
c=1

∑
x

I(zi = k)Dφ(x, µc) + λk

where k is the number of clusters. Hence, the algorithm tries
to optimize the k-means objective, while taking a penalty of
λ for each cluster created.

A.2.4 Distributed DP means
Both the CRP Gibbs sampler and the original DP means

algorithm are sequential in nature. To the best of our knowl-
edge, the algorithm we propose in this paper is the first to
parallelize/distribute DP means over a cluster.

The main difficulty in parallelizing DP means lies in the
potential of every datapoint creating a new cluster. We ob-
serve, however, if all the Bregman divergences mincDφ(x, µc)
is less than λ, then no new clusters will be created. A data-
point x is said to be “covered” by a cluster c centered at µc
if Dφ(x, µc) < λ. If x is not covered by any cluster, it is said
to be “uncovered”.

At the end of the cluster assignment step of DP means,
the following invariants are achieved:

1. All data points are covered by at least one cluster.

2. Any new cluster created must have mean at some data-
point xi, which was uncovered at the start of the cluster
assignment.

3. Every datapoint is assigned to a cluster that covers it.

Our distributed algorithm maintains the first 2 invariants
by introducing a distributed, conservative cluster creation
process. Given the current global set of means µc, each
slave machine simulates the cluster assignment step by it-
erating through its data points, and locally creating a new
cluster centered at xi whenever it encounters an uncovered
datapoint xi. Note that some data points may subsequently
be assigned to the new local cluster; we will deal with these
data points later.

The set of new local cluster means are then sent to the
master, which simulates the cluster assignment on the pro-
posed cluster means, promoting a local cluster mean to a
global mean whenever an uncovered local cluster mean is
found.

As new global clusters are created, some of the local clus-
ter means xi’s may now be covered by the new global clus-
ters. There may, however, be some data points on the slave
machines that had been assigned to the simulated local clus-
ter xi, but remain up to 2λ after from any global cluster
mean. Thus, we send the new set of global centers to all
slave machines, and repeat the cluster creation process after
discarding all simulated local clusters, until no datapoint is
left uncovered.

It is easy to see that the iteration will eventually termi-
nate, since there are a finite number of data points, and
each iteration covers at least one datapoint. Alternatively,
we can configure the master to promote, at each iteration,
the entire set of local cluster means from any particular ma-
chine. This is possible because the local cluster means from
a single slave do not cover one another. Furthermore, upon
promotion of its entire set of local cluster means, all data
points from the machine will now be covered, so no new clus-
ters are proposed. Thus, the cluster creation process makes
progress at at least one slave machine per iteration.

Upon completion of the cluster creation process, we have
achieved the invariant of covering all data points, and with
new global clusters centered at previously uncovered data
points. To achieve the third invariant, we simply run the
cluster assignment step of DP means once. Since all data
points are now covered, no new clusters will be generated,
and the assignment can take place in parallel.

Finally, we update the means by collecting the sufficient
statistics (

∑
i I(zi = c),

∑
i I(zi = c)xi) for each cluster c,

and computing the new mean µc ←
∑

i I(zi=c)xi∑
i I(zi=c)

.

Algorithm 2: Distributed DP means algorithm.

Data : RDD X = {xi}, threshold λ
Result: Set of cluster means {µc}

1 Initialize centers ← {};
2 while not converged do
3 while ∃ x uncovered do
4 newLocalMean ← cover(X , centers, λ);
5 newGlobalMean ← cover(newLocalMean, {}, λ);
6 centers ← centers ∪ newGlobalMean;

7 end
8 assignment ← classify(X , centers);
9 suffStats ← computeSufficientStats(X , assignment);

10 Update centers using suffStats;

11 end
12 return centers

Algorithm 3: Cluster creation algorithm.

Data : Data points {xi}, current centers, threshold λ
Result: Proposed new centers

1 Initialize newCenters ← {};
2 for x ∈ X do
3 if ∀ µc ∈ centers ∪ newCenters, Dφ(x, µc) > λ then
4 newCenters ← newCenters ∪ {x}
5 end

6 end
7 return newCenters

The distributed cluster creation (line 3 of Algorithm 2)
is executed using our BatchMap primitive. While we could
have used the standard Map primitive, by using BatchMap
we can reduce the potential number of new clusters pro-
posed, and minimize the load on the master in executing
line 5, thus achieving a more scalable solution.

A.2.5 Serializability of distributed DP means
Our distributed DP means algorithm can be shown to

be serializable, in that there is some order of updates that
would have resulted in the same outcome if the updates were
performed serially on a single machine.

To see why this is so, we first observe that in the dis-
tributed cluster creation process, the slave machines sim-
ulate the classify procedure locally, which induces a partial
ordering of the data store locally, based on the time at which
they are determined to be covered. Similarly, the master
machine induces a partial ordering on the data points that
it accepts as new global centers. It is clear that these par-
tial orderings are consistent with one another, which in turn
implies there is some total ordering that is consistent with

the partial orderings. By running the classify procedure on
data points according to the total ordering, we will obtain
the same set of new clusters.

The remainder of the algorithm (running classify after all
data points are covered, and then updating the means) are
easily serializable. As such, the entire algorithm is serializ-
able, so the distributed DP means algorithm is guaranteed
to return a solution that is attainable by the sequential DP
means algorithm.

A.3 SVM
Given a training set of labeled data S = {(xi, yi) : i =

1, . . . , n} with xi ∈ Rd and yi ∈ {−1,+1}, the SVM al-
gorithm can be cast as solving the following optimization
problem:

min
w,b

1

n

n∑
i=1

(
1− yi(w>xi + b)

)
+

+ λ‖w‖22, (3)

where (t)+ = max{0, t} and λ > 0 is a regularization param-
eter that controls the trade-off between the discriminative
power and the generalization ability of the resulting clas-
sifier. Equation (3) is the primal form of SVM where we
are working with the Euclidean geometry of the input data.
In the dual formulation of SVM we can use a kernel func-
tion K(x, x′) in place of the inner product x>x′ to capture
nonlinear correlation among the data [9, 28]. However, we
presently only focus on linear SVM.

By considering the (d+1)-dimensional augmented vectors
x̃i = (x>i , 1)> and w̃ = (w>, b)>, we can write the optimiza-
tion problem (3) as

min
w̃

1

n

n∑
i=1

(1− yiw̃>xi)+ + λP(w̃), (4)

where now the penalty function is P(w̃) =
∑d
i=1 w̃(i)2 =

‖w‖22. That is, we only regularize the weight vector w but
not the offset b. In the rest of this section we are working
with these augmented vectors, and for simplicity we write w
and xi in place of w̃ and x̃i.

A.3.1 Parallelizing SVM via ADMM
Alternating Direction Method of Multipliers (ADMM) is

a technique for solving a general convex optimization prob-
lem that combines the decomposability property of dual as-
cent methods with the good convergence properties of the
methods of multipliers [17, 16, 6]. ADMM forms the aug-
mented Lagrangian for a given convex problem and proceeds
by alternatingly optimizing the primal and dual variables.
ADMM is well suited to distributed convex optimization
problems because some of the update steps could be per-
formed in parallel. In particular, given a large-scale con-
vex optimization problem, we can convert it into a consen-
sus problem that can be solved in a distributed fashion via
ADMM.

In the context of SVM, suppose our training data S is
partitioned into K disjoint subsets S1, . . . , SK , where |Sk| =
nk with

∑K
k=1 nk = n. For 1 ≤ k ≤ K, define the local loss

of the classifier in each machine:

fk(w) =
1

n

∑
i∈Sk

(1− yiw>xi)+.

Observe that we can write the optimization problem (4) as
the following consensus problem (recall that we are working

with (d+ 1)-dimensional augmented vectors):

min
v,w

K∑
k=1

fk(vk) + λP(w) s.t. vk = w for 1 ≤ k ≤ K, (5)

where v = (v1, . . . , vK) with vk ∈ Rd+1. Proceeding in the
ADMM framework, we form the augmented Lagrangian of
the problem above:

Lρ(v, w; z) =

K∑
k=1

fk(vk) + λP(w)

+

K∑
k=1

z>k (vk − w) +
ρ

2

K∑
k=1

‖vk − w‖22.

Here, zk ∈ Rd+1 is a dual variable for the constraint that
vk = w, and ρ > 0 is a smoothness parameter that makes
the augmented Lagrangian strongly convex. ADMM solves
the consensus problem (5) by iteratively performing the fol-
lowing updates:

v(t+1) = argmin
v
Lρ(v, w(t); z(t)) (6)

w(t+1) = argmin
w
Lρ(v(t+1), w; z(t)) (7)

z(t+1) = z(t) + ρ(v(t+1) − w(t+1)). (8)

We make some remarks below.

v-update. Since the augmented Lagrangian Lρ is separable
in the vk’s, the update in (6) splits into K separate updates:
for each 1 ≤ k ≤ K,

v
(t+1)
k = argmin

vk

fk(vk) + z
(t)>
k vk +

ρ

2
‖vk − w(t)‖22. (9)

If the data partitions S1, . . . , SK lie in different machines,
then the updates (9) can be performed in parallel. We use
stochastic forward-backward splitting to solve each instance
of the update (9); see Section A.3.2 for more details.

w-update. Recalling that the penalty function is P(w) =∑d
i=1 w(i)2, the update of w ∈ Rd+1 takes the form

w(t+1) = argmin
w

λ

d∑
i=1

w(i)2−
K∑
k=1

z
(t)>
k w+

ρ

2

K∑
k=1

‖v(t+1)
k −w‖22.

The quadratic optimization problem above can be solved
explicitly for each component of the vector w:

w(t+1)(i) =

K

ρK + 2λ

(
z(t)(i) + ρv(t+1)(i)

)
if 1 ≤ i ≤ d,

1

ρ
z(t)(d+ 1) + v(t+1)(d+ 1) if i = d+ 1,

where z(t) = 1
K

∑K
k=1 z

(t)
k and v(t+1) = 1

K

∑K
k=1 v

(t+1)
k .

z-update. The update in (8) also splits into K separate
updates:

z
(t+1)
k = z

(t)
k + ρ(v

(t+1)
k − w(t+1)) for 1 ≤ k ≤ K.

As in the case of the v-update, this step can be performed in
parallel. Thus, at each iteration of ADMM we can perform
the v and z updates in parallel acrossK machines, and in the
w-update we synchronize the results from all the machines.

Stopping condition. Following [6], a practical stopping
condition for the ADMM algorithm is when the residuals fall

below an adaptive threshold. That is, we run the ADMM
algorithm until

‖r(t)‖2 ≤ ε(t)pri and ‖s(t)‖2 ≤ ε(t)dual,

where

‖r(t)‖2 =
(K∑
k=1

‖v(t)k − w
(t)‖22

)1/2
is the primal residual,

‖s(t)‖2 = ρ
√
K‖w(t) − w(t−1)‖2

is the dual residual, and

ε
(t)
pri = εabs

√
(d+ 1)K

+ εrel max
{(K∑

k=1

‖v(t)k ‖
2
2

)1/2
,
√
K‖w(t)‖2

}
,

ε
(t)
dual = εabs

√
(d+ 1)K + εrel‖z(t)‖2

are adaptive thresholds for the primal and dual residuals.
Here εabs and εrel are absolute and relative tolerance thresh-
olds, respectively. In our simulations we set εabs = εrel =
10−3, and we observe that the ADMM algorithm typically
converges within 50 iterations.

A.3.2 Forward-Backward Splitting for the v-updates
In this section we describe how to perform the v-update

described in (9). Fix an index 1 ≤ k ≤ K and iteration
t, and for simplicity of exposition we remove all notational
dependence on k and t, so we want to solve the following
optimization problem:

v∗ = argmin
v

f(v) + z>v +
ρ

2
‖v − w‖22.

A consideration of the objective value above at v = w and
a simple algebraic calculation reveals that the unique mini-
mizer v∗ lies in the `2-ball B(wc, R) centered around wc =

w− 1
ρ
z with radius R =

√
2
ρ
(f(w) + 1

2ρ
‖z‖22). Thus, we can

rewrite the optimization problem above as

v∗ = argmin
v∈B(wc,R)

f(v) + ϕ(v) (10)

where ϕ(v) = z>v + ρ
2
‖v − w‖22.

We solve the problem (10) using forward-backward split-
ting [12]. The idea of this technique is to replace the function
f(v) by its first-order approximation around our current es-
timate of the minimizer, and then use this approximation
to update our estimate. Specifically, at each iteration j we
have our estimate v(j) and we update it via

v(j+1) = argmin
v∈B(wc,R)

{
f(v(j)) + 〈∇f(v(j)), v − v(j)〉+ ϕ(v)

+
1

2αj
‖v − v(j)‖22

}
,

where αj is a step size and ∇f(v(j)) is a subgradient of f at

v(j). This is equivalent to the following two-step update:

v(j+
1
2
) = v(j) − αj∇f(v(j)),

v(j+1) = argmin
v∈B(wc,R)

{1

2
‖v − v(j+

1
2
)‖22 + αjϕ(v)

}
.

Therefore, forward-backward splitting can be interpreted as
first taking an unconstrained gradient step and then adjust-
ing it to achieve low complexity, as measured by the statis-
tical regularizer ϕ(v).

In our case we have f(v) = 1
n

∑
i∈Sk

(1 − yiv
>xi)+, so

computing the subgradient ∇f(v(j)) involves summing over
nk = |Sk| data points. As in the stochastic gradient descent,

we approximate ∇f(v(j)) by

nk
n
∇(1− yiv(j)>xi)+ =

{
−nk

n
yixi if yiv

(j)>xi < 1,

0 otherwise,

where (xi, yi) is sampled uniformly at random from the set
Sk. The presence of the ratio nk/n is to make the approxi-
mation an unbiased estimator of the true subgradient. Once

we have v(j+
1
2
), computing v(j+1) amounts to minimizing a

quadratic function followed by a projection step to B(wc, R),
which can be performed efficiently.

B. ALGORITHM PERFORMANCE
It is important the models learnt by the distributed algo-

rithms are of high quality. For classifiers such as LogitBoost
and SVM, the metric of quality is the accuracy of the clas-
sifier on a held-out data set. For clustering, recall that DP
means has an objective function that it attempts to itera-
tively minimize. We evaluate these measures of quality in
the weak scalability seting, i.e. number of machines grow
with data set size.

LogitBoost.
Accuracy of LogitBoost models on held-out test data is

shown in Figure 10. As expected, the sequential LogitBoost
on MATLAB outperforms our distributed LogitBoost algo-
rithms, since the former is able to always find the globally
optimal solution. Interestingly, the LogitBoost model that
always picks the locally best weak classifier at each iteration
has a nearly constant accuracy, regardless of the data set
size. This may be indicative that the LogitBoost model can-
not be further optimized with more data, if it is constrained
to always choose the weak classifier with the lowest local
loss. If, however, the LogitBoost model can propose ran-
dom weak classifiers, and recompute the optimal weights,
then its test accuracy can increase with more data.

Note that the differences in test accuracies are less than
1%, so more runs are required before we can make conclu-
sive statements about the difference in performance of the 3
models.

DP Means.
The DP means objective is

∑k
c=1

∑
x I(zi = k)Dφ(x, µc)+

λk. As the amount of data increases, we expect that the
objective of the true model increases linearly. This is in
fact what we observe in Figure 11. The objectives of DP
means models learnt by the three algorithms are virtually
indistinguishable – this should be of little surprise, since
our distributed DP means algorithm is serializable and thus
equivalent to some execution of the sequential DP means
algorithm.

SVM.
We compare the accuracy of our implementation of dis-

tributed SVM against PSVM. We set the λ parameters to be

Figure 10: Test accuracy of LogitBoost as more data
is used for training.

Figure 11: DP means objective, as more data is clus-
tered.

the same in both sets of experiments. We do not include the
accuracy results for the MATLAB SVM solver because the
choice of λ that we used was not scaled properly, and con-
sequently, the accuracy results are not comparable to those
from Spark and PSVM.

From Figure 12 we see that PSVM achieved essentially
constant accuracy across different number of data points
and machines, while the accuracy of our Spark implemen-
tation deteriorates slightly over time. We currently do not
have a good explanation for this behavior; we suspect that
this might be because we use the same absolute and relative
threshold parameters for checking the convergence of the
ADMM algorithm (although we then use these thresholds
to construct adaptive primal and dual thresholds at each
iteration), but this requires further investigation.

Figure 12: Test accuracy of SVM as more data is
used for training.

