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Abstract

In this work we present a novel implementation of FFT on
GeForce 8800GTX that achieves 144 Gflop/s that is nearly 3x
faster than best rate achieved in the current vendor’s numerical
libraries. This performance is achieved by exploiting the
Cooley-Tukey framework to make use of the hardware
capabilities, such as the massive vector register files and small
on-chip local storage. We also consider performance of the FFT
on few other platforms.

1 Motivation

There are two sources of motivation for this work. First is the
recent success in running matrix-matrix multiply on G80 GPUs.
Volkov and Demmel [2008] demonstrate routines that
outperform vendor’s libraries by 60% and show predictable
performance. They outline a novel guidelines for programming
G80 GPUs that promise speedups in other applications.

Second motivation is that vendor’s libraries show
performance in FFT that is substantially below any reasonable
estimate.

The goal of this paper is to use techniques outlined by
Volkov and Demmel [2008] to control performance of FFT on
G80 GPUs. This includes aggressively exploiting the large
register files on the GPU, keeping usage of shared memory low
and using shorter vectors (thread blocks).

We also felt that it was important to look at how FFT’s
perform on other multicore architectures, such as Clovertown
and Niagara II. This enables us to better understand the pitfalls
of each architecture and suggest methods for better applying a
parallel mapping to the given architecture.

2 Introduction to FFT

The discrete Fourier transform (DFT) is defined as
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For example, for N = 2 the transform is
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1. Lay out the data into N;xN, matrix in column-
major order.

Perform DFT on each row of the matrix (Eq. 6).
Scale the matrix component-wise (Eq. 5).
Transpose the matrix (Eq. 5).

Perform DFT on each row of the matrix (Eq. 4).
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Figure 1: Cooley-Tukey framework.

The transform matrices have amounts of structure, due to
relations such as wj =1, w,{,k = w,f,c], and 27;01 wi = 0. This
may be used to compute the transform in a smaller number of
arithmetic operations than N* assumed by the naive matrix-
vector multiply in (1).

One particular fashion of exploiting the structure of matrix
W is due to Cooley and Tukey [1966] (see also Duhamel and
Vetterli [1990]). If N = N|N, for some integer Ny, N, > 1, then

(1) can be rewritten as
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Scales used in (5) are known as “twiddle factors”. This can be
understood as similar to 2D Fourier transform, see Figure 1.

This framework reduces one large DFT into many smaller
DFTs. Also, it reduces the count of complex operations from N
down to N;N? + N,N? = N(N; + N,). The technique can be
applied recursively. If N is a power of 7, the total operation
count then can be reduced to 2rlog, N. This allows computing
DFT for very large N at nearly linear time and thus is known as
“Fast Fourier Transform” or FFT. Small r results in lower
number operations and » = 2 or r = 4 are often preferred as they
don’t require floating point multiplications in the smaller DFTs
(as in Eq. 2). Note that even if N is a power of two, it is not
necessary to run recursion down to radix-2 DFTs — radix-4
DFTs provide about same efficiency.

Note, that transposition changes only the layout of data and
thus can be moved sooner or later in the algorithm, in and out
the recursion, provided that data locations are properly adjusted
in all of the involved computations. Instead of doing DFTs on
rows, transposing and doing them on rows again as shown in
Fig. 1, one can first do rows, then columns, then transpose. Or,
first transpose, then do columns and then rows. If desired, all
transpositions can be moved out of the recursion to the
beginning of the algorithm. This technique is known in signal
processing literature as decimation-in-time (DIT). Similarly, all
transpositions can be moved to the end of the algorithm. This is



y 10000000 /1 1 1
2 00001000)\(1-1 1
V3 00100000 11 1
Ya|_|l 00000010 1-1 —i
¥5|=1 01000000 11
e 00000100 1-1
\y7/ 00010000 11\
Ve 00000001 1-1
bit-reversal 4 DFT radix-2 twiddle

Eyl

1

1

1

1 1 1 1 *1
1 1 1 1 X2

-1 1 1 1 X3
-1 1 1 1 || *a

X5

11 | 1 | 1 -1
11 w 1 -1 X
1 -1 \ —i } 1 1 \x7/
1 -1 —iw 1 =17 \xg

4 DFT radix-2 twiddle 4 DFT radix-2

Figure 2: DIF version of complex-valued Cooley-Tukey FFT for N = § that does the same work as in (3). Here, w = (1 — i)/v/2. Note
that only 4 floating point multiplies are required to evaluate the expression. One can recognize numerous radix-2 DFTs as in (2).

called decimation-in-frequency (DIF). The aggregated
transpositions correspond to “bit-reversal” — data is moved to
the location found by reversing the order of bits in the binary
representation of the original index. An example of applying this
framework to case N = 8 is shown in Figure 2. Compare it to Eq.
3 that does the same work.

Similar transformations can be used to adapt the algorithm
to a particular hardware. Note, for example, that in Fig. 2 the
rightmost matrix defines transform that can be implemented as
operations on stride-1 vectors of four. This corresponds to radix-
2 operations on rows in Cooley-Tukey framework. However,
further matrices in the Figure don’t have this nice property. This
difficulty can be solved again using Cooley-Tukey framework.
In that case N is factored into N| and N, that are both sufficiently
large. In that case all row transforms in Fig. 1 will always be
replicated over many rows and thus involve long stride-1. This
technique is useful for vector computers and is discussed for
example by Bailey [1987].

Cooley-Tukey framework also allows exploiting memory
hierarchy. In that case we choose N, small enough so that N,
elements fit into the desired memory level at once. Then the
framework proceeds but with extra transpose in the begin so that
first set of Fourier transforms is done on columns, each column
fitting into that memory hierarchy level. Technique can be
applied recursively. Bayley [1990] uses this technique to design
out-of-core FFT algorithms.

There are other frameworks that exploit the structure of the
DFT matrix to reduce the operation count. Good [1958]
describes a similar algorithm that does not require scaling by
twiddle factors but requires N, and N, be co-prime. Rader
[1968] and Bluestein [1970] describe O(N log N) algorithms that
work with prime N. All DFT algorithms that run at O(N log N)
time are usually called FFT.

Minor adjustment to the algorithm may produce the inverse
transform to DFT. Applying DFT to rows and columns of a
given matrix yields a 2D Fourier transform. Similar algorithms
exist that work with real-valued inputs and/or real-valued
outputs, perform discrete sine and cosine transforms.

3 Related Work

CUFFT is NVidia’s implementation of an FFT solver on their
CUDA architecture. It operates by taking a user-defined plan as
input which specifies the parameters of the transform. It then
optimally splits the transform into more manageable sizes if
necessary. These sub-FFT’s are then farmed out to the
individual blocks on the GPU itself which will handle the FFT
computation. CUFFT employs a radix-n algorithm and was the
impetus for this project. The algorithm seems fairly ill-suited to
the optimal method of coding for the architecture. The
performance also falls far short of the bandwidth peak of the
architecture.

Lloyd, et. al [2008] implemented an out-of-place, radix- 2
Stockham algorithm. They chose this algorithm as it eliminates

the need for bit reversal which can be a costly operation. This
algorithm utilized the texture stores for holding the FFT data.
Since texture memory cannot be written to, this led to the
implementation being forced to be an out-of-order one, requiring
twice as much memory for the transform. The performance of
this implementation fell short of CUFFT in all aspects except for
real 2D FFTs. By utilizing complex data types to hold two reals,
they were able to see a performance increase. Although this
approach investigated different memory models for performing
an FFT transform, this does not seem to be the way to go. The
problem lies more with the global communication in the
algorithm as opposed to the actual memory access patterns of
the existing implementation.

FFTW was investigated for this paper as a benchmarking
tool for platforms other than CUDA. FFTW is a library of FFT
routines which will provide optimized code for a given
transform. FFTW was the interface from which CUDA was
derived as it also creates a plan for a given transform and can
then continually execute it. FFTW achieves its competitive
performance by actually processing the transform initially when
the plan is created. It checks through a series of optimized
codes to see which one performs best for the given transform on
the current architecture. These optimized routines are known as
“codelets” and are chosen at runtime. The user can also create a
series of codelets for FFTW to choose from. This approach to
optimization is one that was looked into for the project. We felt
that the best performance for FFT on any architecture
necessitates some form of specialized codes for a given subset of
problem sizes. Since FFTW has been pretty successful with this
approach, we felt that we may too.

Very similar to FFTW is the implementation of SPIRAL.
The main differences between the two is that SPIRAL
determines the problem approach at compile-time and searches
over a series of mathematical expressions as opposed to the
lower-level details in FFTW. Another big difference is that
SPIRAL is machine dependent. This follows our logic that to
get the best performance out of our FFT routine, we need to
clearly optimize for the target platform.

4 Processor Architecture

4.1 GeForce 8800 GTX

The GPU architecture is described in CUDA programming
guide and is analyzed in detail in [Volkov and Demmel 2008].
GeForce 8800GTX has 16 SIMD cores that run 32-element
vector threads. The cores have 8 scalar lanes. Vector thread can
communicate via shared on-core memory and this allows
simulating variable vector length. Vector length 64 is often
found best.

4.2 Niagaral ll

The Niagara II boasts a collection of 8 cores, each of which can
execute 8 threads simultancously. These 8 threads are formed



by two groups of 4 threads each. Each group of threads has
access to a fully pipelined FPU which is located on each core.
This is a large improvement over the original Niagara which
only had one FPU shared amongst all cores. With each core
being able to issue one floating point operation per cycle, there
is a total of 1.4 GFlop/s per core and an aggregate maximum of
11.2 GFlop/s for the socket.

Each core has its own data and instruction cache and a
shared L2 cache among all cores. The L1 cache is 8KB and is
possibly shared by 8 threads. The L2 cache is a 16 way set-
associative cache and is 4MB total. There is an 8x9 crossbar
attaching all of the cores to the L2 cache which allows for up to
179 GB/s for reading.

4.3 Clovertown

The Intel Quad-Core (Clovertown) is two Intel Woodcrest chips
fused together on a single package. This results in a total of 4
cores, with each pair sharing a 4MB L2 cache and all cores
communicating via a single 1333 MHz FSB. The addition of 2
cores to the same basic architecture as Woodcrest results in a
decrease of the per core bandwidth. This single point of
communication between all cores can prove to be a bottleneck
for memory-intensive applications.

5 Design of the GPU Algorithm

We have a few general guidelines for designing efficient GPU
algorithms. First, optimal vector length is 64, which is the
smallest that permits high throughput. Any longer vector
parallelism in a program should be strip-mined into short
vectors. Second, the primary on-chip data storage is the register
file. Each scalar thread keeps as much data as possible. In our
implementation we chosen 8. Thus, each scalar thread can
perform FFT for N = 8 in-registers following the matrix formula
in Fig. 1. In-register FFTs imply very fast communication and
thus high throughput. The second communication level is via
shared memory. After 64 threads in a block did their in-register
DFTs, they exchange data and do next in-register DFTs. This
allows N as large as 64*8 = 512 and requires two transpositions
inside a kernel. The third communication level is via global
memory and is not currently implemented. This requires running
few kernels or using barrier to synchronize. The goal of this
hierarchy of communications is to amortize communication as
much as possible, as it’s usually the bottleneck. Conceptual
sketch of the algorithm is in Fig. 3.

This design was implemented for N =512, N = 64 and N = 8.
Smaller N were implemented for debugging purposes as stages
in developing the case of N = 512. Our prototype
implementation doesn’t work with different N. Instead we
concentrated on getting best results at at least one N to reveal the
hardware potential.

Due to specifics of the GPU memory access (non-SIMD
accesses run at an order of magnitude lower bandwidth) data in
the cases N = 8 and N = 64 is laid out in DRAM in a special
order to facilitate high-bandwidth memory access. This
restriction can be easily overcome by extra two reshufflings of
data using shared memory that would incur low overhead.
However, it was not our concern in this paper and was not done.

We created custom kernels, where N is hardcoded. This is
not unusual technique and is used in many other high-
performance FFT algorithms, such as FFTW and hardware
Pprocessors.

We tried to tabulate trigonometric functions in twiddle
factors using constant memory, texture cache and shared

Load data from DRAM
Compute small FFT in-registers

Local shuffle via shared memory
Compute in-registers

Local shuffle via shared memory
Compute in-registers

Global shuffle via DRAM
Compute

Local shuffle
Compute

Local shuffle
Compute

Global shuffle

<>

Save data to DRAM

Figure 3: Scheme of the hierarchic communication in FFT. The
purpose is make global communication as rare as possible and
spend most of the time in local compute. In our particular GPU
implementation we didn’t implement global shuffles.
Computation stages operate on 8 elements of local data stored in
registers. Shuffles correspond to the transposes in the Cooley-
Tukey framework.

memory. However, these techniques failed to get speedup versus
a naive approach that uses intrinsics to compute them.

5.1 Experimental Methodology on Niagara and
Core2

For benchmarking FFT’s on both Niagara II and the Intel
Clovertown, FFTW3 was used. The library was compiled on
each system for single precision with pthreads enabled. The
FFTW_MEASURE flag was used. This increases the amount of
runtime performance monitoring that occurs for the transform to
potentially improve performance. The transforms were 1D
Complex to Complex and were performed in-place.

The benchmark itself involved transforming a series of
FFT’s increasing in size. Smaller-sized FFTs were batched
together simultaneously for a more accurate view of the
available parallelism. FFTW allows for this batching of
multiple FFTs simultaneously. However, this approach did not
work correctly on the Niagara II, causing any series of batched
FFTs larger than 64 elements to produce very poor results. The
values were consistently less than a 0.01 GFlop/s. An alternate
method was used wherein pthreads were created for each FFT
that was to be run in a batch. Threads were enabled in both
cases to also perform on each batched FFT transform in parallel.

6 Performance Results

Fig. 4 shows the performance of our GPU FFT implementation.
It achieves up to 144 Gflop/s on GeForce 8800 GTX. This is
2.9% better than the best rate achieved in NVIDIA CUFFT 1.1,
which is 50 Gflop/s. Also, it is ~2x faster than the best
unreleased code that NVIDIA currently has [Nickolls 2008].
Same graph shows the rates achieved in the CUFFT 1.1 source
codes of radix-2 FFT that are released by NVIDIA (“original”).
It runs at about the same rate as CUFFT 1.1. The differences at
N =256 and N = 1024 might be due to radix-4 code that CUFFT
1.1 also uses but we didn’t compile individually. Another curve
on the plot titled “optimized” is the performance of the CUFFT
1.1 code that includes basic optimization did by us.



Optimizations include unrolling the loop, hard-coding the value
of N and other little tweaks such as in bit operations and integer
arithmetic. This gave up to 1.77x speedup. So large speedup
achieved by basic optimizations done within a couple of hours
highlight the little amount of effort applied by vendor’s
developers in programming these routines. However, our own
radix-8 design is still 2.7x faster than these optimized codes.

Figure 5 shows the performance of our best code and
CUFFT 1.1 matched versus the machine peaks. It is inspired by
roofline figures by Williams et al. [2008]. The bandwidth peak
curve in the plot corresponds to the lower bound on the
algorithm runtime as dictated by the bandwidth requirements
due to reading the input and writing the output. We assumed that
these memory accesses run at 70GB/s, which is a peak sustained
bandwidth number and number of flops done is 5 N log N just as
used in measuring the algorithm performance. According to the
Figure, our code runs nearly at the bandwidth bound, i.e. close
to optimal. At N =512 it runs at 73% of the bound that indicates
further opportunities for designing a faster algorithm. The same
figure shows two arithmetic peaks. One is in operations such as
multiply-and-add (MAD), another is in adds and multiplies,
which is twice as low since runs at the same instruction
throughput. The latter bound may be more realistic, since radix-
8 algorithm does most of the flops in additions and subtractions.
However, it should be noted that the actual number of flops done
by our FFT is less then 5 N log N due to the arithmetic features
of the radix-8 computation. From other point, 5 N log N figure
does not include trigonometric functions that we use in twiddle
factors. Other source of the slowdown is the permutations that
we do using shared memory and some pointer arithmetic.

The figure also shows the local storage bound. If N is larger
than fits into local storage (the registers), multiple smaller FFT
kernels must be run. This bounds the performance by the
performance of the small FFTs that fit into the local storage. In
other words, any FFT performance curve cannot grow past this
line. This effect is observed for example with CUFFT 1.1.

The figure also highlights what changes to the hardware
might improve the performance of the algorithm. Clearly,
improving bandwidth will increase the performance of the
algorithm at small N. At larger N the performance seems to be
bound by instruction throughput instead. Improving it might
allow higher peaks in FFT. Example of improvement may be
dual issue, such as in VLIW, e.g. by co-issuing floating point
operations and shared memory load/stores. Note that increasing
size of the local storage is unlikely to yield higher performance,
as the performance growth is already slowing down at N = 512.

Table 1 compares performance of our FFT with several
earlier implementations. Note that the performance of FFT on
GPUs has grown by two orders of magnitude in past few years.
This is due to increased programmability, such as introduction
of shared memory in 8800GTX.

It is also may be interesting to put this performance into
context of other modern chips. For example, Chow et al. [2005]
reports 46.8 Gflop/s on Cell processor. Arithmetic peak of
2.4GHz Core2 Quad in multiply-and-add operations is ~77
Gflop/s that bounds the performance of FFT. Thus, GPUs
provide substantial performance benefits due to their higher
throughput.

6.1 Results on Other Architectures

The FFTW results for Niagara II (see Fig. 6) were not
outstanding. The performance was seen to max out at around
4.7 GFlop/s for a transform size of 32768. One issue with the

Figure 4: Performance of our GPU implementation versus
vendor’s codes. “Original” is our compilation of the vendor’s
radix-2 code. “Optimized is basic optimization of that code. The
platform is GeForce 8800GTX.
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Figure 5: performance of our and NVIDIA codes compared
versus the arithmetic, bandwidth and local store bounds.

Reference Rate GPU

Spitzer [2003] 1.1 Gflop/s | 5900 Ultra
Moreland and Angel [2003] 2.5 Gflop/s | 5800 Ultra
Govindaraju et al. [2006] 6.1 Gflop/s | 7900 GTX
McCool et al. [2006] 7.5 Gflop/s | 7900 GTX

Segal and Peercy [2006] 12 Gflop/s | X1900 XTX
CUFFT 1.1 [2007] 50 Gflop/s | 8800 GTX
Lloyd et al. [2008] 18 Gflop/s | 8800 GTX

This paper, 2008 144 Gflop/s | 8800 GTX

Table 1: Historical comparison of performance of FFTs on GPUs.
X1900 XTX is from ATI (now AMD). Others are GeForce
solutions from NVIDIA.

Niagara II was the placement of data in the buffers. For the
batching of multiple transforms simultaneously, successive calls
to malloc added padding to the end of each buffer to ensure
better distribution in the cache.  Without the padding,
performance degradation became more severe at certain points.
By placing these buffers into different banks in the cache,
performance became more stable at certain powers of two. The
other caveat with the Niagara II is that it is built to harness a
larger number of threads, similar in practice to a GPU. Without
a large number of threads running simultaneously, the memory
latency cannot be hidden and the performance degrades
significantly. Since prefetching occurs only into the L2 cache, it
is necessary for enough threads to execute to offset this latency.
In terms of the FFTW performance on the Niagara, the routines
are not optimized for a SPARC processor in that they cannot



take advantage of the VIS instruction set. The VIS instruction
set enables the UltraSPARC processors to utilize SIMD
instructions which would provide a substantial benefit for the
benchmark performance.  Furthermore, the fact that the
advanced API for FFTW do not produce proper results when a
batch of FFT’s are processed is disappointing. It seems the
internal threading in FFTW may not be optimal for the Niagara,
in terms of either the placement of threads or the number applied
to a given problem. Another possibility is that FFTW changes
the layout of the buffered transforms after it reads them in. This
is a concern with Niagara as padding can have an impact on the
performance in terms of cache effects. The Niagara architecture
is well suited for large transforms or batches of transforms.
Without large datasets or transform sizes, the performance is
very poor when compared to less threaded architectures, such as
the Clovertown.
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Fig. 7. GFlop/s from FFTW3 on Niagara II

The Clovertown results (see Fig. 7) were more in line with
published results for the FFT. The tests were performed with a
new configuration of FFTW for single precision. The previous
benchmark from the Niagara with batching was also used for
this architecture. The icc compiler was used to compile the
benchmark and various numbers of threads were run. The
benefits of parallelization were obvious when going from one
thread to two as the performance doubled in most cases. This is
most likely the fact that two threads are running on the same
chip and sharing the L2 cache. Once the transform grows too
large for the cache itself, the performance severely degrades.
Increasing the number of threads up to 8 did not have a huge
impact on the performance, most likely due to the contention on
the bus due to the shuffling of the transform to the different

threads. The Clovertown differs from the Niagara in the sense
that parallelism is not as imperative to receive decent
performance. One thread on the Clovertown was able to achieve
a reasonable amount of GFlop/s and the speedup was almost
linear when the number of threads was increased to 2.

6.2 Architecture Improvements

There are some aspects of the above architectures that could
be altered to allow for better performance of these algorithms.
In the case of the Niagara II, it really showed how poor
performance is in terms of intra-core communication.

When multiple threads were working on a single FFT
transform, the performance only broke the 1 GFlop/s mark at a
size of 2'® with a thread count of 64. However, the interesting
point is that performance did not degrade rapidly as the thread
count increased for this size of FFT. This could be attributed to
poor memory management or codelet selection in terms of
FFTW’s chosen approach. If the memory addresses of a given
thread’s data conflicts with another in the cache, this could lead
to the severe performance degradation. The small L1 cache also
poses problems for multiple threads working on rather large sets
of data. This would cause performance degradation due to data
being ejected from the cache.

One method of improving the cache thrashing issue
with Niagara II in hardware is to either increase the associativity
of the cache or to split the L2 cache into separate ones for a
subset of the cores. Both of these options would increase the
complexity and increase overhead within the system. However,
padding concurrent memory accesses would not be as
imperative with such a change. This would presumably lead to
better native performance from the FFTW routines.

The Clovertown architecture suffers from the single
interconnect between the chips. As seen, the scaling is good
from one to two threads but does not exhibit speedup near this as
the number of threads is increased to eight. Once the transform
overflows the size of the cache, the performance of eight threads
becomes almost identical to that of two threads. One method of
fixing this would be to increase the amount of memory
bandwidth available to every core. As it stands now, accessing
data from the DRAM is an expensive operation when all cores
are fighting for it.

The Clovertown and Niagara II are seen to offer very
different performance patterns. The Niagara sees very poor
single threaded performance. This is due to the lower-powered
cores and also the need to hide latency with threading.
However, it scales very well as both the problem size and the
thread count are increased. On the opposite end, the Clovertown
has respectable single-threaded performance. While it does
scale well to two threads, additional threading does not have as
much of a positive performance impact. The added contention
on the bus to main memory proves to be very damaging as the
problem size begins to overflow the shared L2 cache.

7 Conclusion

We have shown unprecedented performance results in FFT on
GPU by exploiting Cooley-Tukey framework to fit the Fourier
transform algorithm to the hardware capabilities.
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