
Express Virtual Channels: Towards the Ideal
Interconnection Fabric

Amit Kumar†, Li-Shiuan Peh†, Partha Kundu‡ and Niraj K. Jha†

†Dept. of Electrical Engineering, Princeton University, Princeton, NJ 08544
‡Microprocessor Technology Labs, Intel Corp., Santa Clara, CA 95052
†{amitk, peh, jha}@princeton.edu, ‡partha.kundu@intel.com

ABSTRACT
Due to wire delay scalability and bandwidth limitations in-
herent in shared buses and dedicated links, packet-switched
on-chip interconnection networks are fast emerging as the
pervasive communication fabric to connect different process-
ing elements in many-core chips. However, current state-of-
the-art packet-switched networks rely on complex routers
which increases the communication overhead and energy
consumption as compared to the ideal interconnection fab-
ric.

In this paper, we try to close the gap between the state-
of-the-art packet-switched network and the ideal intercon-
nect by proposing express virtual channels (EVCs), a novel
flow control mechanism which allows packets to virtually by-
pass intermediate routers along their path in a completely
non-speculative fashion, thereby lowering the energy/delay
towards that of a dedicated wire while simultaneously ap-
proaching ideal throughput with a practical design suitable
for on-chip networks.

Our evaluation results using a detailed cycle-accurate sim-
ulator on a range of synthetic traffic and SPLASH bench-
mark traces show upto 84% reduction in packet latency and
upto 23% improvement in throughput while reducing the av-
erage router energy consumption by upto 38% over an exist-
ing state-of-the-art packet-switched design. When compared
to the ideal interconnect, EVCs add just two cycles to the
no-load latency, and are within 14% of the ideal throughput.
Moreover, we show that the proposed design incurs a mini-
mal hardware overhead while exhibiting excellent scalability
with increasing network sizes.
Categories and Subject Descriptors: C.2.1 [Computer
Systems Organization]: Network Architecture and De-
sign - Packet-switching
General Terms: Design, Management, Performance
Keywords: Flow control, Packet-switching, Router design

1. INTRODUCTION
Driven by technology limitations to wire scaling and in-

creasing bandwidth demands [1,2], packet-switched on-chip
networks are fast replacing shared buses and dedicated wires
as the de facto interconnection fabric in general-purpose
chip multi-processors (CMPs) [3, 4] and application-specific
systems-on-a-chip (SoCs) [5–8]. While there has been sig-
nificant work on interconnection networks for multiproces-
sors, design of on-chip networks, which face unique design
constraints, is a relatively new research area. Ultra-low la-
tency and scalable, high bandwidth communication is criti-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’07, June 9–13, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-706-3/07/0006 ...$5.00.

cal in on-chip communication fabrics in order to support a
wide range of applications with diverse traffic characteris-
tics. Moreover, these fabrics need to adhere to tight area
and power budgets with tractable hardware complexity.

Modern state-of-the-art on-chip network designs use a mod-
ular packet-switched fabric in which network channels are
shared over multiple packet flows. Even though this en-
ables high bandwidth, it comes with a significant delay, en-
ergy and area overhead due to the need for complex routers.
Packets need to compete for resources on a hop-by-hop ba-
sis while going through a complex router pipeline before
traversing the output link at each intermediate node along
their path. Thus, the packet energy/delay in such net-
works is dominated largely by contention at intermediate
routers, resulting in a high router-to-link energy/delay ra-
tio. In other words, the gap between current state-of-the-art
networks and the ideal interconnect, in which all nodes are
connected by pair-wise dedicated wires, is quite large.

In this work, we propose express virtual channels (EVCs),
a novel flow control and router microarchitecture design
which tries to close the performance and energy gaps be-
tween the state-of-the-art packetized on-chip network and
the ideal interconnection fabric. EVC-based flow control
approaches the delay and energy of a dedicated link by al-
lowing packets to virtually bypass intermediate routers along
pre-defined virtual express paths between pairs of nodes.
Thus, EVCs allow packets to skip the entire router pipeline
at intermediate nodes and approach the energy/delay of a
dedicated wire interconnect. Intuitively, this is achieved by
statically designating a set of EVCs at each router that al-
ways connect nodes A and B that are k hops away, and
prioritizing EVCs over normal virtual channels (NVCs) [9]
at the intermediate nodes. For instance, Fig. 1(a) shows a
7×7 2D mesh network with three-hop EVCs (k = 3), with
the dotted lines depicting EVCs, where EVCs are not addi-
tional physical channels, but virtual channels (VCs) [9] that
share existing physical links. Traveling from node 00 to node
03 can then be done through an EVC which virtually skips
the router pipelines at nodes 01 and 02. Fig. 1(b) shows
an example of a typical packet route using EVCs where a
packet traveling from node 01 to node 56 skips the router
pipeline at nodes 04, 05, 16 and 26. Moving further, this
work also proposes dynamic EVCs which use EVCs of vary-
ing lengths. With dynamic EVCs, packets at any node are
allowed to choose among a range of EVCs and hop onto the
one which is most suitable along their route towards their
destination, thereby maximizing the use of EVCs.

In addition to lowering latency to that of a dedicated
link, EVCs also reduce the amount of buffering and av-
erage router switching activity which makes them energy-
and area-efficient. Moreover, as EVCs skip through arbi-
tration at intermediate nodes, they reduce contention and
push throughput. Hence, EVCs lead to savings in latency,
throughput as well as energy, unlike prior work which tends
to trade off one for the other (see Section 6 for a detailed
discussion). Circuit switching [10] allows communications
to approach the latency of dedicated wires (if the costly
setup delay can be amortized) but, by dedicating physical

bandwidth to a message flow, suffers in throughput. Simi-
larly, express cubes [11], in using physical express channels,
trades off throughput when the express channels are not
highly utilized. While recent work has proposed specula-
tion [12, 13] to cut down the router critical path delay by
parallelizing multiple pipeline stages, such techniques show
diminishing returns with increasing network traffic when
the speculation failure rate becomes high. EVCs, by virtu-
ally bypassing nodes in a non-speculative fashion, overcome
these problems and are able to simultaneously approach the
energy/delay/throughput of the ideal interconnection fabric.

In this paper, we first motivate the need for EVCs by
highlighting the existing gap between current state-of-the-
art packetized networks and the ideal network, both in terms
of performance and energy consumption (Section 2). We
then explain the details of EVCs and its dynamic variant in
Section 3, before presenting the detailed microarchitecture
and circuit schematics of the EVC router in Section 4. We
evaluated EVCs using a cycle-accurate network simulator
considering both synthetic traffic and traffic traces gathered
from the execution of the SPLASH-2 benchmark suite [14].
Our results in Section 5 show upto 84% reduction in packet
latency and upto 23% improvement in throughput while re-
ducing the average router energy consumption by upto 38%
as compared to an existing state-of-the-art packet-switched
design. Section 6 contrasts EVCs with prior related work
while Section 7 concludes the paper.

2. MOTIVATION
In this section, we present a motivating case study that

highlights the latency-throughput performance and energy
gap between the ideal interconnection fabric and an exist-
ing baseline design that incorporates several state-of-the-art
router microarchitectural features that were recently pro-
posed to tackle network latency, throughput and energy.

2.1 Baseline state-of-the-art router
Fig. 2(a) shows the microarchitecture of our baseline state-

of-the-art VC router. For simplicity, we assume a two-
dimensional mesh topology throughout this paper, though
the router microarchitectures presented readily extend to
other topologies. Thus, the router has five input and out-
put ports corresponding to the four neighboring directions
and the local processing element (PE) port. The major com-
ponents, which constitute the router, are the input buffers,
route computation logic, VC allocator, switch allocator and
crossbar switch.

Fig. 3(a) shows the base router pipeline on which we
will progressively add state-of-the-art router microarchitec-
tural features. Since on-chip designs need to adhere to
tight area budgets and low router footprints, we assume
flit-level1 buffering and credit-based VC flow control [9] at
every router, as opposed to packet-level buffering. A head
flit, on arriving at an input port, first gets decoded and
buffered according to its input VC in the buffer write (BW)
pipeline stage. In the next stage, the routing logic performs
route computation (RC) to figure out the output port for the
packet. The header then arbitrates for a VC corresponding
to its output port in the VC allocation (VA) stage. Upon
successful allocation of a VC, it proceeds to the switch al-
location (SA) stage where it arbitrates for the switch input
and output ports. On winning the output port, the flit then
proceeds to the switch traversal (ST) stage, where it tra-
verses the crossbar. This is followed by link traversal (LT)
to travel to the next node. Body and tail flits follow a sim-
ilar pipeline except that they do not go through RC and
VA stages, instead inheriting the VC allocated by the head
flit. The tail flit, on leaving the router, deallocates the VC
reserved by the header.

To remove the serialization delay due to routing, prior
work has proposed lookahead routing (LA) [15] where the
route of a packet is determined one hop in advance, thereby
enabling flits to compete for VCs immediately after the BW
stage. Fig. 3(b) shows the router pipeline with lookahead

1
A flit is part of a packet, and the smallest unit of flow control. A

packet consists of a head flit, followed by body flits, and ends with a
tail flit.

routing. Pipeline bypassing (BY) is another technique that
is commonly used to further shorten the router critical path
by allowing a flit to speculatively enter the ST stage if there
are no flits ahead of it in the input buffer queue. Fig. 3(c)
shows the pipeline where a flit goes through a single stage
of switch setup, during which the crossbar is set up for flit
traversal in the next cycle while simultaneously allocating a
free VC corresponding to the desired output port, followed
by ST and LT. The allocation is aborted upon a port conflict.
When the router ports are busy, thereby disallowing pipeline
bypassing, aggressive speculation (SP) can be used to cut
down the critical path [12,13,16]. Fig. 3(d) shows the router
pipeline where VA and SA take place in parallel in the same
cycle. If the speculation succeeds, the flit directly enters
the ST pipestage. However, when speculation fails, the flit
needs to go through these pipestages again depending on
where the speculation failed.

The baseline router used in this study incorporates all the
above-mentioned state-of-the-art techniques.
Router microarchitectural components: We next de-
tail the microarchitectures we assumed for the different com-
ponents within the baseline router. In order to make the
design area- and energy-efficient, we assume single-ported
buffers and a single shared port into the crossbar from each
input. Separable VC and switch allocators modeled closely
after the designs in [13] are assumed as they are fast and of
low complexity, while still providing a reasonable through-
put, making them suitable for the high clock frequencies and
tight area budgets of on-chip networks. We also incorporate
router microarchitectural optimizations for energy into our
baseline design. First, write-through input buffers [17] are
used, which save buffer read energy whenever a flit is able
to directly bypass to the ST stage. Second, we adopt the
cut-through crossbar design [17], which sacrifices the full con-
nectivity provided by a matrix crossbar to reduce the area
and energy overhead. In this work, we assume dimension-
ordered routing for which a cut-through design shows no
performance degradation due to reduced connectivity.

2.2 Ideal interconnection fabric
We next discuss the characteristics of the ideal intercon-

nection fabric.
Ideal latency: A network with an ideal latency is one in
which data travel on dedicated pipelined wires directly con-
necting their source and destination. The packet latency,
Tideal, in such a network is governed only by the average
wire length D (the Manhattan distance) between the source
and destination, packet size L, channel bandwidth b, and
propagation velocity v:

Tideal = D/v + L/b (1)

The first term corresponds to the time of flight which is
the time spent traversing the interconnect, and the second to
the serialization latency which is the time taken by a packet
of length L to cross a channel with bandwidth b.

In a packet-switched network, the sharing and multiplex-
ing of links between multiple source-destination flows result
in increased packet transmission latency T , which is defined
as the time elapsed between the first flit of the packet being
injected at the source node to the last flit being ejected at
the destination:

T = D/v + L/b + H · Trouter + Tc (2)

where H is the average hop-count, Trouter the delay through
a single router, and Tc the delay due to contention [10]. The
third term in Equation (2) corresponds to the time spent in
the router coordinating the multiplexing of packets, while
the fourth term is the contention delay spent waiting for
resources. While a packet-switched network adds router
pipeline and contention delay, the ideal network, however, in
assuming that every tile is interconnected with every other
tile, requires an enormous amount of global interconnect
that has a detrimental effect on overall chip dimension, and
thus D. In such a scenario, the wiring along the network
bisection plane, which has the maximum number of wire
tracks, forms the limiting factor. The chip edge length re-
quired to accommodate the total bisection wiring can be
calculated as

50 5251 555453 56

20 2221 252423 26

30 3231 353433 36

40 4241 454443 46

10 1211 151413 16

00 0201 050403 06

60 6261 656463 66

(a) An EVC network

50 5251 555453 56

20 2221 252423 26

30 3231 353433 36

40 4241 454443 46

10 1211 151413 16

00 0201 050403 06

60 6261 656463 66

(b) VCs acquired from nodes 01 to 56

Figure 1: EVC network (solid lines are NVCs, dotted ones are EVCs)

Route
Computation

VC 1

VC n

VC 2

VC 1

VC n

VC 2

VC
Allocator

Switch
Allocator

Output 0

Output 4

Input 0

Input 4

Crossbar switch

Input buffers

Input buffers

(a) Baseline router microarchitecture

North

West

South

EastCrossBar

128

128

128

128

Local Control128

(b) Five-port router layout (input buffers
are housed within the respective input ports,
while VC, SA and control logic are grouped
within Control)

Figure 2: Baseline router microarchitecture, design and layout

Ledge = 2 · N

2
· N

2
· Wpitch · cwidth (3)

where Ledge is the chip edge length, N the number of tiles,
Wpitch the wire pitch and cwidth the channel width.

We use the data from [18] to calculate the maximum
wire length which can be driven in a cycle assuming delay-
optimal insertion of repeaters and flip-flops. Assuming uni-
form placement of tiles, the average wire length D can then
be derived as:

D = H · Ledge√
N

(4)

It should be pointed out that such an ideal interconnec-
tion fabric, where each node has a dedicated interconnect to
every other node, is not feasible in practice: a 7×7 network
will require a chip size of 4760mm2 (Ledge=69mm), way be-
yond the ITRS projection [1] of a chip size of 310mm2 for
high-performance chips.
Ideal energy: The energy consumption Eideal of a packet
in an ideal network is given by

Eideal = L/b · D · Pwire (5)
where D is the Manhattan distance between source and dis-
tance and Pwire the interconnect transmission power per
unit length.

Again, multiplexing of packets in networks leads to addi-
tional energy consumption, with the energy E required to
transmit a packet given by

E = L/b · (D · Pwire + H · Prouter) (6)
where Prouter is the average router power. Prouter is com-
posed of buffer read/write power, power spent in arbitrat-
ing for VCs and switch ports, and the crossbar traversal
power [19].
Ideal throughput: Network throughput, which is defined
as the data rate in bits per second that the network can ac-
cept per input port before saturation, is largely determined
by the topology, flow control and routing mechanism. Given
a particular topology, the ideal-throughput network is one
which employs perfect flow control and routing to balance
the network traffic over alternative paths while leaving no
idle cycles on the bottleneck channels.

To study the ideal throughput, we simulated a network

with unconstrained buffer capacity, unlimited VCs2, and
perfect switch allocation. Since this paper targets microar-
chitectural optimizations, we keep the topology and routing
algorithm consistent between the baseline, ideal and pro-
posed designs.

2.3 Existing gap
Here, we compare the state-of-the-art baseline design and

ideal network in terms of latency, energy and throughput,
noting the significant gap that still exists and motivating
the need for further router microarchitectural innovations
to bridge this gap.
Simulation methodology: Table 1 in Section 5.1 shows
the network parameters assumed for this study. Microarchi-
tectural parameters, such as the number of VCs and buffers,
were experimentally obtained by ensuring that they led to
the best performance for the specific traffic pattern. Details
of the simulation infrastructure are discussed in Section 5.
Design and pipeline sizing methodology: Fig. 2(b)
shows the router layout we assumed throughout this paper.
The buffers are laid out on the two sides of the router with
the crossbar/switch in the center. In this layout, the height
of the router is determined by the buffer height while the
width of the router is determined by the wire pitch.

For each microarchitectural component, we design the cir-
cuit schematics to estimate the pipeline delay of each logi-
cal pipeline stage and size the router pipeline appropriately.
The clock rate (3GHz frequency) of the router, correspond-
ing to a cycle time of 18 fanout-of-four (FO4) gate delays
(excluding clock set up), was chosen based on being able to
switch through the crossbar in a single cycle. The BW stage
is used to write the flit into the buffers as well as set up all
control signals in preparation for the next pipe stage (VA).
It is also in the BW stage that we pre-compute the route
(RC). The VA stage presents the longest critical path in our
design and our modeling ascertains that the entire VA stage
can be accommodated within a single 18FO4 cycle. The
physical pipeline thus corresponds to that shown in Fig. 3.
Results: Fig. 4(a) compares the latency of the ideal net-
work with that of the baseline network as a function of in-
creasing network traffic. The latency of the ideal network,

2
In actual simulations, this is mimicked by having very large num-

bers of buffers and VCs and verifying that a further increase in both
resources does not lead to better performance.

STSAVARC LT

SABubbleBubbleBW

BW

LTST

Head
flit

Body
/tail
flit

(a) Base router pipeline (BASE)

VA
BW
RC

BW

LTSTSA

SA LTSTBubble

Head
flit

Body
/tail
flit

(b) Lookahead routing (BASE+LA)

Setup

Setup

LTST

LTST

Head
flit

Body
/tail
flit

(c) Bypass pipeline (BASE+LA+BY)

BW

LTST
VA
SA

BW

LTSA ST

Head
flit

Body
/tail
flit

(d) Speculative pipeline (BASE+LA+BY+SP)

Figure 3: Router pipeline [BW: Buffer Write, RC: Route Computation, VA: Virtual Channel Allocation,
SA: Switch Allocation, ST: Switch Traversal, LT: Link Traversal]
which uses dedicated links between any pair of tiles, re-
mains constant irrespective of the network load. For the
baseline, we show the impact on network latency as we pro-
gressively incorporate lookahead routing, pipeline bypassing
and aggressive speculation. Under very low network load
(< 15% capacity), when most router ports are free, bypass-
ing is able to significantly reduce packet latencies. Using
speculation along with bypassing lowers the latency further
with increasing load (< 30% capacity). However, as traffic
increases, contention for network resources becomes higher,
which leads to a higher probability of failed speculations and
results in increasing latency until the network reaches the
saturation point. Hence, it can be seen that router overhead
leads to a significant latency gap between packet-switched
networks and the ideal network.

Fig. 4(a) also highlights the significant throughput gap
between the baseline and ideal-throughput network, with
baseline’s separable allocators only achieving 70% of the ca-
pacity of the ideal-throughput fabric.

Fig. 4(b) shows the gap between the energy consumption
of the ideal network compared to the baseline network. De-
spite the baseline incorporating energy-efficient microarchi-
tectural features, there still exists a substantial energy gap
due to the additional buffering, switching and arbitration
energy consumed in a router, which increases with network
load until saturation is reached.

3. EXPRESS VIRTUAL CHANNELS:
TOWARDS THE IDEAL
INTERCONNECTION FABRIC

As explained in Section 2, the sharing and multiplexing of
data on links in interconnection networks come at the cost
of complex routers which contribute additional overhead in
terms of packet latency and energy due to the router pipeline
and resource contention while degrade throughput as a re-
sult of imperfect allocation of the limited bandwidth.

By virtually bypassing routers, EVCs, as proposed in this
work, remove Trouter and Erouter at bypass hops, thus low-
ering energy/delay. As EVCs do not participate in arbitra-
tions, they also lower Tc and improve allocation efficiency,
thereby pushing throughput. Moreover, since the express
paths created by EVCs are virtual as opposed to physical
links, numerous EVCs of varying lengths can be used to
connect nodes without the proportionate wiring area over-
head. This allows packets to use EVCs which are tailored
to their specific route and, hence, facilitates dynamic adap-
tation to different traffic patterns which further improves
network performance and energy.

In the rest of this section, we explain the details of EVCs
while Section 4 delves into the detailed microarchitectural
design of the EVC-based router.

3.1 Static EVCs
Here, we first present the details of EVCs using a static

design which uses express paths of uniform lengths. All
nodes in a static EVC network are distinguished as either
an EVC source/sink node or a bypass node. A node is an
EVC source/sink along a specific dimension if an EVC along
that dimension originates/terminates at that node. Bypass

nodes, on the other hand, do not act as sources and sinks
of EVCs and are the ones which are virtually bypassed by
packets traveling on EVCs. For example, in Fig. 1(a), node
00 is an EVC source/sink for both the X and Y dimensions
while node 13 (04) is an EVC source/sink node along the X
(Y) dimension. Nodes 01 and 02 (10 and 20) are examples
of bypass nodes along the X (Y) dimension.

The entire set of VCs is divided into two types:
• NVCs: these are VCs which are allocated just like in

traditional VC flow control [9] and are responsible for
carrying a packet through a single hop.

• k-hop EVCs: these are VCs which carry the packet
through k consecutive hops (where k is the fixed length
of the EVC and is uniform throughout the network).

Bypass nodes only support the allocation of NVCs, not
EVCs, with EVCs bypassing their router pipelines. There-
fore, packets can acquire EVCs along a particular dimension
only at EVC source/sink nodes. When a packet traveling on
an EVC reaches a bypass node, it bypasses the entire router
pipeline, skipping VC allocation as it continues on the same
EVC it currently holds. It does not need to go through
switch allocation as EVCs are prioritized over NVCs and
are thus able to gain automatic passage through the switch
without any contention. In other words, a packet travel-
ing on a k-hop EVC traverses the next k − 1 nodes without
having to go through the router pipeline. Thus, a packet
tries to traverse as many EVCs as possible along its route
from the source to destination. NVCs are only used to reach
an EVC source/sink in order to hop onto an EVC or when
the hop-count in a dimension is less than k, the EVC length.
Fig. 1(b) shown earlier depicts the VCs acquired by a packet
traveling from node 01 to node 56 using deterministic XY
routing. Here, the packet travels on NVCs from node 01 to
03, EVCs from nodes 03 to 06 and then 06 to 36, and finally
NVCs from node 36 to 56. While connecting nodes using the
virtual express lanes provided by EVCs, it should be noted
that EVCs are restricted to connect nodes only along a sin-
gle dimension and cannot be allowed to turn. Thus, packets
are required to go through the router pipeline and change
VCs when turning to a different dimension. This restriction
is required to avoid conflicts between multiple EVC paths.
Impact on latency: Fig. 5(a) shows the non-express router
pipeline for head, body and tail flits. Flits go through this
pipeline at an EVC source/sink node or when they arrive
at a bypass node on an NVC. The number of logical stages
in this pipeline is identical to that in the baseline router
(BASE+LA+BY+SP) described in Section 2. Fig. 5(b)
shows the express router pipeline. A flit goes through this
pipeline whenever it bypasses a node virtually, which hap-
pens when it arrives at a bypass node on an EVC. As a flit
traveling on an EVC will continue on that EVC, there is no
need to go through VA. It can also skip SA as EVCs are
granted higher priority over NVCs and are automatically
granted switch passage. Since no allocation is needed, an
EVC flit can bypass BW and head directly to ST, followed
by LT, to the next node at the end of which the flit gets
latched. This pipeline, however, requires the switch to be set
up a priori. We do this by sending a lookahead signal over
a single-bit wire, which goes one cycle ahead to set up the

0

20

40

60

0.1 0.3 0.5 0.7 0.9

Injected load (fraction of capacity)

La
te

nc
y

(c
yc

le
s)

ideal latency ideal throughput
BASE+LA BASE+LA+BY
BASE+LA+BY+SP

Throughput gap

(a) Latency-throughput gap

0

2

4

6

0 0.2 0.4 0.6 0.8

Injected load (fraction of capacity)

N
et

w
or

k
en

er
gy

(m

J)

baseline ideal

(b) Energy gap

Figure 4: Existing gap between the state-of-the-art baseline and ideal interconnection fabric

switch at every intermediate hop which is bypassed, before
the actual flit starts traveling on an EVC. Aggressive tailor-
ing of the switch for EVCs can further shorten the express
pipeline by removing the ST stage and allowing EVC flits to
bypass the crossbar as well. Fig. 5(c) shows this pipeline. As
can be seen, the pipeline is now reduced to just link traver-
sal: approaching that of the ideal interconnect. Note that
EVCs enable bypassing of the router pipeline at all levels
of network loading, unlike prior techniques like bypassing or
speculation which are effective only under low network load.
Impact on energy: Unlike speculation-based techniques,
EVCs also lead to a significant reduction in network energy
consumption. They do so by targeting the per-hop router
energy Erouter, which is given as:
Erouter = Ebuffer write+Ebuffer read+Evc arb+Esw arb+Exb

(7)
where Ebuffer write and Ebuffer read are the buffer write and
read energy, Evc arb is the VC arbitration energy, Esw arb is
the switch arbitration energy, and Exb is the energy required
to traverse the crossbar switch.

While traveling on an EVC, a packet is able to bypass
the router pipeline of intermediate nodes, without the need
for getting buffered or having to arbitrate for a VC or the
switch port. This in effect saves Ebuffer write, Ebuffer read,
Evc arb and Esw arb, thereby significantly reducing Erouter

and approaching ideal energy. Moreover, since bypass nodes
support only NVCs and do not buffer EVC flits, the to-
tal amount of buffering is reduced, which leads to a cor-
responding reduction in energy consumption and area. The
aggressive express pipeline removes Exb as well, though wire
energy Ewire increases slightly because of higher load (see
Section 4).
Impact on throughput: Given a particular topology and
routing strategy, network throughput is largely determined
by the flow control mechanism. A perfect flow control is
one which makes efficient use of network resources, leaving
no idle cycles on the bottleneck channels. Using virtual ex-
press lanes, which effectively act as dedicated wires between
pairs of nodes, EVC-based flow control is able to create par-
tial communication flows in the network, thereby improving
resource utilization and reducing contention Tc at individual
routers. Thus, packets spend less time waiting for resources
at each router which lowers the average queuing delay, al-
lowing the network to push through more packets before sat-
uration and hence approach ideal throughput.

3.2 Dynamic EVCs
Using static EVCs of a fixed uniform length to connect

source/sink nodes throughout the network, as discussed in
the previous section, results in a constrained and asymmet-
ric design. Firstly, the classification of all nodes as bypass
and source/sink leads to an asymmetry in the design. Pack-
ets originating at bypass nodes are forced to first travel on
NVCs before they can acquire an EVC at a source/sink
node. Moreover, static EVCs lead to a non-optimal usage
of express paths when packet hop-counts do not match the
static EVC length k. In this case, packets end up bypass-
ing fewer nodes along their route. In other words, static
EVCs are biased towards traffic originating at source/sink
nodes and with hop-count equal to or a multiple of the EVC
length. Dynamic EVCs overcome these problems by: (a)

making every node in the network a source/sink, and (b)
allowing EVCs of varying lengths to originate from a node.
By making all nodes identical, dynamic EVCs lead to a sym-
metric design ensuring fairness among nodes. Moreover, in-
stead of having a fixed length, EVC lengths are allowed to
vary between two hops upto a maximum of lmax hops. This
improves adaptivity by allowing packets to pick EVCs of ap-
propriate lengths to match their route the best. Fig. 6(a)
shows dynamic EVCs along a particular dimension with lmax

= 3. As can be seen, each node acts as a source/sink of
EVCs of lengths two and three hops. Fig. 6(b) shows the
VCs acquired by a packet traveling from node 01 to node
56 using XY routing in a network with lmax = 3. Since
all nodes are source/sink nodes, the packet can acquire an
EVC at its source node 01, taking the longest possible EVC
(three-hop) to reach node 04. It then takes a two-hop EVC
to reach node 06, followed by traversing a three-hop EVC in
the Y dimension to reach node 36. Finally, the packet takes
a two-hop EVC to reach its destination node 56. It can be
seen that as compared to static EVCs (Fig. 1(b)), dynamic
EVCs can adapt to the exact route of the packet, thereby
allowing it to bypass more nodes and, hence, result in better
performance and energy characteristics.

Similar to static EVCs, dynamic EVCs are restricted to
be along a single dimension to prevent conflicts. It should
be noted that overlapping of multiple EVC paths along the
same dimension is allowed since all overlapping EVCs use
network links in a sequentially ordered fashion. From a
node’s perspective, it always prioritizes any EVC flits it sees
over locally-buffered flits.

Implementation of dynamic EVCs requires partitioning
the entire set of VCs at any router port between NVCs and
EVCs of lengths from two through lmax hops. Thus, unlike
static EVCs, which partition all VCs between two bins of
NVCs and uniform-length EVCs, dynamic EVCs divide the
VCs into a total of lmax bins. A simple scheme is to uni-
formly partition all VCs by allocating an equal number of
them to each bin.
Routing flexibility using dynamic EVCs: The perfor-
mance of dynamic EVCs can be further improved by al-
lowing for flexibility in EVC traversals. While, normally, a
packet tries to acquire the longest possible EVC along its
path in order to bypass the maximum number of nodes, this
scheme can be relaxed under certain scenarios when con-
tention for EVCs of a particular length is high. For instance,
consider a scenario where a packet has to travel p hops in a
particular dimension, where p ≤ lmax. In this case, if a p-hop
EVC is not available but a smaller-length EVC is free, the
packet can choose to switch to a smaller-length EVC. Effec-
tively, this implies that longer EVC traversals can be broken
down into a combination of shorter EVC/NVC traversals in
order to spread the traffic between all virtual paths and,
hence, reduce contention.

In order to make effective use of the routing flexibility
in EVCs, the VC pool partitioning should be made non-
uniform, with more VCs allocated to virtual paths of smaller
lengths. This is because longer EVCs can only be used by
packets with larger hop-counts and will remain unutilized
if the traffic pattern has shorter distances to travel. On
the other hand, by allocating more VCs to shorter paths,

BW

LTST
VA
SA

BW

LTSA ST

Head
flit

Body
/tail
flit

(a) Non-express pipeline

ST

LT
Latch

ST

LT
Latch

Head
flit

Body
/tail
flit

(b) Express pipeline

LT
Latch

LT
Latch

Head
flit

Body
/tail
flit

(c) Aggressive express pipeline

Figure 5: EVC router pipelines

00 0201 050403 06

(a) Dynamic EVCs along the X dimension
(assuming lmax = 3)

50 5251 555453 56

20 2221 252423 26

30 3231 353433 36

40 4241 454443 46

10 1211 151413 16

00 0201 050403 06

60 6261 656463 66

(b) VCs acquired from nodes 01 to 56

Figure 6: Dynamic EVC network

long-distance traffic always has the option to switch to a
combination of shorter EVCs if contention for longer EVCs
is high.

3.3 EVC buffer management
Buffered flow control techniques require a mechanism to

manage buffers and communicate their availability between
routers. Since a k-hop EVC creates a virtual lane between
nodes which are k hops apart, it assumes buffer availability
information to be communicated across k hops so that flits
are ensured of a free buffer at the downstream EVC sink
node. In this section, we present two schemes for buffer
management in an EVC-based network.
Statically-managed buffers: This scheme partitions the
buffer pool at a given router port between all VCs, stat-
ically reserving a set of buffers for each VC. Credit-based
flow control [10] is used in which the upstream router main-
tains a count of the number of free buffers available down-
stream. This count is decremented each time a flit is sent
out, thereby consuming a downstream buffer. On the other
hand, when a flit leaves the downstream node and frees its
associated buffer, a credit is sent back upstream and the
corresponding free buffer count is incremented.

The number of buffers reserved for each VC is based on
the corresponding credit round-trip delay. Fig. 7(a) shows
the timeline for buffer management for NVCs. Using the
timeline, the NVC credit round-trip delay, Tcrt,n can be cal-
culated as:

Tcrt,n = 1 + p + 1 + r = p + r + 2 (8)

Equation (8) assumes that it takes one cycle for the credit
to travel upstream, p cycles for flit processing at the up-
stream node, one cycle for the flit to travel downstream and
r is the number of non-express router pipeline stages.

Fig. 7(b) shows a similar timeline for EVCs. Each k-hop
EVC is allocated a minimum of Tcrt,e buffers:

Tcrt,e = c + p + 1 + 1 + 2(k − 1) + r = c + p + 2k + r (9)

assuming it takes c cycles for the credit to propagate up-
stream to the EVC source, p cycles for flit processing, one
cycle for the lookahead signal, one cycle for the flit to tra-
verse the link to reach the first node which is to be bypassed,
2(k − 1) cycles for the flit to propagate to the downstream
EVC sink by bypassing k − 1 intermediate nodes (assum-
ing the express router pipeline), and r cycles to traverse the
non-express router pipeline at the downstream EVC sink.
As Tcrt,e is larger than Tcrt,n, EVCs require deeper buffers
than NVCs to cover the credit round-trip delay. Note that
Tcrt,e can be reduced by using upper metal layers for credit
signaling, thereby making c < k. In this paper, however, to
minimize overhead and to be consistent with the baseline,
we kept credit signals on the same metal layer, thus c = k.
Moreover, Tcrt,e also decreases when using the aggressive
express pipeline due to a shorter bypass pipeline.

While static buffer management is easy to implement, it
is inefficient in allocating buffers in case of adversarial traf-

fic. Consider the case when the majority of network traffic
is nearest-neighbor, i.e., each node is communicating only
with its immediate neighbor. In this case, EVCs are never
used and the buffer space statically assigned to EVCs goes
unutilized. Moreover, with Tcrt,e being directly proportional
to k, longer EVCs require more buffers. This overhead can
be large, especially in the case of dynamic EVCs where each
node sources and sinks multiple EVCs of varying lengths.
Dynamically-managed buffers: To reduce buffer over-
head and improve utilization, dynamic buffer management
can be used in which buffers at each router are shared be-
tween all VCs. In this scheme, each router port maintains a
pool of free buffers which can be allocated to any incoming
EVC or NVC flit. Flow control is performed using threshold-
based management where a node sends a stop token to an
upstream node to which it is connected (either virtually
through EVCs or physically through NVCs) when the num-
ber of free buffers falls below a pre-calculated threshold,
Thrk. On receiving this token, the upstream node stops
sending flits to the corresponding downstream node. Con-
versely, as downstream buffers are freed and their number
exceeds Thrk, a start token is sent upstream to signal re-
start. To ensure freedom from deadlocks, one buffer slot is
reserved for each VC. This ensures that a packet can make
progress even if there are no buffers left in the free pool.

The value of Thrk is calculated based on the hop distance
between communicating nodes, which for a virtual path de-
pends on the corresponding EVC length k, and is given by:

Thrk = c + 2k − 1 (10)
where c is the number of cycles taken by the token to prop-
agate to the upstream EVC source while there can be a
maximum of 2k−1 flits in-flight which have already left the
EVC source and need to be ensured of a buffer downstream
(assuming the express pipeline and one cycle for token pro-
cessing). Again, the value of Thrk decreases when using
the aggressive express pipeline because of a shorter bypass
pipeline and correspondingly lower number of in-flight flits
and even though global wires can be used to reduce c, in
this work we assume c = k. For NVCs, the threshold can
be calculated by setting k to one. In case of dynamic EVCs,
multiple threshold values are used corresponding to each
EVC length, with longer EVC paths being turned off first
followed by smaller EVCs, and finally NVCs, whereas the
reverse happens as buffers become free.

To overcome the buffer overhead of static buffer manage-
ment, we use dynamically-managed buffers in this work.
3.4 Starvation avoidance

In any network, which pre-reserves bandwidth for specific
message flows, a starvation scenario may arise when mes-
sages traveling on a pre-established circuit block other mes-
sages. Similarly, in the case of a network employing EVCs,
the higher priority given to EVC flits can lead to a starva-
tion scenario. More specifically, if a node along the path
of an EVC always has incoming EVC flits to service, flits

credit

flit

credit flit

N
on

-
ex

pr
es

s

pi
pe

lin
e

pr
oc

es
s

credit

T c
rt

,n

t1

t2

t3

t4

t5

Node 0 Node 1

flitcredit

flit

credit flit

N
on

-
ex

pr
es

s

pi
pe

lin
e

pr
oc

es
s

credit

T c
rt

,n

t1

t2

t3

t4

t5

Node 0 Node 1

flit

(a) NVC credit flow

credit

flit

flit

Express pipeline

process

credit

T c
rt

,e

Node 00 Node 01

flit

Node 02

flit

flit

Node 03

Non-
express

credit

Express pipeline

pipeline

(b) EVC credit flow (for a three-hop EVC)

Figure 7: Credit round-trip delay with EVCs
buffered locally at the node may never get a chance to use
the physical channel.

A typical starvation scenario for static EVCs is depicted in
Fig. 8(a), where NVC flits buffered to go out at the east out-
put port of node 03 are starved by the EVC (shown in bold).
One simple algorithm to avoid such scenarios involves each
bypass node maintaining a count of the number of consec-
utive cycles for which it has served an EVC. After serving
EVC flits for n consecutive cycles, a bypass node sends a
Starvation on token upstream to the EVC source node if it
has NVC flits which are getting starved. Upon receiving this
token, the EVC source node stops sending EVC flits on the
corresponding link for the next p consecutive cycles. Hence,
starved locally-buffered NVC flits can now be serviced. n
and p are design parameters which can be set empirically.

In case of dynamic EVCs, starvation signaling needs to
be done across more than one EVC source as multiple EVC
paths may be bypassing a node. Fig. 8(b) shows a typical
starvation scenario (for a network with lmax = 3), where
flits buffered to go out at the east output port of node 03
get starved by the bypassing EVC traffic. EVC flows which
can potentially lead to this starvation scenario are depicted
in bold. The starvation avoidance algorithm used is similar
to the one used for static EVCs with every node maintaining
a count of the number of consecutive cycles for which it has
served EVC flits. When this count exceeds a threshold n
and if that node has locally-buffered flits waiting to use the
physical channel, it sends out a Starvation on token. Con-
sidering the example in Fig. 8(b), when the count at node
03 exceeds n, it sends such a token to the neighboring node
02 which stops sending locally-buffered EVC flits (if any)
along its east output port for the next p cycles. Node 02
then forwards the Starvation on token to its next neighbor
which then stops sending EVC flits on its east output port
as well. In general, forwarding of Starvation on tokens is
done for lmax − 1 hops to cover all potential bypassing EVC
paths. Moreover, to reduce the wiring overhead of starvation
signaling, if more than one node is getting starved simulta-
neously, Starvation on tokens can be merged. For instance,
if node 02 in the above example receives a Starvation on
token from node 03 and detects starvation for its local flits
at the same time, it can merge its own Starvation on token
with the existing token (instead of creating a new token),
and send it for forwarding to the next lmax − 1 hops (upto
node 00).

Previously proposed deadlock-avoidance techniques can
be readily used with EVCs. For instance, escape routes [10]
can be created using only NVCs (similar to traditional VC
flow control). Even though NVCs have a lower priority com-
pared to EVCs, they are guaranteed to make progress using
the starvation-avoidance algorithm of the EVC design.

4. EVC ROUTER MICROARCHITECTURE
DESIGN

Fig. 9 shows the microarchitecture of a router in an EVC-
based design. The differences from a generic router are
shaded. For a bypass node in the static EVC design, the

changes include the VC allocator, which now only handles
NVCs, and the EVC latch which holds the flit arriving on
an EVC. The crossbar switch can remain unchanged, or can
also be aggressively designed to bypass ST as well for EVC
flits. On the other hand, for a source/sink node in the static
EVC design, the entire set of VCs at each input port is di-
vided between EVCs and NVCs, each with a separate allo-
cator. The EVC latch is not required as flits are not allowed
to bypass source/sink nodes. In case of dynamic EVCs,
nodes are not classified as bypass and source/sink. All nodes
have the same microarchitecture, with the differences from
a generic router including the EVC latch, division of VCs
at each port into EVCs and NVCs (with a separate allo-
cator for each) while the crossbar switch can again remain
unchanged or aggressively designed. Since connections be-
tween non-adjacent nodes in an EVC design are virtual as
opposed to physical, it can be seen that an EVC design does
not require any additional router ports as compared to the
baseline (even though each node may be connected to many
other nodes using multiple express connections), thereby im-
posing no siginificant increase in the area/energy overhead
of individual routers.

We next detail the design of each microarchitectural com-
ponent of the EVC-based router. Note that the same design
and pipeline sizing methodology we used for the baseline
router is applied to that of the EVC router.
Virtual channel allocator: In order to prevent head-of-
line blocking, two separate sets of VC allocators are used at
every node in a dynamic EVC design and source/sink nodes
in a static EVC design: one which allocates EVCs and the
other NVCs. Depending on the output port and number of
hops left in the packet’s next dimension, the packet either
places a request to the NVC allocator (if the number of
hops left in the next dimension is less than the uniform
EVC length for static EVCs or the smallest EVC length for
dynamic EVCs) or otherwise to the EVC allocator. Bypass
nodes in a static EVC design, on the other hand, allocate
only NVCs and, hence, have only one VC allocator.
Switch design: For the express pipeline in Fig. 5(b), no
modifications need to be made to the crossbar switch design,
since the EVC latch in the input port is multiplexed with the
NVC input buffers, sharing a single input port to the cross-
bar. However, to achieve the aggressive express pipeline in
Fig. 5(c), where EVC flits bypass the switch altogether, the
EVC latch needs to be physically located near the center of
the router. This EVC latch acts as a staging latch, breaking
the flit’s path through the network and effectively bypassing
the entire data-path of the router.
Buffer management circuit: Fig. 10 shows the block dia-
gram for dynamically-managed buffers. At each input port,
a router maintains a pool of free flit buffers. When a new flit
arrives, it is assigned the buffer slot at the head of this pool
in the BW pipeline stage along with storing the assigned
buffer slot in the packet control block. The function of the
packet control block is to store the buffer slot pointers for
tracking the buffers assigned to all flits corresponding to dif-
ferent input VCs. This pointer information is used to read

00 0201 050403 06

starved

(a) Static EVCs

00 0201 050403 06

starved

(b) Dynamic EVCs

Figure 8: Starvation scenario

Route
Computation

NVC Allocator

Output 0

Output 4

Input 0

Input 4

Crossbar switch

NVC

NVC

EVC
latch

NVC

NVC

EVC
latch

Switch Allocator

(a) Bypass node in static EVC net-
work

Route
Computation

NVC Allocator

Output 0

Output 4

Input 0

Input 4

Crossbar switch

NVC

EVC

NVC

EVC

EVC Allocator

Switch Allocator

(b) Source/sink node in static EVC
network

Route
Computation

NVC Allocator

Output 0

Output 4

Input 0

Input 4

Crossbar switch

NVC

EVC

EVC
latch

NVC

EVC

EVC
latch

EVC Allocator

Switch Allocator

(c) Dynamic EVC network node

Figure 9: EVC router microarchitecture

Payload
Buffer Write

Payload
Buffer Read

Incoming
flit Outgoing

flit

BW
stage

ST
stage

Flit buffer free listAllocate
free buffer

Outgoing
flit readAdd to

free list

Store
payload
pointer

VCi block
info

F0 F4F3F2F1

VCj block
info

F4F3F2F1F0

Control block

Figure 10: Dynamic buffer management circuit
out the flit from the buffer pool before it traverses the switch
in the ST stage, after which the buffer slot is returned to the
free pool. Since the pointer value can be prefetched before
the ST stage begins, it does not add to the critical path.
Apart from this, the buffer slot occupied by the header of
every packet is marked as reserved for that packet and is not
added to the free pool until the tail of that packet leaves the
router. This is done to prevent deadlocks and ensure for-
ward progress within each packet.
Reverse signaling overhead: As compared to the base-
line network, an EVC-based design requires extra reverse
wiring between nodes which are virtually connected for flow
control and starvation signaling. This overhead can be bro-
ken into the following categories:
VC signaling: These wires are used to signal availability of
VCs across nodes. For a baseline design with v VCs per
port, the number of wires at any cross-section required for
VC signaling along a particular direction, Wvc signaling , is
given by:

Wvc signaling = dlog2ve (11)
On the other hand, the corresponding Wvc signaling for a

static EVC design with v VCs partitioned into n NVCs and
e EVCs, is given by:

Wvc signaling = dlog2ne + d(log2 e)e (12)
For a dynamic EVC network with a maximum EVC length

of lmax, communication of VC availability has to be done
across lmax nodes on either side. In this case, Wvc signaling

is given by:

Wvc signaling = dlog2ne +
l

(log2 m). (lmax).(lmax−1)
2

m

m = e/(lmax − 1)
(13)

where m is the number of VCs for EVCs of a particular
length (assuming all e EVCs are uniformly partitioned among
EVCs with a length of two through lmax hops).
Buffer threshold signaling: To signal buffer availability us-
ing on/off threshold tokens, the baseline network requires
a single wire in each direction connecting adjacent nodes
while a static EVC design requires two wires (one connect-
ing adjacent nodes and the other connecting to the node
with which a fixed-length EVC connection exists). On the
other hand, in a dynamic EVC design, each node needs to
communicate buffer availability to lmax neighbors. We use
1-hot decoded wires for this purpose, giving a wiring over-
head Wthr signaling in a particular direction of:

Wthr signaling = lmax (14)
Starvation signaling: Again, while a single wire between
any pair of virtually connected nodes is sufficient for star-
vation signaling in static EVCs and dynamic EVCs with
lmax = 2, in general a dynamic EVC network requires star-
vation tokens to be communicated to lmax −1 neighbors (as
explained in Section 3.4) giving a starvation wiring overhead
Wstarvation of:

Wstarvation = dlog2(lmax − 1)e (15)
Hence, it can be seen that while the baseline and static
EVCs have comparable constant reverse signaling overhead,
this overhead for dynamic EVCs is dependent on lmax, with
Wvc signaling increasing quadratically while Wthr signaling

and Wstarvation having a linear and logarithmic dependence
on lmax, respectively. This wiring overhead as a percentage
of the forward wiring (assuming 128-bit wide channels and
eight VCs per port which are uniformly partitioned between
all VC bins) is 3% (4 wires) for the baseline, 5% (7 wires)
for the static EVC design, 7% (9 wires) for a dynamic EVC
design with lmax = 2, 14% (18 wires) for lmax = 3 and
20% (26 wires) for lmax = 4. Hence, it can be seen that
the reverse wiring for a dynamic EVC network with lmax

= 2 is comparable to the baseline and static EVCs and is a
small fraction of the forward flit-wide wiring. This overhead,
however, increases slowly with higher values of lmax.

5. EVALUATION
In this section, we present a detailed evaluation of EVCs,

exploring its design space while comparing it against the
state-of-the-art baseline design (BASE+LA+BY+SP) and
ideal interconnect yardsticks described in Section 2.

5.1 Simulation infrastructure
To model network performance, we use a cycle-accurate

micro-architecture simulator. The model may be stimu-
lated via a) a synthetic traffic generator mode or b) in trace

mode using traffic traces. The network models all major
components of the router pipeline at clock granularity, viz.,
buffer management, routing algorithm, VC and switch allo-
cation and flow control between routers, with each compo-
nent’s circuit schematics designed and pipeline stages sized
via detailed critical path analysis (see Section 2). We use
Orion [19], an architecture-level network energy model, to
evaluate the energy consumption of routers and links. Orion
includes detailed dynamic and leakage energy models [20] for
all major router microarchitecture components, including
input buffers, crossbar, arbitration logic as well as network
links.

Table 2 lists the EVC-specific parameters used in this
study, while Table 1 lists the general process parameters
and that of the baseline network. The entire set of VCs in
an EVC network is partitioned into NVCs and EVCs. For
static EVCs, the entire EVC set acts as a contiguous pool
whereas they are further partitioned into lmax − 1 bins in
case of dynamic EVCs (Section 3.2). For better utilization of
buffers, we use a dynamically-managed design (Section 3.3),
with the entire buffer set at any router port shared among all
VCs. The buffer size is kept the same as that in the baseline
design. Unless otherwise mentioned, all EVC experiments
use the aggressive EVC pipeline with an EVC length of two
hops for static EVCs. To keep the reverse wiring overhead
comparable to the baseline, an lmax of two hops is also used
for dynamic EVCs.

Evaluation using synthetic traffic uses packets which uni-
formly consist of two sizes: single-flit short packets and long
packets consisting of five flits. Each simulation run for a syn-
thetic traffic is 1 million cycles long. For all runs, a warm-up
period of 100k cycles is assumed. Network saturation is de-
fined as the point at which packet latency is three times the
zero-load latency.

The SPLASH-2 [14] traces were gathered by running the
benchmarks on Bochs [21], a multiprocessor simulator with
an embedded Linux 2.4 kernel. Each benchmark was run
in Bochs with N concurrent threads, where N is the size
of the chip/network, and the memory trace captured. This
memory trace is then applied to a memory system simula-
tor that models the classic MSI (Modified, Shared, Invalid)
directory-based cache coherence protocol, with the home di-
rectory nodes statically assigned based on the least signifi-
cant bits of the tag, distributed across all processors in the
entire chip. Each processor node has a two-level cache (2MB
L2 cache per node) that interfaces with a network router and
4GB off-chip main memory. Access latency to the L2 cache
is derived from Cacti to be six cycles, whereas off-chip main
memory access delay is assumed to be 200 cycles.

5.2 Uniform random traffic
Uniform random traffic assumes each node uniformly in-

jects packets into the network with randomly distributed
destinations. This highlights the best-case throughput for
the baseline network. Here, we use uniform traffic to present
a comparison of EVCs against the baseline. In all results,
percentage improvements are reported with respect to the
baseline.
Performance evaluation: Fig. 11(a) plots flit latencies for
uniform random traffic for a 7×7 network as a function of
the injected load. EVC lengths are assumed to be two hops.
Clearly, the EVC-based design outperforms the baseline in
terms of throughput as well as latency under all levels of net-
work traffic. The latency reduction of static EVCs as com-
pared to the baseline is 29.2% before the baseline saturates
whereas the corresponding reduction due to dynamic EVCs
is 44.7%. Moreover, dynamic EVCs also lead to a significant
improvement in throughput with the network saturating at
around 82% of network capacity.

It can be seen that when the network load is low, both
EVCs and baseline perform well as packets are able to use
pipeline bypassing to shorten the critical path. However, as
the load increases, the latency gap between the baseline and
EVCs widens. Although the baseline relies on aggressive
speculation to reduce delay, such techniques fail more often
and show a diminishing advantage with increasing traffic
and contention. EVCs, on the other hand, are able to sus-

tain low latencies with increasing traffic by creating virtual
dedicated wires in the network, allowing packets to bypass
intermediate nodes along their path (and hence reduce la-
tency) in a completely non-speculative manner. Moreover,
EVCs lower the average per-hop contention seen by a packet,
thereby pushing throughput. In trying to analyze this fur-
ther, we see that dynamic EVCs perform better than static
EVCs by increasing the usage of the virtual lanes created by
EVCs and, hence, increasing the average number of nodes
a packet bypasses, the latency reduction of dynamic EVCs
over the static EVC design being around 67% before the
static design saturates. It can be seen that using EVCs, the
no-load latency is reduced to 14.5 cycles (approaching the
11-cycle ideal interconnect delay).
Energy evaluation: Fig. 11(b) shows the normalized router
energy consumption at 70% capacity (before the baseline
saturates) for a 7×7 mesh network. As can be seen, EVCs
are able to significantly reduce overall router energy. This
reduction is 21% for static EVCs and 24.5% for dynamic
EVCs as compared to the baseline. This is mainly due to
a reduction in buffer energy [by 25% (30%) for static (dy-
namic) EVCs] and crossbar energy [by 29% (33%) for static
(dynamic) EVCs] due to bypassing of intermediate nodes
when using EVCs. Fig. 11(c) highlights this fact by com-
paring the energy of different router components. Arbitra-
tion energy (which is mostly dominated by control logic)
was found to be insignificant and is omitted from the fig-
ure. When compared with a baseline without the straight-
through buffers and cut-through crossbar energy optimiza-
tions discussed in Section 2.1, the energy reduction using
power-optimized dynamic EVCs increases to 53.4%.

It should be noted that our default parameters assume
equal network buffer capacity for both EVCs and the base-
line. Although EVCs achieve a much higher throughput
using this configuration, the designer can make an energy-
performance trade-off by reducing the buffer size for EVCs
and, hence, lowering both dynamic and leakage energy at
the expense of some loss in throughput.

5.3 Impact of different express pipelines
When using the non-aggressive express pipeline, where by-

passing EVC flits need to go through switch traversal, im-
provements in packet energy and delay diminish by a small
amount. Fig. 12 plots packet latency as a function of net-
work load for a 7×7 mesh, with EVCs using a non-aggressive
pipeline and assuming uniform random traffic. In case of
dynamic EVCs, the non-aggressive design leads to a 11.6%
higher latency near saturation as compared to the aggres-
sive pipeline. The router energy consumption goes up by
8% mainly due to an increase in crossbar energy.

5.4 Impact on network contention
By allowing packets to bypass nodes virtually, EVCs ease

contention for resources in the network. To study this effect,
Fig. 13 compares the average contention delay, or the time
which packets spend waiting for network resources, near sat-
uration for the different designs in a 7×7 network. It can be
seen that EVCs significantly reduce the level of contention
in the network with the contention delay reducing by 28.5%
(47%) for static (dynamic) EVCs. This is because EVC flits
do not need to win switch ports and VCs while bypassing a
node, as they are prioritized to directly use the switch port,
which is equivalent to a 100% resource allocation efficiency
while bypassing. This reduction in contention for network
resources translates directly to a higher throughput.

5.5 Effect of a larger network
To study the scalability of EVCs, we consider a 10×10

network with longer EVC lengths of three hops for static
EVCs and lmax = 3 for dynamic EVCs (assuming uniform
VC partitioning between EVCs of different lengths and the
aggressive express pipeline). Fig. 14(a) plots packet latency
as a function of network traffic (assuming uniform random
traffic) for this network. As can be seen, EVCs continue to
show a considerable performance gain as compared to the
baseline, with the reduction in latency being 34.4% for static
EVCs and 52.8% for dynamic EVCs just before the baseline

Table 1: Baseline process and network parameters
Technology 65 nm

Vdd 1.1 V
Vthreshold 0.17 V
Frequency 3 GHz
Topology 7-ary 2-mesh
Routing Dimension-ordered (DOR)
Traffic Uniform random

Number of router ports 5
VCs per port 8

Buffers per port 24
Flit size/channel width (cwidth) 128 bits

Link length 1 mm
Wire pitch (Wpitch) 0.45µm

Table 2: EVC-specific parameters
EVC pipeline Aggressive express pipeline

Buffer management dynamic
Buffers per port 24

Static EVC-specific parameters
EVC length 2 hops

NVCs per port 4
EVCs per port 4

Dynamic EVC-specific parameters
lmax 2

NVCs per port 2
EVCs per bin 6

Starvation-avoidance parameters
n 20
p 3

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Injected load (fraction of capacity)

L
at

en
cy

 (c
yc

le
s)

baseline static EVC dynamic EVC

(a) Network performance

0

0.2

0.4

0.6

0.8

1

N
o

rm
al

iz
ed

 e
n

er
g

y

baseline static EVC dynamic EVC

(b) Router energy

0

0.2

0.4

0.6

0.8

1

buffer crossbar leakage

N
o

rm
al

iz
ed

 e
n

er
g

y

baseline static EVC dynamic EVC

(c) Energy saving from different
router components

Figure 11: Uniform random traffic results

saturates. Moreover, the throughput for dynamic EVCs ap-
proaches 88% of network capacity (23% improvement over
the baseline). This is mainly attributable to the fact that
with longer and flexible EVC lengths, packets are able to by-
pass more hops along their path. Fig. 14(b) shows the nor-
malized router energy at 75% capacity (before the baseline
saturates). In this case, EVCs show a more pronounced re-
duction in energy, with the average router energy lowered by
23.5% for static EVCs and 38% for dynamic EVCs. Again,
this is mainly attributable to a reduction in buffer energy
[reduced by 29% (47%) using static (dynamic) EVCs] and
crossbar energy [reduced by 32% (50%) for static (dynamic)
EVCs]. However, as explained before, a network with lmax

= 3 incurs a slightly higher reverse wiring overhead as com-
pared to the baseline.

5.6 Dynamic EVC design space
In this section, we explore the design space of dynamic

EVCs focusing in particular on the routing flexibility in us-
ing EVCs and trade-offs related to EVC lengths.
EVC routing flexibility: When using a dynamic EVC de-
sign with lmax > 2, performance can be further increased by
allowing flexibility in choosing EVCs, as explained in Sec-
tion 3.2. This is especially true for non-uniform traffic, as
shown in Fig. 15, which plots latency as a function of in-
jected load for a 7×7 network, assuming the shuffle traffic
pattern. lmax is chosen to be four hops, thereby allowing
packets to choose between EVCs of lengths two, three and
four hops when route flexibility is used. The partitioning
of VCs is made non-uniform with a higher number of VCs
given to smaller EVC lengths. Out of the total of eight VCs
per port, two are assigned to NVCs whereas the rest are
divided as three VCs, two VCs and one VC for the two-,
three- and four-hop EVC bins, respectively. As compared
to a design without route flexibility, a latency reduction of
26% is seen near saturation along with a slight improvement
in throughput. This is mainly attributable to a significant
lowering in contention for VCs due to the spreading of pack-
ets among different virtual paths owing to the flexibility in
choosing EVCs of different lengths.
Maximum EVC length: We next explore the trade-offs
related to the maximum EVC length lmax in a dynamic EVC
network. Assuming a 7×7 network using the aggressive ex-
press pipeline and uniform random traffic, the no-load la-
tency was found to be 14.5 cycles for lmax = 2, 13.6 cycles
for lmax = 3 and 13.2 cycles for lmax = 4 with the satura-
tion throughput as a fraction of capacity being 82%, 84%
and 86% for lmax = 2, 3 and 4, respectively. It can be seen
that larger values of lmax lead to better performance with

the no-load latency of the lmax = 4 network approaching the
11 cycles ideal interconnect latency. This is because longer
EVCs allow packets to bypass more nodes along their paths
(shown in Fig. 16(a)). However, as can be seen, the gain in
performance is not proportional to the increase in the num-
ber of nodes bypassed. Moreover, increasing lmax comes at
the cost of a higher reverse wiring overhead, as explained in
Section 4. In trying to study this further, we analyze the av-
erage contention delay Tc, or the time which packets spend
waiting at intermediate routers near the saturation point
(shown in Fig. 16(b)). It can be seen that whereas Tc reduces
with increasing lmax, leading to lower packet latencies, not
all components of Tc decrease. Increasing lmax significantly
lowers switch contention or the time spent waiting to win
switch ports at intermediate hops due to a higher number of
nodes bypassed and, hence, fewer switch allocations which a
packet has to go through. However, as dynamic EVCs lead
to a partitioning of the entire set of VCs at a port into lmax

bins, a larger lmax implies more bins with fewer VCs per bin
(as the total number of VCs is kept constant). Hence, the
contention for VCs within a bin increases, leading to an in-
crease in the delay due to VC contention, assuming routing
flexibility among EVCs is not used. Moreover, the number
of EVC paths bypassing a node increases in proportion to
lmax, leading to a higher probability of a flit waiting at a
router because of a bypassing EVC flit using the output link
(shown as wait delay). As EVCs do not add extra physical
channels, this wait delay is unavoidable because the same
physical channel is shared between waiting and bypassing
flits. It should be noted, however, that we found Tc to be
mainly dominated by switch and VC contention delays, with
wait delay contributing only a small fraction.

Fig. 16 also highlights the effect of routing flexibility (in
a network with lmax = 4) on Tc. Packets use routing flex-
ibility to switch to smaller-length EVCs if longer ones are
busy, which causes the number of bypassed nodes to decrease
slightly with a corresponding increase in switch contention.
However, the contention for VCs is reduced significantly due
to the distribution of packets among paths of different EVC
lengths based on the relative contention within each EVC
bin, leading to a reduction in the overall contention delay.
5.7 SPLASH results

In this section, we present evaluation results using bench-
marks from the SPLASH-2 [14] suite for a 7×7 network,
assuming an EVC length of two hops for static EVCs and
lmax = 2 for dynamic EVCs (with the aggressive express
pipeline). Fig. 17(a) shows the comparison of normalized
delay for each benchmark against the baseline. It can be
seen that EVCs show a latency improvement over the base-

10

20

30

40

50

60

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Injected load (fraction of capacity)
La

te
nc

y
(c

yc
le

s)

baseline non-aggressive static EVC

aggressive static EVC non-aggressive dynamic EVC

aggressive dynamic EVC

Figure 12: Impact of different express pipelines on latency

0

0.2

0.4

0.6

0.8

1

Av
er

ag
e

co
nt

en
tio

n
de

la
y

baseline static EVC dynamic EVC

Figure 13: Relative contention for network
resources

10

20

30

40

50

60

70

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Injected load (fraction of capacity)

L
a

te
n

c
y

 (
c

y
c

le
s

)

baseline static EVC dynamic EVC

(a) 10x10 network performance

0

0.2

0.4

0.6

0.8

1

N
o

rm
a

liz
e

d
 e

n
e

rg
y

baseline static EVC dynamic EVC

(b) 10x10 network energy

Figure 14: EVCs in a larger network

5

15

25

35

45

55

65

0.03 0.05 0.07 0.09

Injected load (packets/node/cycle)

L
a

te
n

c
y

 (
c

y
c

le
s

)

dynamic EVCs route-flexible dynamic EVCs

Figure 15: Impact of routing flexi-
bility when using EVCs

0%

20%

40%

60%

80%

100%

lmax=2 lmax=3 lmax=4 lmax=4 with
route flexibility

avg. bypassed nodes avg. non-bypassed nodes

(a) Comparison of bypassed
nodes

0

0.2

0.4

0.6

0.8

1

1.2

1.4

contention
delay

switch delay VC delay wait delay

N
o

rm
a

li
z
e

d
 d

e
la

y

lmax=2 lmax=3 lmax=4 lmax=4 with routing flexibility

(b) Packet contention delay
analysis

Figure 16: Analysis with varying lmax

0

0.2

0.4

0.6

0.8

1

fft lu
ra

di
x

wat
er

-n
sq

ua
re

d

wat
er

-s
pa

tia
l

ba
rn

es

oc
ea

n

ra
yt
ra

ce

N
o

rm
a

li
z
e

d
 l
a

te
n

c
y

baseline static EVC dynamic EVC

(a) Normalized latency

0

0.2

0.4

0.6

0.8

1

fft lu
ra

di
x

wat
er

-n
sq

ua
re

d

wat
er

-s
pa

tia
l

ba
rn

es

oc
ea

n

ra
yt
ra

ce

N
o

rm
a

li
z
e

d
 e

n
e

rg
y

baseline static EVC dynamic EVC

(b) Normalized energy

Figure 17: SPLASH results
line for all benchmarks. The largest reductions were seen for
water-spatial and water-nsquared, with static EVCs reducing
latency by 84% (31.3%) for water-spatial (water-nsquared),
the corresponding reductions for dynamic EVCs being 84%
(40.3%). This is mainly attributable to high traffic levels
in these benchmarks where the speculative techniques used
by the baseline fail whereas EVCs, being non-speculative,
show large gains. On the other hand, fft, lu, radix, barnes
and ocean represent low to medium traffic with moderate
hop-counts, leading to a latency reduction of 20.8%, 22.9%,
34.6%, 19.4% and 35.8%, respectively, using the dynamic
EVC design. Raytrace, on the other hand, represents very
low traffic but with a high hop-count. Hence, whereas the
baseline performs well due to pipeline bypassing and specu-
lation, packet latencies are reduced further using EVCs (by
28.2% using dynamic EVCs) due to their higher utilization
and the use of aggressive switch bypassing.

Fig. 17(b) shows the normalized router energy for the dif-
ferent benchmarks. Again, EVCs show energy gains, the
reduction using dynamic EVCs being around 9% on average
going upto 11% for water-spatial.

6. RELATED WORK
Topological and routing techniques. Substantial prior
work has explored alternative topologies for reducing net-
work latency through lowering of hop-count [10]. Higher-
radix topologies lead to a lower hop-count, but present chal-
lenges in router design [22]. Numerous routing algorithms
have also been proposed [23,24]. These are all orthogonal to
EVCs, which target per-hop latency and energy rather than
the hop-count. EVCs can complement any topology and
routing algorithm to further drive network latency, through-
put and energy towards the ideal. However, EVCs are in-
spired by the express cubes topology [11]. In express cubes,
extra physical links that span multiple hops are proposed to
allow packets to skip intermediate router pipelines, and

shown to lead to significant energy savings when the up-
per metal interconnect is used for such metal links in on-
chip networks [17]. EVCs essentially virtualize the phys-
ical express links of express cubes, thereby obviating the
need for the extra metal interconnects and highly-ported
routers at the sources and sinks of express links. Smaller
number of ports directly translates to smaller router area
footprint and lower energy consumption. Virtualizing these
physical express links also means that there will not be
wastage of physical link bandwidth when the traffic pat-
tern is adversarial. In addition, EVCs lead to a higher re-
duction in packet latencies as compared to express cubes
under low loads when network contention is low. If the
total amount of wiring is assumed to be constant, an ex-
press cube design would lead to longer packet sizes due to
reduced wiring per channel. More specifically, a flat ex-
press cube, with an interchange every k nodes, would lead
to doubling of packet sizes, giving a latency for a packet
traveling H hops (assuming no contention and equal router
and interchange delays which favors express cubes, and that
k | H) to be T = D/v + 2 · L/b + (H/k + k) · Trouter,
whereas the corresponding latency in a k-hop static EVC
design (assuming the aggressive express pipeline) is given
by T = D/v + L/b + (H/k + k − 1) · Trouter. It can be
seen that express cubes increase the serialization delay due
to longer packet sizes. For hierarchical express cubes, this
overhead grows directly in proportion to the number of in-
terchange levels. Moreover, using dynamic EVCs, virtual
express paths of a range of lengths can be created from ev-
ery network node with a low overhead in reverse wiring as
compared to the wiring overhead of a similar design with
multiple physical express channels originating from every
node.

Ogras et al. [25] proposed long-range link insertion to
connect non-adjacent nodes in an application-aware fashion.
This again requires additional flit-wide physical wiring and
fatter routers with larger number of ports and hence larger

crossbar switches. In contrast, EVCs avoid these overheads
by using virtual connections between distant nodes.
Microarchitectural techniques targeting Trouter and
throughput. Circuit switching first allocates channels to
form a pre-reserved circuit prior to communication, so that
actual communication can occur with close-to-ideal network
latency, incurring just switch and link traversal latencies
within the router pipeline. Researchers have also looked at
hybrid flow control mechanisms, such as wave switching [26]
and pipeline circuit switching [27], which combine the ad-
vantages of circuit and packet switching. However, circuit
switching and its variants incur a large circuit setup time
which increases latency for short transfers. Circuit switch-
ing also suffers in throughput, as links are not shared ef-
ficiently amongst different message flows. Flit-reservation
flow control [28] sends out control flits in advance to sched-
ule buffers and channels along the way for subsequent data
flits. This can lower the router pipeline delay to close to
the ideal while improving throughput, but requires control
flits to be sent along fast upper metal wires, contending for
metal layers with other global wiring. Besides, it requires
a complex router microarchitecture that leads to significant
hardware overhead.

Our baseline router already incorporates several specula-
tion mechanisms that target Trouter, such as bypassing and
speculation. Mullins et al. [12] propose a doubly-speculative
single-stage design in which arbitration decisions are pre-
computed to further reduce pipeline dependencies. While
speculative designs work well under low loads, they per-
form poorly under heavy loads when network contention is
high. Moreover, speculation often employs redundant logic
which increases energy consumption. Our proposed EVCs
are completely non-speculative and, hence, can improve per-
formance at all traffic conditions while simultaneously lower-
ing the energy consumption. Kim et al. [29] target through-
put by proposing path-sensitive packet buffering and par-
titioning the crossbar into separate row and column mod-
ules to reduce contention. However, this scheme relies on
buffering of flits based on their output path and, hence, as-
sumes multi-ported buffers which incur significant overhead
in resource-constrained on-chip designs. EVCs, on the other
hand, push both latency and throughput towards the ideal
using single-ported buffers and crossbars that are area- and
energy-efficient.
7. CONCLUSION

Although the multiplexing of network channels over mul-
tiple packet flows in packet-switched on-chip network de-
signs leads to throughput gains, this comes with a signifi-
cant latency, energy and area overhead in the form of com-
plex routers. In this paper, we target this overhead in an
attempt to approach the ideal interconnection fabric of ded-
icated wires between all nodes. We propose EVCs, a novel
flow control and router microarchitecture design, which use
virtual lanes in the network to allow packets to bypass nodes
along their path in a non-speculative fashion and, hence,
significantly reduce delay and energy consumption. The vir-
tual paths created by EVCs also help lower the level of con-
tention in the network, thereby allowing the network to push
through more packets before saturation and, hence, improve
throughput. Since network nodes are virtually connected us-
ing existing physical channels, EVCs improve performance
with a negligible wiring area overhead and minimal hard-
ware complexity. We presented a detailed microarchitecture
for EVCs, analyzing the hardware and pipeline complex-
ity of each of its components. A detailed evaluation, using
both synthetic and actual workloads, showed EVCs signifi-
cantly improving network energy/delay and throughput as
compared to a state-of-the-art packet-switched network, and
closely approaching the ideal interconnect.

Acknowledgments
The authors would like to thank William J. Dally of Stanford Uni-
versity for useful feedback on this work. We would also like to thank
Ted Tabe and David V. James of Intel Corp. for their help with
the modeling infrastructure and comments on the microarchitecture.
This work was supported in part by the MARCO Gigascale Systems
Research Center, Alfred P. Sloan Research Foundation, a grant from

Intel Corporation, an Intel PhD Fellowship and NSF under grant no.
CNS-0613074.

References
[1] “International Technology Roadmap for Semiconductors,”

http://public.itrs.net.

[2] R. Ho, K. Mai, and M. Horowitz, “The future of wires,” Proc.
IEEE, vol. 89, no. 4, Apr. 2001.

[3] K. Sankaralingam et al., “Exploiting ILP, TLP, and DLP with
the polymorphous TRIPS architecture,” in Proc. Int. Symp.
Computer Architecture, June 2003, pp. 422–433.

[4] M. B. Taylor et al., “Evaluation of the Raw microprocessor:
An exposed-wire-delay architecture for ILP and streams,” in
Proc. Int. Symp. Computer Architecture, June 2004.

[5] L. Benini and G. De Micheli, “Networks on chips: A new SoC
paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70–78, Jan.
2002.

[6] W. J. Dally and B. Towles, “Route packets not wires: On-chip
interconnection networks,” in Proc. Design Automation Conf.,
June 2001.

[7] J. A. Kahle et al., “Introduction to the Cell multiprocessor,”
IBM Journal of Research and Development, vol. 49, no. 4/5,
2005.

[8] M. Sgroi et al., “Addressing the system-on-a-chip
interconnection woes through communication-based design,” in
Proc. Design Automation Conf., June 2001.

[9] W. J. Dally, “Virtual-channel flow control,” in Proc. Int.
Symp. Computer Architecture, May 1990, pp. 60–68.

[10] W. J. Dally and B. Towles, Principles and Practices of
Interconnection Networks. Morgan Kaufmann Publishers,
2004.

[11] W. J. Dally, “Express cubes: Improving the performance of
k-ary n-cube interconnection networks,” IEEE Trans. on
Computers, vol. 40, no. 9, Sept. 1991.

[12] R. Mullins, A. West, and S. Moore, “Low-latency
virtual-channel routers for on-chip networks,” in Proc. Int.
Symp. Computer Architecture, June 2004, pp. 188–197.

[13] L.-S. Peh and W. J. Dally, “A delay model and speculative
architecture for pipelined routers,” in Proc. Int. Symp. High
Performance Computer Architecture, Jan. 2001, pp. 255–266.

[14] “SPLASH-2,” http://www-flash.stanford.edu/apps/SPLASH/.

[15] M. Galles, “Scalable pipelined interconnect for distributed
endpoint routing: The SGI SPIDER chip.” in Proc. Hot
Interconnects 4, Aug. 1996, pp. 141–146.

[16] S. S. Mukherjee, et al., “The Alpha 21364 network
architecture,” IEEE Micro, vol. 22, no. 1, pp. 26–35, Jan./Feb.
2002.

[17] H.-S. Wang, L.-S. Peh, and S. Malik, “Power-driven design of
router microarchitectures in on-chip networks,” in Proc. Int.
Symp. Microarchitecture, Nov. 2003, pp. 105–116.

[18] W. Liao and L. He, “Full-chip interconnect power estimation
and simulation considering repeater insertion and flip-flop
insertion,” in Proc. Int. Conf. Computer-Aided Design, Nov.
2003, pp. 574–580.

[19] H.-S. Wang, et al., “Orion: A power-performance simulator for
interconnection networks,” in Proc. Int. Symp.
Microarchitecture, Nov. 2002, pp. 294–305.

[20] X.-N. Chen and L.-S. Peh, “Leakage power modeling and
optimization of interconnection networks,” in Proc. Int. Symp.
Low Power Electronics and Design, Aug. 2003, pp. 90–95.

[21] K. P. Lawton, “Bochs: A portable PC emulator for Unix/X,”
Linux J., vol. 1996, no. 29, p. 7, 1996.

[22] J. Kim, et al., “Microarchitecture of a high-radix router,” in
Proc. Int. Symp. Computer Architecture, June 2006, pp.
420–431.

[23] J. Hu and R. Marculescu, “DyAD - Smart routing for
networks-on-chip,” in Proc. Design Automation Conf., June
2004.

[24] D. Seo, et al., “Near-optimal worst-case throughput routing for
two-dimensional mesh networks,” in Proc. Int. Symp.
Computer Architecture, June 2005.

[25] U. Y. Ogras and R. Marculescu, “It’s a small world after all:
NoC performance optimization via long-range link insertion,”
IEEE Trans. Very Large Scale Integration Systems, vol. 14,
no. 7, pp. 693–706, July 2006.

[26] J. Duato, et al., “A high performance router architecture for
interconnection networks,” in Proc. Int. Conf. Parallel
Processing, Aug. 1996, pp. 61–68.

[27] P. T. Gaughan and S. Yalamanchili, “A family of fault-tolerant
routing protocols for direct multiprocessor networks,” IEEE
Trans. Parallel and Distributed Systems, vol. 6, no. 5, May
1995.

[28] L.-S. Peh and W. J. Dally, “Flit-reservation flow control,” in
Proc. Int. Symp. High Performance Computer Architecture,
Jan. 2000, pp. 73–84.

[29] J. Kim, et al., “A gracefully degrading and energy-efficient
modular router architecture for on-chip networks,” in Proc.
Int. Symp. Computer Architecture, June 2006, pp. 4–15.

