Recall: The Routing problem: Local decisions

- Routing at each hop: Pick next output port!

Properties of Routing Algorithms

- Routing algorithm:
 - $R: N \times N \rightarrow C$, which at each switch maps the destination node n_d to
 the next channel on the route
 - which of the possible paths are used as routes?
 - how is the next hop determined?
 - arithmetic
 - source-based port select
 - table driven
 - general computation

- Deterministic
 - route determined by (source, dest), not intermediate state (i.e. traffic)

- Adaptive
 - route influenced by traffic along the way

- Minimal
 - only selects shortest paths

- Deadlock free
 - no traffic pattern can lead to a situation where packets are deadlocked
 and never move forward

Recall: Multidimensional Meshes and Tori

- n-dimensional array
 - $N = k^{i_{n-1}} \times \ldots \times k^{i_0}$ nodes
 - described by n-vector of coordinates (i_{n-1}, \ldots, i_0)

- n-dimensional k-ary mesh: $N = k^n$
 - $k = \sqrt[n]{N}$
 - described by n-vector of radix k coordinate

- n-dimensional k-ary torus (or k-ary n-cube)?
Reducing routing delay: Express Cubes

• Problem: Low-dimensional networks have high k
 – Consequence: may have to travel many hops in single dimension
 – Routing latency can dominate long-distance traffic patterns
• Solution: Provide one or more “express” links

- Like express trains, express elevators, etc
 » Delay linear with distance, lower constant
 » Closer to “speed of light” in medium
 » Lower power, since no router cost
- “Express Cubes: Improving performance of k-ary n-cube
 interconnection networks,” Bill Dally 1991
• Another idea: route with pass transistors through links

Bandwidth

• What affects local bandwidth?
 – packet density: \(b \times \frac{S_{\text{data}}}{S} \)
 – routing delay: \(b \times \frac{S_{\text{data}}}{(S + w\Delta)} \)
 – contention
 » endpoints
 » within the network
• Aggregate bandwidth
 – bisection bandwidth
 » sum of bandwidth of smallest set of links that partition the network
 – total bandwidth of all the channels: \(C_b \)
 – suppose N hosts issue packet every M cycles with ave dist
 » each msg occupies h channels for \(t = \frac{S}{w} \) cycles each
 » \(C/N \) channels available per node
 » link utilization for store-and-forward:
 \(\rho = \frac{(ht/M \text{ channel cycles/node})/(C/N)}{N} \approx \frac{Nh}{MC} < 1! \)
 » link utilization for wormhole routing?

How Many Dimensions?

• \(n = 2 \) or \(n = 3 \)
 – Short wires, easy to build
 – Many hops, low bisection bandwidth
 – Requires traffic locality
• \(n >= 4 \)
 – Harder to build, more wires, longer average length
 – Fewer hops, better bisection bandwidth
 – Can handle non-local traffic
• k-ary n-cubes provide a consistent framework for comparison
 – \(N = k^n \)
 » scale dimension (n) or nodes per dimension (k)
 » assume cut-through
Traditional Scaling: Latency scaling with N

- Assumes equal channel width
 - independent of node count or dimension
 - dominated by average distance

Average Distance

- but, equal channel width is not equal cost!
- Higher dimension => more channels

Dally Paper: In the 3D world

- For N nodes, bisection area is $O(N^{2/3})$

- For large N, bisection bandwidth is limited to $O(N^{2/3})$
 - Bill Dally, IEEE TPDS, [Dal90a]
 - For fixed bisection bandwidth, low-dimensional k-ary n-cubes are better (otherwise higher is better)
 - i.e., a few short fat wires are better than many long thin wires
 - What about many long fat wires?

Dally Paper (con’t)

- Equal Bisection,$W=1$ for hypercube $\Rightarrow W = \frac{1}{2}k$

- Three wire models:
 - Constant delay, independent of length
 - Logarithmic delay with length (exponential driver tree)
 - Linear delay (speed of light/optimal repeaters)
Equal cost in k-ary n-cubes

- Equal number of nodes?
- Equal number of pins/wires?
- Equal bisection bandwidth?
- Equal area?
- Equal wire length?

What do we know?

- switch degree: \(n \) \(\text{diameter} = n(k-1) \)
- total links = \(Nn \)
- pins per node = \(2wn \)
- bisection = \(k^{n-1} = N/k \) links in each directions
- \(2Nw/k \) wires cross the middle

Latency for Equal Width Channels

- total links(N) = \(Nn \)

Latency with Equal Pin Count

- Baseline \(n=2 \), has \(w = 32 \) \((128 \text{ wires per node}) \)
- fix \(2nw \) pins ⇒ \(w(n) = 64/n \)
- distance up with \(n \), but channel time down

Latency with Equal Bisection Width

- \(N \)-node hypercube has \(N \) bisection links
- \(2d \) torus has \(2N^{1/2} \)
- Fixed bisection ⇒ \(w(n) = N^{1/n} / 2 = k/2 \)
- \(1 \text{ M nodes, } n=2 \) has \(w=512! \)
Larger Routing Delay (w/ equal pin)

- Dally’s conclusions strongly influenced by assumption of small routing delay
 - Here, Routing delay \(\Delta = 20 \)

Saturation

- Fatter links shorten queuing delays

Discuss of paper: Virtual Channel Flow Control

- Basic Idea: Use of virtual channels to reduce contention
 - Provided a model of k-ary, n-flies
 - Also provided simulation
- Tradeoff: Better to split buffers into virtual channels
 - Example (constant total storage for 2-ary 8-fly):

When are virtual channels allocated?

- Two separate processes:
 - Virtual channel allocation
 - Switch/connection allocation
- Virtual Channel Allocation
 - Choose route and free output virtual channel
 - Really means: Source of link tracks channels at destination
- Switch Allocation
 - For incoming virtual channel, negotiate switch on outgoing pin

Hardware efficient design
For crossbar
Deadlock Freedom

- How can deadlock arise?
 - necessary conditions:
 » shared resource
 » incrementally allocated
 » non-preemptible
 - channel is a shared resource that is acquired incrementally
 » source buffer then dest. buffer
 » channels along a route

- How do you avoid it?
 - constrain how channel resources are allocated
 - ex: dimension order

- Important assumption:
 - Destination of messages must always remove messages

- How do you prove that a routing algorithm is deadlock free?
 - Show that channel dependency graph has no cycles!

Consider Trees

- Why is the obvious routing on X deadlock free?
 - butterfly?
 - tree?
 - fat tree?

- Any assumptions about routing mechanism?
 - amount of buffering?

Up*-Down* routing for general topology

- Given any bidirectional network
- Construct a spanning tree
- Number of the nodes increasing from leaves to roots
- UP increase node numbers
- Any Source -> Dest by UP*-DOWN* route
 - up edges, single turn, down edges
 - Proof of deadlock freedom?

- Performance?
 - Some numberings and routes much better than others
 - interacts with topology in strange ways

Turn Restrictions in X,Y

- XY routing forbids 4 of 8 turns and leaves no room for adaptive routing
- Can you allow more turns and still be deadlock free?
Minimal turn restrictions in 2D

- West-first
- north-last
- negative first

Example legal west-first routes
- Can route around failures or congestion
- Can combine turn restrictions with virtual channels

General Proof Technique
- resources are logically associated with channels
- messages introduce dependences between resources as they move forward
- need to articulate the possible dependences that can arise between channels
- show that there are no cycles in Channel Dependence Graph
 - find a numbering of channel resources such that every legal route follows a monotonic sequence
 - no traffic pattern can lead to deadlock
- network need not be acyclic, just channel dependence graph

Example: k-ary 2D array
- Thm: Dimension-ordered (x,y) routing is deadlock free
- Numbering
 - +x channel (i,y) \(\rightarrow \) (i+1,y) gets i
 - similarly for -x with 0 as most positive edge
 - +y channel (x,j) \(\rightarrow \) (x,j+1) gets N+j
 - similarly for -y channels
- any routing sequence: x direction, turn, y direction is increasing
- Generalization:
 - “e-cube routing” on 3-D: X then Y then Z
Channel Dependence Graph

More examples:
- What about wormhole routing on a ring?
- Or: Unidirectional Torus of higher dimension?

Breaking deadlock with virtual channels
- Basic idea: Use virtual channels to break cycles
 - Whenever wrap around, switch to different set of channels
 - Can produce numbering that avoids deadlock

General Adaptive Routing
- $R: C \times N \times \Sigma \rightarrow C$
- Essential for fault tolerance
 - at least multipath
- Can improve utilization of the network
- Simple deterministic algorithms easily run into bad permutations
 - fully/partially adaptive, minimal/non-minimal
 - can introduce complexity or anomalies
 - little adaptation goes a long way!
Paper Discussion: Linder and Harden
“An Adaptive and Fault Tolerant Wormhole”

- General virtual-channel scheme for k-ary n-cubes
 - With wrap-around paths
- Properties of result for uni-directional k-ary n-cube:
 - 1 virtual interconnection network
 - n+1 levels
- Properties of result for bi-directional k-ary n-cube:
 - 2^n-1 virtual interconnection networks
 - n+1 levels per network

Example: Unidirectional 4-ary 2-cube

Physical Network
- Wrap-around channels necessary but can cause deadlock

Virtual Network
- Use VCs to avoid deadlock
- 1 level for each wrap-around

Bi-directional 4-ary 2-cube: 2 virtual networks

Virtual Network 1

Virtual Network 2

Use of virtual channels for adaptation

- Want to route around hotspots/faults while avoiding deadlock
- Linder and Harden, 1991
 - General technique for k-ary n-cubes
 - Requires: 2^n-1 virtual channels/lane!!!
- Alternative: Planar adaptive routing
 - Chien and Kim, 1995
 - Divide dimensions into “planes”,
 - i.e. in 3-cube, use X-Y and Y-Z
 - Route planes adaptively in order: first X-Y, then Y-Z
 - Never go back to plane once have left it
 - Can’t leave plane until have routed lowest coordinate
 - Use Linder-Harden technique for series of 2-dim planes
 - Now, need only 3 * number of planes virtual channels
- Alternative: two phase routing
 - Provide set of virtual channels that can be used arbitrarily for routing
 - When blocked, use unrelated virtual channels for dimension-order (deterministic) routing
 - Never progress from deterministic routing back to adaptive routing
Summary

- Fair metrics of comparison
 - Equal cost: area, bisection bandwidth, etc

- Routing Algorithms restrict routes within the topology
 - simple mechanism selects turn at each hop
 - arithmetic, selection, lookup

- Virtual Channels
 - Adds complexity to router
 - Can be used for performance
 - Can be used for deadlock avoidance

- Deadlock-free if channel dependence graph is acyclic
 - limit turns to eliminate dependences
 - add separate channel resources to break dependences
 - combination of topology, algorithm, and switch design

- Deterministic vs adaptive routing