
CS252
Graduate Computer Architecture

Lecture 6

Static Scheduling,
Scoreboard

February 6th, 2012

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs252
2/06/2012 2cs252-S12, Lecture06

Review: Precise Interrupts/Exceptions
• An interrupt or exception is considered precise if there

is a single instruction (or interrupt point) for which:
– All instructions before that have committed their state
– No following instructions (including the interrupting instruction)

have modified any state.
• This means, that you can restart execution at the

interrupt point and “get the right answer”
– Implicit in our previous example of a device interrupt:

» Interrupt point is at first lw instruction

add r1,r2,r3
subi r4,r1,#4
slli r4,r4,#2

lw r2,0(r4)
lw r3,4(r4)
add r2,r2,r3
sw 8(r4),r2

Ex
te

rn
al

In
te

rr
up

t

Int handler

2/06/2012 3cs252-S12, Lecture06

Can we make CPI closer to 1?
• Let’s assume full pipelining:

– If we have a 4-cycle latency, then we need 3 instructions
between a producing instruction and its use:

multf $F0,$F2,$F4
delay-1
delay-2
delay-3
addf $F6,$F10,$F0

Fetch Decode Ex1 Ex2 Ex3 Ex4 WB

multfdelay1delay2delay3addf

Earliest forwarding for
4-cycle instructions

Earliest forwarding for
1-cycle instructions

2/06/2012 4cs252-S12, Lecture06

FP Loop: Where are the Hazards?
Loop: LD F0,0(R1) ;F0=vector element

ADDD F4,F0,F2 ;add scalar from F2
SD 0(R1),F4 ;store result
SUBI R1,R1,8 ;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch R1!=zero
NOP ;delayed branch slot

Instruction Instruction Execution Latency in Use Latency in
producing result using result clock cycles clock cycles

FP ALU op Another FP ALU op 4 3
FP ALU op Store double 4 2
Load double FP ALU op 2 1
Load double Store double 2 0
Integer op Integer op 1 0

• Where are the stalls?

2/06/2012 5cs252-S12, Lecture06

FP Loop Showing Stalls

• 9 clocks: Rewrite code to minimize stalls?

1 Loop: LD F0,0(R1) ;F0=vector element
2 stall
3 ADDD F4,F0,F2 ;add scalar in F2
4 stall
5 stall
6 SD 0(R1),F4 ;store result
7 SUBI R1,R1,8 ;decrement pointer 8B (DW)
8 BNEZ R1,Loop ;branch R1!=zero
9 stall ;delayed branch slot

Instruction Instruction Use Latency in
producing result using result clock cycles

FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

2/06/2012 6cs252-S12, Lecture06

Revised FP Loop Minimizing Stalls

6 clocks: Unroll loop 4 times code to make faster?

1 Loop: LD F0,0(R1)
2 stall
3 ADDD F4,F0,F2
4 SUBI R1,R1,8
5 BNEZ R1,Loop ;delayed branch
6 SD 8(R1),F4 ;altered when move past SUBI

Swap BNEZ and SD by changing address of SD
Instruction Instruction Use Latency in

producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2
Load double FP ALU op 1

2/06/2012 7cs252-S12, Lecture06

Unroll Loop Four Times
(straightforward way)

Rewrite loop to
minimize stalls?

1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)
11 ADDD F16,F14,F2
12 SD -24(R1),F16
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
Assumes R1 is multiple of 4

1 cycle stall
2 cycles stall

2/06/2012 8cs252-S12, Lecture06

Unrolled Loop That Minimizes Stalls

• What assumptions
made when moved
code?

– OK to move store past
SUBI even though changes
register

– OK to move loads before
stores: get right data?

– When is it safe for
compiler to do such
changes?

1 Loop:LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

2/06/2012 9cs252-S12, Lecture06

Getting CPI < 1: Issuing
Multiple Instructions/Cycle

• Superscalar DLX: 2 instructions, 1 FP & 1 anything else
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

2/06/2012 10cs252-S12, Lecture06

Loop Unrolling in Superscalar
Integer instruction FP instruction Clock cycle

Loop: LD F0,0(R1) 1
LD F6,-8(R1) 2
LD F10,-16(R1) ADDD F4,F0,F2 3
LD F14,-24(R1) ADDD F8,F6,F2 4
LD F18,-32(R1) ADDD F12,F10,F2 5
SD 0(R1),F4 ADDD F16,F14,F2 6
SD -8(R1),F8 ADDD F20,F18,F2 7
SD -16(R1),F12 8
SD -24(R1),F16 9
SUBI R1,R1,#40 10
BNEZ R1,LOOP 11
SD -32(R1),F20 12

• Unrolled 5 times to avoid delays (+1 due to SS)
• 12 clocks, or 2.4 clocks per iteration (1.5X)

2/06/2012 11cs252-S12, Lecture06

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple
operations

– In EPIC, grouping called a “packet”
– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations
– By definition, all the operations the compiler puts in the long

instruction word are independent => execute in parallel
– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
– Need compiling technique that schedules across several branches

2/06/2012 12cs252-S12, Lecture06

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1
LD F10,-16(R1) LD F14,-24(R1) 2
LD F18,-32(R1) LD F22,-40(R1) ADDD F4,F0,F2 ADDD F8,F6,F2 3
LD F26,-48(R1) ADDD F12,F10,F2 ADDD F16,F14,F2 4

ADDD F20,F18,F2 ADDD F24,F22,F2 5
SD 0(R1),F4 SD -8(R1),F8 ADDD F28,F26,F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)

2/06/2012 13cs252-S12, Lecture06

Another possibility: Software Pipelining
• Observation: if iterations from loops are independent,

then can get more ILP by taking instructions from
different iterations

• Software pipelining: reorganizes loops so that each
iteration is made from instructions chosen from different
iterations of the original loop (Tomasulo in SW)

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

2/06/2012 14cs252-S12, Lecture06

Software Pipelining Example
Before: Unrolled 3 times
1 LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12
10 SUBI R1,R1,#24
11 BNEZ R1,LOOP

After: Software Pipelined
1 SD 0(R1),F4 ; Stores M[i]
2 ADDD F4,F0,F2 ; Adds to M[i-1]
3 LD F0,-16(R1);Loads M[i-2]
4 SUBI R1,R1,#8
5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance
– Less code space than unrolling
– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

ov
er

la
pp

ed
 o

ps

Time

Time

5 cycles per iteration

2/06/2012 15cs252-S12, Lecture06

Software Pipelining with
Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,-48(R1) ST 0(R1),F4 ADDD F4,F0,F2 1
LD F6,-56(R1) ST -8(R1),F8 ADDD F8,F6,F2 SUBI R1,R1,#24 2
LD F10,-40(R1) ST 8(R1),F12 ADDD F12,F10,F2 BNEZ R1,LOOP 3

• Software pipelined across 9 iterations of original loop
– In each iteration of above loop, we:

» Store to m,m-8,m-16 (iterations I-3,I-2,I-1)
» Compute for m-24,m-32,m-40 (iterations I,I+1,I+2)
» Load from m-48,m-56,m-64 (iterations I+3,I+4,I+5)

• 9 results in 9 cycles, or 1 clock per iteration
• Average: 3.3 ops per clock, 66% efficiency
Note: Need less registers for software pipelining

(only using 7 registers here, was using 15)

2/06/2012 16cs252-S12, Lecture06

• Basic Idea: Hardware respresents direct encoding of compiler
dataflow graphs:

• Data flows along arcs in
“Tokens”.

• When two tokens arrive at
compute box, box “fires” and
produces new token.

• Split operations produce copies
of tokens

Data-Flow Architectures

Input: a,b
y:= (a+b)/x
x:= (a*(a+b))+b

output: y,x
+

*
/

A B

+
X(0)

Y X

2/06/2012 17cs252-S12, Lecture06

Paper by Dennis and Misunas

Instruction
Cell 0

Instruction
Cell 1

Instruction
Cell n-1

Memory

Operation
Unit 0

Operation
Unit m-1

Instruction Cell

Instruction

Operand 1

Operand 2 O
pe

ra
ti
on

Pa
ck

et

D
at

a
Pa

ck
et

s

“Reservation Station?”

2/06/2012 18cs252-S12, Lecture06

Compiler Perspectives on Code Movement
• Compiler concerned about dependencies in program
• Whether or not a HW hazard depends on pipeline
• Try to schedule to avoid hazards that cause

performance losses
• (True) Data dependencies (RAW if a hazard for HW)

– Instruction i produces a result used by instruction j, or
– Instruction j is data dependent on instruction k, and instruction k is

data dependent on instruction i.

• If dependent, can’t execute in parallel
• Easy to determine for registers (fixed names)
• Hard for memory (“memory disambiguation” problem):

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

2/06/2012 19cs252-S12, Lecture06

Where are the data dependencies?

1 Loop: LD F0,0(R1)
2 ADDD F4,F0,F2
3 SUBI R1,R1,8
4 BNEZ R1,Loop ;delayed branch
5 SD 8(R1),F4 ;altered when move past SUBI

2/06/2012 20cs252-S12, Lecture06

Compiler Perspectives on Code Movement
• Another kind of dependence called name dependence:

two instructions use same name (register or memory
location) but don’t exchange data

• Antidependence (WAR if a hazard for HW)
– Instruction j writes a register or memory location that instruction i

reads from and instruction i is executed first

• Output dependence (WAW if a hazard for HW)
– Instruction i and instruction j write the same register or memory

location; ordering between instructions must be preserved.

2/06/2012 21cs252-S12, Lecture06

Where are the name dependencies?
1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F0,-8(R1)
5 ADDD F4,F0,F2
6 SD -8(R1),F4 ;drop SUBI & BNEZ
7 LD F0,-16(R1)
8 ADDD F4,F0,F2
9 SD -16(R1),F4 ;drop SUBI & BNEZ
10 LD F0,-24(R1)
11 ADDD F4,F0,F2
12 SD -24(R1),F4
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

How can remove them?

2/06/2012 22cs252-S12, Lecture06

Where are the name dependencies?
1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)
11 ADDD F16,F14,F2
12 SD -24(R1),F16
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

Called “register renaming”

2/06/2012 23cs252-S12, Lecture06

Compiler Perspectives on Code Movement

• Name Dependencies are Hard to discover for Memory
Accesses

– Does 100(R4) = 20(R6)?
– From different loop iterations, does 20(R6) = 20(R6)?

• Our example required compiler to know that if R1
doesn’t change then:

0(R1) -8(R1) -16(R1) -24(R1)
There were no dependencies between some loads and
stores so they could be moved by each other

2/06/2012 24cs252-S12, Lecture06

Compiler Perspectives on Code Movement
• Final kind of dependence called control dependence.

Example:
if p1 {S1;};
if p2 {S2;};

S1 is control dependent on p1 and S2 is control
dependent on p2 but not on p1.

• Two (obvious?) constraints on control dependences:
– An instruction that is control dependent on a branch cannot be

moved before the branch.
– An instruction that is not control dependent on a branch cannot

be moved to after the branch
• Control dependencies relaxed to get parallelism:

– Can occasionally move dependent loads before branch to get early
start on cache miss

– get same effect if preserve order of exceptions (address in register
checked by branch before use) and data flow (value in register depends
on branch)

2/06/2012 25cs252-S12, Lecture06

Trace Scheduling in VLIW
• Parallelism across IF branches vs. LOOP branches
• Two steps:

– Trace Selection
» Find likely sequence of basic blocks (trace)

of (statically predicted or profile predicted)
long sequence of straight-line code

– Trace Compaction
» Squeeze trace into few VLIW instructions
» Need bookkeeping code in case prediction is wrong

• This is a form of compiler-generated speculation
– Compiler must generate “fixup” code to handle cases in which trace

is not the taken branch
– Needs extra registers: undoes bad guess by discarding

• Subtle compiler bugs mean wrong answer
vs. poorer performance; no hardware interlocks

2/06/2012 26cs252-S12, Lecture06

When Safe to Unroll Loop?
• Example: Where are data dependencies?

(A,B,C distinct & nonoverlapping)
for (i=0; i<100; i=i+1) {

A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}
1. S2 uses the value, A[i+1], computed by S1 in the same iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since
iteration i computes A[i+1] which is read in iteration i+1. The same is
true of S2 for B[i] and B[i+1].

This is a “loop-carried dependence”: between iterations
• For our prior example, each iteration was distinct

– In this case, iterations can’t be executed in parallel, Right????

2/06/2012 27cs252-S12, Lecture06

Does a loop-carried dependence mean
there is no parallelism???

• Consider:
for (i=0; i< 8; i=i+1) {

A = A + C[i]; /* S1 */
}

Could compute:

“Cycle 1”: temp0 = C[0] + C[1];
temp1 = C[2] + C[3];
temp2 = C[4] + C[5];
temp3 = C[6] + C[7];

“Cycle 2”: temp4 = temp0 + temp1;
temp5 = temp2 + temp3;

“Cycle 3”: A = temp4 + temp5;

• Relies on associative nature of “+”.

2/06/2012 28cs252-S12, Lecture06

Can we use HW to get CPI closer to 1?

• Why in HW at run time?
– Works when can’t know real dependence at compile time
– Compiler simpler
– Code for one machine runs well on another

• Key idea: Allow instructions behind stall to proceed

DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F12,F8,F14

• Out-of-order execution => out-of-order completion.

2/06/2012 29cs252-S12, Lecture06

Problems?

• How do we prevent WAR and WAW hazards?
• How do we deal with variable latency?

– Forwarding for RAW hazards harder.

• How to get precise exceptions?

Clock Cycle Number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD F6,34(R2) IF ID EX MEM WB
LD F2,45(R3) IF ID EX MEM WB
MULTD F0,F2,F4 IF ID stall M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 MEM WB
SUBD F8,F6,F2 IF ID A1 A2 MEM WB
DIVD F10,F0,F6 IF ID stall stall stall stall stall stall stall stall stall D1 D2
ADDD F6,F8,F2 IF ID A1 A2 MEM WB

RAW

WAR

2/06/2012 30cs252-S12, Lecture06

Summary: Static Scheduling
• Hazards limit performance

– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Increasing length of pipe increases impact of hazards
– pipelining helps instruction bandwidth, not latency!

• Instruction Level Parallelism (ILP) found either by
compiler or hardware.

• DataFlow view:
– Data triggers execution rather than instructions triggering data

