
CS252
Graduate Computer Architecture

Lecture 12

Multithreading / Vector Processing
March 2nd, 2011

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs252

3/2/2011 cs252-S11, Lecture 12 2

Performance beyond single thread ILP
• There can be much higher natural parallelism in

some applications
– e.g., Database or Scientific codes
– Explicit Thread Level Parallelism or Data Level Parallelism

• Thread: instruction stream with own PC and data
– thread may be a process part of a parallel program of multiple

processes, or it may be an independent program
– Each thread has all the state (instructions, data, PC, register

state, and so on) necessary to allow it to execute

• Thread Level Parallelism (TLP):
– Exploit the parallelism inherent between threads to improve

performance

• Data Level Parallelism (DLP):
– Perform identical operations on data, and lots of data

3/2/2011 cs252-S11, Lecture 12 3

One approach to exploiting threads:
Multithreading (TLP within processor)

• Multithreading: multiple threads to share the
functional units of 1 processor via overlapping

– processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

– memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch; much faster than full process switch
 100s to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)
– When a thread is stalled, perhaps for a cache miss, another

thread can be executed (coarse grain)

3/2/2011 cs252-S11, Lecture 12 4

Fine-Grained Multithreading
• Switches between threads on each instruction,

causing the execution of multiples threads to be
interleaved

– Usually done in a round-robin fashion, skipping any stalled
threads

– CPU must be able to switch threads every clock
• Advantage:

– can hide both short and long stalls, since instructions from
other threads executed when one thread stalls

• Disadvantage:
– slows down execution of individual threads, since a thread

ready to execute without stalls will be delayed by instructions
from other threads

• Used on Sun’s Niagra (recent), several research
multiprocessors, Tera

3/2/2011 cs252-S11, Lecture 12 5

Course-Grained Multithreading
• Switches threads only on costly stalls, such as L2

cache misses
• Advantages

– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other

threads issued only when the thread encounters a costly
stall

• Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-up
costs

– Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

– New thread must fill pipeline before instructions can
complete

• Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of
high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400, Sparcle (for Alewife)

3/2/2011 cs252-S11, Lecture 12 6

Simultaneous Multithreading (SMT):
Do both ILP and TLP
• TLP and ILP exploit two different kinds of

parallel structure in a program
• Could a processor oriented at ILP to

exploit TLP?
– functional units are often idle in data path designed for

ILP because of either stalls or dependences in the code

• Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

• Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?

3/2/2011 cs252-S11, Lecture 12 7

Justification: For most apps, most
execution units lie idle

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

For an 8-way
superscalar.

3/2/2011 cs252-S11, Lecture 12 8

Simultaneous Multi-threading ...

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
One thread, 8 units

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

1

2

3

4

5

6

7

8

9

M M FX FX FP FP BR CCCycle
Two threads, 8 units

3/2/2011 cs252-S11, Lecture 12 9

Simultaneous Multithreading Details
• Simultaneous multithreading (SMT): insight that

dynamically scheduled processor already has many
HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the register
sets of independent threads

– Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath without
confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of order,
and get better utilization of the HW

• Just adding a per thread renaming table and keeping
separate PCs

– Independent commitment can be supported by logically keeping a
separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”

3/2/2011 cs252-S11, Lecture 12 10

Design Challenges in SMT
• Since SMT makes sense only with fine-grained

implementation, impact of fine-grained scheduling
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor
single-thread performance?

– Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts
• Clock cycle time, especially in:

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to commit
may be challenging

• Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance

3/2/2011 cs252-S11, Lecture 12 11

Power 4
Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
issue an instruction each cycle.

3/2/2011 cs252-S11, Lecture 12 12

Power 4Power 4

Power 5Power 5

2 fetch (PC),
2 initial decodes

2 commits
(architected
register sets)

3/2/2011 cs252-S11, Lecture 12 13

Power 5 data flow ...

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

3/2/2011 cs252-S11, Lecture 12 14

Power 5 thread performance ...
Relative priority
of each thread
controllable in
hardware.

For balanced
operation, both
threads run
slower than if
they “owned”
the machine.

3/2/2011 cs252-S11, Lecture 12 15

Changes in Power 5 to support SMT
• Increased associativity of L1 instruction cache

and the instruction address translation buffers
• Added per thread load and store queues
• Increased size of the L2 (1.92 vs. 1.44 MB) and L3

caches
• Added separate instruction prefetch and

buffering per thread
• Increased the number of virtual registers from

152 to 240
• Increased the size of several issue queues
• The Power5 core is about 24% larger than the

Power4 core because of the addition of SMT
support

3/2/2011 cs252-S11, Lecture 12 16

Initial Performance of SMT
• Pentium 4 Extreme SMT yields 1.01 speedup for

SPECint_rate benchmark and 1.07 for SPECfp_rate
– Pentium 4 is dual threaded SMT
– SPECRate requires that each SPEC benchmark be run against a

vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC
benchmarks paired with every other (262 runs)
speed-ups from 0.90 to 1.58; average was 1.20

• Power 5, 8 processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup
between 0.89 and 1.41

– Most gained some
– Fl.Pt. apps had most cache conflicts and least gains

3/2/2011 cs252-S11, Lecture 12 17

Multithreaded Categories
Tim

e (
pr

oc
es

so
r c

yc
le) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

Thread 1
Thread 2

Thread 3
Thread 4

Thread 5
Idle slot

3/2/2011 cs252-S11, Lecture 12 18

Administrivia
• Exam: Wednesday 3/30

Location: 320 Soda
TIME: 2:30-5:30

– This info is on the Lecture page (has been)
– Get on 8 ½ by 11 sheet of notes (both sides)
– Meet at LaVal’s afterwards for Pizza and Beverages

• CS252 First Project proposal due by Friday 3/4
– Need two people/project (although can justify three for right project)
– Complete Research project in 9 weeks

» Typically investigate hypothesis by building an artifact and
measuring it against a “base case”

» Generate conference-length paper/give oral presentation
» Often, can lead to an actual publication.

3/2/2011 cs252-S11, Lecture 12 19

Discussion of SPARCLE paper
• Example of close coupling between processor and memory

controller (CMMU)
– All of features mentioned in this paper implemented by combination of

processor and memory controller
– Some functions implemented as special “coprocessor” instructions
– Others implemented as “Tagged” loads/stores/swaps

• Course Grained Multithreading
– Using SPARC register windows
– Automatic synchronous trap on cache miss
– Fast handling of all other traps/interrupts (great for message interface!)
– Multithreading half in hardware/half software (hence 14 cycles)

• Fine Grained Synchronization
– Full-Empty bit/32 bit word (effectively 33 bits)

» Groups of 4 words/cache line F/E bits put into memory TAG
– Fast TRAP on bad condition
– Multiple instructions. Examples:

» LDT (load/trap if empty)
» LDET (load/set empty/trap if empty)
» STF (Store/set full)
» STFT (store/set full/trap if full)

3/2/2011 cs252-S11, Lecture 12 20

Discussion of Papers: Sparcle (Con’t)
• Message Interface

– Closely couple with processor
» Interface at speed of first-level cache

– Atomic message launch:
» Describe message (including DMA ops) with simple stio insts
» Atomic launch instruction (ipilaunch)

– Message Reception
» Possible interrupt on message receive: use fast context switch
» Examine message with simple ldio instructions
» Discard in pieces, possibly with DMA
» Free message (ipicst, i.e “coherent storeback”)

• We will talk about message interface in greater detail

3/2/2011 cs252-S11, Lecture 12 21

Supercomputers

Definition of a supercomputer:
• Fastest machine in world at given task
• A device to turn a compute-bound problem into an

I/O bound problem
• Any machine costing $30M+
• Any machine designed by Seymour Cray

CDC6600 (Cray, 1964) regarded as first supercomputer

3/2/2011 cs252-S11, Lecture 12 22

Vector Supercomputers
Epitomized by Cray-1, 1976:

Scalar Unit + Vector Extensions
• Load/Store Architecture
• Vector Registers
• Vector Instructions
• Hardwired Control
• Highly Pipelined Functional Units
• Interleaved Memory System
• No Data Caches
• No Virtual Memory

3/2/2011 cs252-S11, Lecture 12 23

Cray-1 (1976)

3/2/2011 cs252-S11, Lecture 12 24

Cray-1 (1976)

Single Port
Memory

16 banks of
64-bit words

+
8-bit SECDED

80MW/sec data
load/store

320MW/sec
instruction
buffer refill

4 Instruction Buffers

64-bitx16 NIP

LIP

CIP

(A0)

((Ah) + j k m)

64
T Regs

(A0)

((Ah) + j k m)

64
B Regs

S0
S1
S2
S3
S4
S5
S6
S7

A0
A1
A2
A3
A4
A5
A6
A7

Si

Tjk

Ai

Bjk

FP Add
FP Mul
FP Recip

Int Add
Int Logic
Int Shift
Pop Cnt

Sj

Si

Sk

Addr Add
Addr Mul

Aj

Ai

Ak

memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)

V0
V1
V2
V3
V4
V5
V6
V7

Vk

Vj

Vi V. Mask

V. Length64 Element
Vector Registers

3/2/2011 cs252-S11, Lecture 12 25

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions

ADDV v3, v1, v2 v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLRVector Length Register

v1
Vector Load and

Store Instructions
LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

Vector Programming Model

3/2/2011 cs252-S11, Lecture 12 26

Multithreading and Vector Summary
• Explicitly parallel (Data level parallelism or Thread

level parallelism) is next step to performance
• Coarse grain vs. Fine grained multihreading

– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained
multithreading based on OOO superscalar
microarchitecture

– Instead of replicating registers, reuse rename registers
• Vector is alternative model for exploiting ILP

– If code is vectorizable, then simpler hardware, more energy
efficient, and better real-time model than Out-of-order machines

– Design issues include number of lanes, number of functional
units, number of vector registers, length of vector registers,
exception handling, conditional operations

• Fundamental design issue is memory bandwidth
– With virtual address translation and caching

