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Performance beyond single thread ILP

There can be much higher natural parallelism in
some applications

—e.g., Database or Scientific codes

— Explicit Thread Level Parallelism or Data Level Parallelism

 Thread: instruction stream with own PC and data

— thread may be a process part of a parallel program of multiple
processes, or it may be an independent program

— Each thread has all the state (instructions, data, PC, register
state, and so on) necessary to allow it to execute

Thread Level Parallelism (TLP):

— Exploit the parallelism inherent between threads to improve
performance

Data Level Parallelism (DLP):
— Perform identical operations on data, and lots of data

3/2/2011 cs252-S11, Lecture 12

One approach to exploiting threads:
Multithreading (TLP within processor)

» Multithreading: multiple threads to share the
functional units of 1 processor via overlapping

— processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

— memory shared through the virtual memory mechanisms,
which already support multiple processes

— HW for fast thread switch; much faster than full process switch
~ 100s to 1000s of clocks

* When switch?

— Alternate instruction per thread (fine grain)

— When athread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)
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Fine-Grained Multithreading

» Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

— Usually done in a round-robin fashion, skipping any stalled
threads

— CPU must be able to switch threads every clock
« Advantage:

— can hide both short and long stalls, since instructions from
other threads executed when one thread stalls

» Disadvantage:

— slows down execution of individual threads, since a thread
ready to execute without stalls will be delayed by instructions
from other threads

» Used on Sun’s Niagra (recent), several research
multiprocessors, Tera
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Course-Grained Multithreading

» Switches threads only on costly stalls, such as L2
cache misses
* Advantages
— Relieves need to have very fast thread-switching

— Doesn’t slow down thread, since instructions from other
tr%rtlalads issued only when the thread encounters a costly
sta

» Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-up
costs

— Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

— New thread must fill pipeline before instructions can
complete

* Because of this start-up overhead, coarse-grained
multithreading is better for r_educm_ﬁ penalty of
high cost stalls, where pipeline refill << stall time

e Used in IBM AS/400, Sparcle (for Alewife)
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Simultaneous Multithreading (SMT):
Do both ILP and TLP

e TLP and ILP exploit two different kinds of
parallel structure in a program

* Could a processor oriented at ILP to
exploit TLP?

— functional units are often idle in data path designed for
ILP because of either stalls or dependences in the code
« Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

e Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?
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Justification: For most apps, most
execution units lie idle
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Simultaneous Multi-threading ...

One thread, 8 units
Cycle M M FX FX FP FPBRCC

1

Two threads, 8 units
Cycle M M FX FX FP FPBRCC

2

3

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes
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Simultaneous Multithreading Details

» Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has many
HW mechanisms to support multithreading

— Large set of virtual registers that can be used to hold the register
sets of independent threads

— Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath without
confusing sources and destinations across threads

— Out-of-order completion allows the threads to execute out of order,
and get better utilization of the HW
» Just adding a per thread renaming table and keeping
separate PCs

— Independent commitment can be supported by logically keeping a
separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha™
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Design Challenges in SMT

» Since SMT makes sense only with fine-grained
implementation, impact of fine-grained scheduling
on single thread performance?

— A preferred thread approach sacrifices neither throughput nor
single-thread performance?

— Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls
» Larger register file needed to hold multiple contexts

» Clock cycle time, especially in:

— Instruction issue - more candidate instructions need to be
considered

— Instruction completion - choosing which instructions to commit
may be challenging

» Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance
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Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
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Branch redirects
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Power 5 data flow ...
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Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck
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Power 5 thread performance ...

Single-thread mode

Relative priority
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controllable in
hardware.
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Changes in Power 5 to support SMT
* Increased associativity of L1 instruction cache

and the instruction address translation buffers
» Added per thread load and store queues

* Increased size of the L2 (1.92 vs. 1.44 MB) and L3
caches

* Added separate instruction prefetch and
buffering per thread

* Increased the number of virtual registers from
152 to 240

* Increased the size of several issue queues

e The Power5 core is about 24% larger than the
Power4 core because of the addition of SMT
support
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Initial Performance of SMT

* Pentium 4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate
— Pentium 4 is dual threaded SMT
— SPECRate requires that each SPEC benchmark be run against a
vendor-selected number of copies of the same benchmark
* Running on Pentium 4 each of 26 SPEC
benchmarks paired with every other (262 runs)
speed-ups from 0.90 to 1.58; average was 1.20

* Power 5, 8 processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

* Power 5 running 2 copies of each app speedup
between 0.89 and 1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains
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Multithreaded Categories
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Administrivia

Wednesday 3/30

Location: 320 Soda

TIME: 2:30-5:30

— This info is on the Lecture page (has been)

— Get on 8 %2 by 11 sheet of notes (both sides)

— Meet at LaVal's afterwards for Pizza and Beverages

e CS252 First Project proposal due by Friday 3/4
— Need two people/project (although can justify three for right project)
— Complete Research project in 9 weeks

» Typically investigate hypothesis by building an artifact and
measuring it against a “base case”

» Generate conference-length paper/give oral presentation
» Often, can lead to an actual publication.

e Exam:
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Discussion of SPARCLE paper

« Example of close coupling between processor and memory
controller (CMMU)

— All of features mentioned in this paper implemented by combination of
processor and memory controller

— Some functions implemented as special “coprocessor” instructions
— Others implemented as “Tagged” loads/stores/swaps
» Course Grained Multithreading
— Using SPARC register windows
— Automatic synchronous trap on cache miss
— Fast handling of all other traps/interrupts (great for message interface!)
— Multithreading half in hardware/half software (hence 14 cycles)
» Fine Grained Synchronization
— Full-Empty bit/32 bit word (effectively 33 bits)
» Groups of 4 words/cache line = F/E bits put into memory TAG
— Fast TRAP on bad condition
— Multiple instructions. Examples:
» LDT (load/trap if empty)
» LDET (load/set empty/trap if empty)
» STF (Store/set full)
» STFT (store/set full/trap if full)
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Discussion of Papers: Sparcle (Con’t)

* Message Interface

— Closely couple with processor
» Interface at speed of first-level cache

— Atomic message launch:
» Describe message (including DMA ops) with simple stio insts
» Atomic launch instruction (ipilaunch)

— Message Reception
» Possible interrupt on message receive: use fast context switch
» Examine message with simple Idio instructions
» Discard in pieces, possibly with DMA
» Free message (ipicst, i.e “coherent storeback”)

* We will talk about message interface in greater detail
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Supercomputers Vector Supercomputers

Definition of a supercomputer: Epitomized by Cray-1, 1976:

» Fastest machine in world at given task

. . Scalar Unit + Vector Extensions
» A device to turn a compute-bound problem into an

I/O bound problem * Load/Store Architecture
« Any machine costing $30M+ * Vector Registers
« Any machine designed by Seymour Cray * Vector Instructions
* Hardwired Control
CDC6600 (Cray, 1964) regarded as first supercomputer * Highly Pipelined Functional Units

* Interleaved Memory System
* No Data Caches
* No Virtual Memory
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Cray-1 (1976) Cray-1 (1976)
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Vector Programming Model Multithreading and Vector Summary

""'VVScalar Registers Vector Registers .. .
‘ » Explicitly parallel (Data level parallelism or Thread

ris v15
level parallelism) is next step to performance
» Coarse grain vs. Fine grained multihreading
ro vO [0] [1] [2] [VLRMAX-1] — Only on big stall vs. every clock cycle
\ Vector Length Register | VLR * Simultaneous Multithreading if fine grained
1 ‘ ‘ ‘ ‘ ‘ . multithreading based on OOO superscalar
Vector Arithmetic v =F——f——d—d—"——h \ microarchitecture
Instructions ‘+/ +) + + 4 () — Instead of replicating registers, reuse rename registers
ADDVV3,vl,v2  v3c—e——— « Vector is alternative model for exploiting ILP
[0] [1] [VLR-1] ) — If code is vectorizable, then simpler hardware, more energy
efficient, and better real-time model than Out-of-order machines
/' Vector Load and Vector Reglster — Design issues include number of lanes, number of functional
Store Instructions ) units, number of vector registers, length of vector registers,
exception handling, conditional operations
Lvvi, i, r2 * Fundamental design issue is memory bandwidth
— With virtual address translation and caching
Memory
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