CS252
Graduate Computer Architecture
Lecture 12

Multithreading / Vector Processing
March 2nd, 2011

John Kubiatowicz
Electrical Engineering and Computer Sciences
University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs252

Performance beyond single thread ILP

There can be much higher natural parallelism in
some applications

—e.g., Database or Scientific codes

— Explicit Thread Level Parallelism or Data Level Parallelism

 Thread: instruction stream with own PC and data

— thread may be a process part of a parallel program of multiple
processes, or it may be an independent program

— Each thread has all the state (instructions, data, PC, register
state, and so on) necessary to allow it to execute

Thread Level Parallelism (TLP):

— Exploit the parallelism inherent between threads to improve
performance

Data Level Parallelism (DLP):
— Perform identical operations on data, and lots of data

3/2/2011 cs252-S11, Lecture 12

One approach to exploiting threads:
Multithreading (TLP within processor)

» Multithreading: multiple threads to share the
functional units of 1 processor via overlapping

— processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

— memory shared through the virtual memory mechanisms,
which already support multiple processes

— HW for fast thread switch; much faster than full process switch
~ 100s to 1000s of clocks

* When switch?

— Alternate instruction per thread (fine grain)

— When athread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

3/2/2011 €s252-S11, Lecture 12

Fine-Grained Multithreading

» Switches between threads on each instruction,
causing the execution of multiples threads to be
interleaved

— Usually done in a round-robin fashion, skipping any stalled
threads

— CPU must be able to switch threads every clock
« Advantage:

— can hide both short and long stalls, since instructions from
other threads executed when one thread stalls

» Disadvantage:

— slows down execution of individual threads, since a thread
ready to execute without stalls will be delayed by instructions
from other threads

» Used on Sun’s Niagra (recent), several research
multiprocessors, Tera

3/2/2011 €s252-S11, Lecture 12

3/2/2011

Course-Grained Multithreading

» Switches threads only on costly stalls, such as L2
cache misses
* Advantages
— Relieves need to have very fast thread-switching

— Doesn’t slow down thread, since instructions from other
tr%rtlalads issued only when the thread encounters a costly
sta

» Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-up
costs

— Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

— New thread must fill pipeline before instructions can
complete

* Because of this start-up overhead, coarse-grained
multithreading is better for r_educm_ﬁ penalty of
high cost stalls, where pipeline refill << stall time

e Used in IBM AS/400, Sparcle (for Alewife)

cs252-S11, Lecture 12

Simultaneous Multithreading (SMT):
Do both ILP and TLP

e TLP and ILP exploit two different kinds of
parallel structure in a program

* Could a processor oriented at ILP to
exploit TLP?

— functional units are often idle in data path designed for
ILP because of either stalls or dependences in the code
« Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

e Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?

3/2/2011 cs252-S11, Lecture 12

3/2/2011

Justification: For most apps, most
execution units lie idle

N =l lalslzlzlzlzizi=1
AL E

m For an 8-way
Kl superscalar.

2 AN

90 |ff

[t & memory conflict
80t i mlung fp

i E} short fp

long integer

. short integer

load delays

] D control hagzards

B8 branch misprediction
E deache miss

= | [0 icache miss

N | ab miss

B itb miss

. processor busy

Percent of Total Issue Cycles

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:

E42983 %458 58% £ Maximizing On-chip
$35EEE 55° 9% E Epaalelism, ISCA
ApplieadgS11, Lecture §21995.

Simultaneous Multi-threading ...

One thread, 8 units
Cycle M M FX FX FP FPBRCC

1

Two threads, 8 units
Cycle M M FX FX FP FPBRCC

2

3

M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes
3/2/2011 cs252-S11, Lecture 12

8

Simultaneous Multithreading Details

» Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has many
HW mechanisms to support multithreading

— Large set of virtual registers that can be used to hold the register
sets of independent threads

— Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath without
confusing sources and destinations across threads

— Out-of-order completion allows the threads to execute out of order,
and get better utilization of the HW
» Just adding a per thread renaming table and keeping
separate PCs

— Independent commitment can be supported by logically keeping a
separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha™

3/2/2011 cs252-S11, Lecture 12

3/2/2011

Design Challenges in SMT

» Since SMT makes sense only with fine-grained
implementation, impact of fine-grained scheduling
on single thread performance?

— A preferred thread approach sacrifices neither throughput nor
single-thread performance?

— Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls
» Larger register file needed to hold multiple contexts

» Clock cycle time, especially in:

— Instruction issue - more candidate instructions need to be
considered

— Instruction completion - choosing which instructions to commit
may be challenging

» Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance

cs252-S11, Lecture 12 10

Power 4

Single-threaded predecessor to
Power 5. 8 execution units in
out-of-order engine, each may
Issue an instruction each cycle.

Branch redirects

]

Lo oy [we B xs
' .\ ISS = RF EX § I W § er
:-" 1 [Mrjm—i HI—J\ 1DC —‘wa-—@}—cp-'
! el |
- [HJ‘-‘“D["'DZ“'D!“"X&I—'(D ™ E—_\&‘E“ Xfer
]m.[mcllon‘i L.'un!
group formation

_\wH{:ss'—su--L :LI_H’ i
W —fwku

Interrupts and fushes '

MP —tls:. | it

3/2/2011 cs252-S11, Lecture 12

1

Branch redirects

| Instruction fetch

I
I‘--ﬁ- IF HIC BP
=+L_J L]

__sannreaecs POWET S

Instruction fetch

Group formation and =1 pipeline
instruction decode | MP |—‘| ISS|H{AF|
2 fetch (PC), LUF i
Fluarmg 5 r..
point pipeline

Znta F‘LlﬂLtg_"ﬁl d eco d es

3/27L5it

Power 4

] CP
e e

-[DO'—' Dl I}"'—1 D3 '—|XI’=1—'(T)

!
MP -| 158 g—-* iHi’————l {xter | :
e et Hw H j
iy }a] ;Iij!-[?(; i
Interrupts and flushes :
2 commits

Out-of-order processing (aI’C h i 1 eCted

: Branch reglst 3r SetS)
-

pipeline |£: @ l
Load.s ore

Ine
{{oo}fp] @@ @ @ A} 'E__Xl—'ﬁ;;a:;rn'lD“E' 5

ththth “Oua, Ll e 12

Power 5 data flow ...

Eam:h predn:ton ,mr:‘:ﬂ
selection
ﬁrram:h Aetur Targel s::,:d es::l:‘eg"
h istory cache queues L;Ln::]
{H [%] }I \ IHH I[H[I: Tamton Gache
L 11 lLst
J~*| l::l‘r}u:tpgr;:é;;e — | — [: Group m
o Dispatch = T FPbO‘ y
{:\:::g;g:‘ " H HH“'[__,|Jl|=[eeuy LLLLLL
B Thvoas [T (ITIT0 Y (L % IiL[LL oam
priority Shared- Read transiation | |cache
register shared-
mappers register files registar fi'ﬁ

[Shared by two threacs [0 Thoad 0 resources I Trvoad 1 resources

Why only 2 threads? With 4, one of the shared
resources (physical registers, cache, memory
bandwidth) would be prone to bottleneck

3/2/2011 cs252-S11, Lecture 12

13

Power 5 thread performance ...

Single-thread mode

Relative priority
of each thread
controllable in
hardware.

For balanced
operation, both
threads run

Instructiony per cycle (IPC)

=
07 27 47 67 77 76 74 72 70 1,1
16 36 56 66 65 63 6,1 0,1

slower than if 25 45 55 54 52 10
4 34 44 43 41 P
they “owned” 23 33 52 save.
. d i oy mode
the machine.
Thread 0 priority, thread 1 priority
3/2/2011 [oThread 0 IPC @ Thread 1 IPC | 14

Changes in Power 5 to support SMT
* Increased associativity of L1 instruction cache

and the instruction address translation buffers
» Added per thread load and store queues

* Increased size of the L2 (1.92 vs. 1.44 MB) and L3
caches

* Added separate instruction prefetch and
buffering per thread

* Increased the number of virtual registers from
152 to 240

* Increased the size of several issue queues

e The Power5 core is about 24% larger than the
Power4 core because of the addition of SMT
support

3/2/2011 cs252-S11, Lecture 12

15

Initial Performance of SMT

* Pentium 4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate
— Pentium 4 is dual threaded SMT
— SPECRate requires that each SPEC benchmark be run against a
vendor-selected number of copies of the same benchmark
* Running on Pentium 4 each of 26 SPEC
benchmarks paired with every other (262 runs)
speed-ups from 0.90 to 1.58; average was 1.20

* Power 5, 8 processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

* Power 5 running 2 copies of each app speedup
between 0.89 and 1.41

— Most gained some
— FI.Pt. apps had most cache conflicts and least gains

3/2/2011 cs252-S11, Lecture 12 16

Multithreaded Categories

Simultaneous

Ty Superscalar Fine-Grained Coarse-Grained Multipr0|cessing Multithreading
- BELO EEOO EE00 e EESO
o 000 SNOO mOOO0 oSNy BO
5 BEELLD OO EEgld EES IDD@
oo BEEL] B0 EEEL BEESL
S OO000 BOOO SNOO ID'DD
g ULl EEEE NNNO DD
s BE0OL NNNO SNN0 DDD
— B0 HEEn II|I
g BEEEC] Ot BEOSH
= OJod B L]
HEEN HIENE
l ERO0 SO0O0 OONS
B Thread 1 [] Thread3 B3 Thread 5
Thread 2 Thread 4 [1dle slot
3/2/2011 cs252-S11, Lecture 12 17

Administrivia

Wednesday 3/30

Location: 320 Soda

TIME: 2:30-5:30

— This info is on the Lecture page (has been)

— Get on 8 %2 by 11 sheet of notes (both sides)

— Meet at LaVal's afterwards for Pizza and Beverages

e CS252 First Project proposal due by Friday 3/4
— Need two people/project (although can justify three for right project)
— Complete Research project in 9 weeks

» Typically investigate hypothesis by building an artifact and
measuring it against a “base case”

» Generate conference-length paper/give oral presentation
» Often, can lead to an actual publication.

e Exam:

3/2/2011 cs252-S11, Lecture 12

18

Discussion of SPARCLE paper

« Example of close coupling between processor and memory
controller (CMMU)

— All of features mentioned in this paper implemented by combination of
processor and memory controller

— Some functions implemented as special “coprocessor” instructions
— Others implemented as “Tagged” loads/stores/swaps
» Course Grained Multithreading
— Using SPARC register windows
— Automatic synchronous trap on cache miss
— Fast handling of all other traps/interrupts (great for message interface!)
— Multithreading half in hardware/half software (hence 14 cycles)
» Fine Grained Synchronization
— Full-Empty bit/32 bit word (effectively 33 bits)
» Groups of 4 words/cache line = F/E bits put into memory TAG
— Fast TRAP on bad condition
— Multiple instructions. Examples:
» LDT (load/trap if empty)
» LDET (load/set empty/trap if empty)
» STF (Store/set full)
» STFT (store/set full/trap if full)

3/2/2011 cs252-S11, Lecture 12 19

v

Discussion of Papers: Sparcle (Con’t)

* Message Interface

— Closely couple with processor
» Interface at speed of first-level cache

— Atomic message launch:
» Describe message (including DMA ops) with simple stio insts
» Atomic launch instruction (ipilaunch)

— Message Reception
» Possible interrupt on message receive: use fast context switch
» Examine message with simple Idio instructions
» Discard in pieces, possibly with DMA
» Free message (ipicst, i.e “coherent storeback”)

* We will talk about message interface in greater detail

3/2/2011 cs252-S11, Lecture 12

20

Supercomputers Vector Supercomputers

Definition of a supercomputer: Epitomized by Cray-1, 1976:

» Fastest machine in world at given task

. . Scalar Unit + Vector Extensions
» A device to turn a compute-bound problem into an

I/O bound problem * Load/Store Architecture
« Any machine costing $30M+ * Vector Registers
« Any machine designed by Seymour Cray * Vector Instructions
* Hardwired Control
CDC6600 (Cray, 1964) regarded as first supercomputer * Highly Pipelined Functional Units

* Interleaved Memory System
* No Data Caches
* No Virtual Memory

3/2/2011 cs252-S11, Lecture 12 21 3/2/2011 cs252-S11, Lecture 12 22

Cray-1 (1976) Cray-1 (1976)
vg Vi | V. Mask |
64 E:Ulllcllt x; zl
loctor Reqaisters V4
Single Port o g hd v -
Memory V7 FP Add
s I
16 banks of ((A) *ikm) o ' RS
64-bit words s, = S FP Reclp
+ Ay |64 T = S Int Add
I~ |
8-bit SECDED T Reg o Int Logic
Int Shift
80MW/sec data| (A +jkm) AL Pop Cnt
load/store A oz A
(Ap) 64 B‘ AL Ar Addr Add
320MW/sec B Regg——% a0 A Addr Mul
instruction
buffer refill -Mbitx16 ! = NP _cip_]
LIP

4 Instruction Buffers

LTt e memory bank cycle 50 ns processor cycle 12.5 ns (80MHz)
3/2/2011 cs252-S11, Lecture 12 23 3/2/2011 cs252-S11, Lecture 12 24

Vector Programming Model Multithreading and Vector Summary

""'VVScalar Registers Vector Registers .. .
‘ » Explicitly parallel (Data level parallelism or Thread

ris v15
level parallelism) is next step to performance
» Coarse grain vs. Fine grained multihreading
ro vO [0] [1] [2] [VLRMAX-1] — Only on big stall vs. every clock cycle
\ Vector Length Register | VLR * Simultaneous Multithreading if fine grained
1 ‘ ‘ ‘ ‘ ‘ . multithreading based on OOO superscalar
Vector Arithmetic v =F——f——d—d—"——h \ microarchitecture
Instructions ‘+/ +) + + 4 () — Instead of replicating registers, reuse rename registers
ADDVV3,vl,v2 v3c—e——— « Vector is alternative model for exploiting ILP
[0] [1] [VLR-1]) — If code is vectorizable, then simpler hardware, more energy
efficient, and better real-time model than Out-of-order machines
/' Vector Load and Vector Reglster — Design issues include number of lanes, number of functional
Store Instructions) units, number of vector registers, length of vector registers,
exception handling, conditional operations
Lvvi, i, r2 * Fundamental design issue is memory bandwidth
— With virtual address translation and caching
Memory

3/2¢201BaS€‘ rl Strlde I'2cs252-511, Lecture 12 25 3/2/2011 €s252-S11, Lecture 12 26

