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Review: Branch Target Buffer (BTB)

• Keep both the branch PC and target PC in the BTB 
• PC+4 is fetched if match fails
• Only predicted taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC
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Review: Combining BTB and BHT
• BTB entries are considerably more expensive than BHT, but can 

redirect fetches at earlier stage in pipeline and can accelerate 
indirect branches (JR)

• BHT can hold many more entries and is more accurate

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

BTB

BHTBHT in later 
pipeline stage 
corrects when 
BTB misses a 
predicted 
taken branch

BTB/BHT only updated after branch resolves in E stage
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Two-Level Branch Predictor (e.g. GAs)
Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

kFetch PC

Shift in Taken/¬Taken 
results of each 
branch

2-bit global branch 
history shift register

Taken/¬Taken?
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Accuracy of Different Schemes

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT
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BHT Accuracy
• Mispredict because either:

– Wrong guess for that branch
– Got branch history of wrong branch when index the table

• 4096 entry table  programs vary from 1% misprediction 
(nasa7, tomcatv) to 18% (eqntott), with spice at 9% and 
gcc at 12%

– For SPEC92, 4096 about as good as infinite table
• How could HW predict “this loop will execute 3 times” 

using a simple mechanism?
– Need to track history of just that branch
– For given pattern, track most likely following branch direction

• Leads to two separate types of recent history tracking:
– GBHR (Global Branch History Register)
– PABHR (Per Address Branch History Table)

• Two separate types of Pattern tracking
– GPHT (Global Pattern History Table)
– PAPHT (Per Address Pattern History Table)
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Yeh and Patt classification

GBHR

GPHT
GAg

GPHT
PABHR

PAg
PAPHTPABHR

PAp
• GAg: Global History Register, Global History Table
• PAg: Per-Address History Register, Global History Table
• PAp: Per-Address History Register, Per-Address History Table
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Two-Level Adaptive Schemes:
History Registers of Same Length (6 bits)

• PAp best: But uses a lot more state!
• GAg not effective with 6-bit history registers

– Every branch updates the same history registerinterference
• PAg performs better because it has a branch history table
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Versions with Roughly same
accuracy (97%)

• Cost:
– GAg requires 18-bit history register
– PAg requires 12-bit history register
– PAp requires 6-bit history register

• PAg is the cheapest among these
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Why doesn’t GAg do better?
• Difference between GAg and both PA variants:

– GAg tracks correllations between different branches
– PAg/PAp track corellations between different instances of the 

same branch

• These are two different types of pattern tracking
– Among other things, GAg good for branches in straight-line code, 

while PA variants good for loops

• Problem with GAg? It aliases results from different 
branches into same table

– Issue is that different branches may take same global pattern and 
resolve it differently

– GAg doesn’t leave flexibility to do this
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Other Global Variants:
Try to Avoid Aliasing

• GAs: Global History Register, 
Per-Address (Set Associative) History Table

• Gshare: Global History Register, Global History Table with 
Simple attempt at anti-aliasing

GAs

GBHR

PAPHT

GShare

GPHT

GBHR

Address
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Branches are Highly Biased 

• From: “A Comparative Analysis of Schemes for Correlated Branch 
Prediction,” by Cliff Young, Nicolas Gloy, and Michael D. Smith

• Many branches are highly biased to be taken or not taken
– Use of path history can be used to further bias branch behavior

• Can we exploit bias to better predict the unbiased branches?
– Yes: filter out biased branches to save prediction resources for the unbiased ones
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Exploiting Bias to avoid Aliasing: 
Bimode and YAGS


Address History


Address History

TAGPredTAG Pred

==

BiMode YAGS
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Administrative
• Midterm I:  Wednesday 3/16

Location: 320 Soda Hall
TIME: 2:30-5:30

– Can have 1 sheet of 8½x11 handwritten notes – both sides
– No microfiche of the book!

• This info is on the Lecture page (has been)
• Meet at LaVal’s afterwards for Pizza and Beverages 

– Great way for me to get to know you better
– I’ll Buy!
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Is Global or Local better?

• Neither: Some branches local, some global
– From: “An Analysis of Correlation and Predictability: What Makes 

Two-Level Branch Predictors Work,” Evers, Patel, Chappell, Patt
– Difference in predictability quite significant for some branches!
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Dynamically finding structure in 
Spaghetti

?

• Consider complex 
“spaghetti code”

• Are all branches likely to 
need the same type of 
branch prediction?

– No. 

• What to do about it?
– How about predicting which 

predictor will be best?
– Called a “Tournament predictor”
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Tournament Predictors
• Motivation for correlating branch predictors is 2-

bit predictor failed on important branches; by
adding global information, performance
improved

• Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

• Use the predictor that tends to guess correctly
addr history

Predictor A Predictor B
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Tournament Predictor in Alpha 21264
1. 4K 2-bit counters to choose from among a global

predictor and a local predictor
2. Global predictor (GAg):

– 4K entries, indexed by the history of the last 12 branches; each
entry in the global predictor is a standard 2-bit predictor

– 12-bit pattern: ith bit 0 => ith prior branch not taken; 
ith bit 1 => ith prior branch taken; 

3. Local predictor consists of a 2-level predictor (PAg):
– Top level a local history table consisting of 1024 10-bit

entries; each 10-bit entry corresponds to the most recent 10
branch outcomes for the entry. 10-bit history allows
patterns 10 branches to be discovered and predicted.

– Next level Selected entry from the local history table is used
to index a table of 1K entries consisting a 3-bit saturating
counters, which provide the local prediction

Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)
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% of predictions from local 
predictor in Tournament Scheme
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Branch prediction accuracy

Profile-based
2-bit counter
Tournament

Accuracy of Branch Prediction

• Profile: branch profile from last execution
(static in that in encoded in instruction, but profile)

fig 3.40
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Accuracy v. Size (SPEC89)
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Review: Memory Disambiguation
• Question: Given a load that follows a store in program 

order, are the two related?
– Trying to detect RAW hazards through memory 
– Stores commit in order (ROB), so no WAR/WAW memory hazards.

• Implementation 
– Keep queue of stores, in program order
– Watch for position of new loads relative to existing stores
– Typically, this is a different buffer than ROB!

» Could be ROB (has right properties), but too expensive
• When have address for load, check store queue:

– If any store prior to load is waiting for its address?????
– If load address matches earlier store address (associative lookup), 

then we have a memory-induced RAW hazard:
» store value available  return value
» store value not available  return ROB number of source 

– Otherwise, send out request to memory
• Will relax exact dependency checking in later lecture
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In-Order Memory Queue

• Execute all loads and stores in program order

=> Load and store cannot leave ROB for execution 
until all previous loads and stores have 
completed execution

• Can still execute loads and stores speculatively, 
and out-of-order with respect to other instructions

2/16/11 cs252-S11, Lecture 9 24

Conservative O-o-O Load Execution

st r1, (r2)
ld r3, (r4)

• Split execution of store instruction into two phases: address 
calculation and data write

• Can execute load before store, if addresses known and r4 != r2

• Each load address compared with addresses of all previous 
uncommitted stores  (can use partial conservative check i.e., 
bottom 12 bits of address)

• Don’t execute load if any previous store address not known

(MIPS R10K, 16 entry address queue)
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Address Speculation

• Guess that r4 != r2

• Execute load before store address known

• Need to hold all completed but uncommitted load/store 
addresses in program order

• If subsequently find r4==r2, squash load and all following 
instructions

=> Large penalty for inaccurate address speculation

st r1, (r2)
ld r3, (r4)
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Memory Dependence Prediction
(Alpha 21264)

st r1, (r2)
ld r3, (r4)

• Guess that r4 != r2 and execute load before store

• If later find r4==r2, squash load and all following 
instructions, but mark load instruction as store-wait

• Subsequent executions of the same load instruction 
will wait for all previous stores to complete

• Periodically clear store-wait bits
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Speculative Loads / Stores
Just like register updates, stores should not modify
the memory until after the instruction is committed

- A speculative store buffer is a structure introduced to hold 
speculative store data.
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Speculative Store Buffer

• On store execute:
– mark entry valid and speculative, and save data and tag of 

instruction.
• On store commit: 

– clear speculative bit and eventually move data to cache
• On store abort:

– clear valid bit

Data

Load Address

Tags

Store Commit Path

Speculative 
Store 
Buffer

L1 Data 
Cache

Load Data

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
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Speculative Store Buffer

• If data in both store buffer and cache, which should we use:
Speculative store buffer

• If same address in store buffer twice, which should we use:
Youngest store older than load

Data

Load Address

Tags

Store Commit Path

Speculative 
Store 
Buffer

L1 Data 
Cache

Load Data

Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
Tag DataSV
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Memory Dependence Prediction
• Important to speculate? 

Two Extremes:
– Naïve Speculation: always let 

load go forward
– No Speculation: always wait 

for dependencies to be 
resolved

• Compare Naïve 
Speculation to No 
Speculation

– False Dependency: wait when 
don’t have to

– Order Violation: result of 
speculating incorrectly

• Goal of prediction:
– Avoid false dependencies 

and order violations
From “Memory Dependence Prediction 
using Store Sets”, Chrysos and Emer.
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Said another way: Could we do better?

• Results from same paper: performance improvement with 
oracle predictor

– We can get significantly better performance if we find a good predictor
– Question: How to build a good predictor?
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Premise: Past indicates Future
• Basic Premise is that past dependencies indicate future 

dependencies
– Not always true!  Hopefully true most of time

• Store Set: Set of store insts that affect given load
– Example: Addr Inst

0 Store C
4 Store A
8 Store B
12 Store C

28 Load B  Store set { PC 8 }
32 Load D  Store set { (null) }
36 Load C  Store set { PC 0, PC 12 }
40 Load B  Store set { PC 8 }

– Idea: Store set for load starts empty.  If ever load go forward and this 
causes a violation, add offending store to load’s store set

• Approach: For each indeterminate load:
– If Store from Store set is in pipeline, stall

Else let go forward

• Does this work?



2/16/11 cs252-S11, Lecture 9 33

How well does an infinite tracking work? 

• “Infinite” here means to place no limits on:
– Number of store sets
– Number of stores in given set

• Seems to do pretty well
– Note: “Not Predicted” means load had empty store set
– Only Applu and Xlisp seems to have false dependencies

2/16/11 cs252-S11, Lecture 9 34

How to track Store Sets in reality?

• SSIT: Assigns Loads and Stores to Store Set ID (SSID)
– Notice that this requires each store to be in only one store set!

• LFST: Maps SSIDs to most recent fetched store 
– When Load is fetched, allows it to find most recent store in its store set that is 

executing (if any)  allows stalling until store finished
– When Store is fetched, allows it to wait for previous store in store set

» Pretty much same type of ordering as enforced by ROB anyway
» Transitivity loads end up waiting for all active stores in store set

• What if store needs to be in two store sets?
– Allow store sets to be merged together deterministically 

» Two loads, multiple stores get same SSID
• Want periodic clearing of SSIT to avoid:

– problems with aliasing across program
– Out of control merging
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How well does this do?

• Comparison against Store Barrier Cache
– Marks individual Stores as “tending to cause memory violations”
– Not specific to particular loads….

• Problem with APPLU?
– Analyzed in paper: has complex 3-level inner loop in which loads 

occasionally depend on stores
– Forces overly conservative stalls (i.e. false dependencies)

2/16/11 cs252-S11, Lecture 9 36

Load Value Predictability
• Try to predict the result of a load before going to memory
• Paper: “Value locality and load value prediction”

– Mikko H. Lipasti, Christopher B. Wilkerson and John Paul Shen
• Notion of value locality

– Fraction of instances of a given load
that match last n different values 

• Is there any value locality in 
typical programs?

– Yes!
– With history depth of 1: most integer

programs show over 50% repetition
– With history depth of 16: most integer

programs show over 80% repetition
– Not everything does well: see 

cjpeg, swm256, and tomcatv
• Locality varies by type:

– Quite high for inst/data addresses
– Reasonable for integer values
– Not as high for FP values
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Load Value Prediction Table

• Load Value Prediction Table (LVPT)
– Untagged, Direct Mapped
– Takes Instructions  Predicted Data

• Contains history of last n unique values from given 
instruction

– Can contain aliases, since untagged
• How to predict?

– When n=1, easy
– When n=16?  Use Oracle

• Is every load predictable?
– No! Why not?
– Must identify predictable loads somehow

LVPT

Instruction Addr

Prediction

Results
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Load Classification Table (LCT)

• Load Classification Table (LCT)
– Untagged, Direct Mapped
– Takes Instructions  Single bit of whether or not to predict

• How to implement?
– Uses saturating counters (2 or 1 bit)
– When prediction correct, increment
– When prediction incorrect, decrement

• With 2 bit counter 
– 0,1  not predictable
– 2  predictable
– 3  constant (very predictable)

• With 1 bit counter
– 0  not predictable
– 1  constant (very predictable)

Instruction Addr

LCT
Predictable?

Correction
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Accuracy of LCT
• Question of accuracy is 

about how well we avoid:
– Predicting unpredictable load
– Not predicting predictable loads

• How well does this work?
– Difference between “Simple” and 

“Limit”: history depth
» Simple: depth 1
» Limit: depth 16

– Limit tends to classify more things 
as predictable (since this works 
more often)

• Basic Principle: 
– Often works better to have one 

structure decide on the basic 
“predictability” of structure

– Independent of prediction 
structure
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Constant Value Unit
• Idea: Identify a load 

instruction as “constant”
– Can ignore cache lookup (no 

verification)
– Must enforce by monitoring result 

of stores to remove “constant” 
status 

• How well does this work?
– Seems to identify 6-18% of loads 

as constant
– Must be unchanging enough to 

cause LCT to classify as constant
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Load Value Architecture

• LCT/LVPT in fetch stage
• CVU in execute stage

– Used to bypass cache entirely
– (Know that result is good)

• Results: Some speedups 
– 21264 seems to do better than 

Power PC
– Authors think this is because of 

small first-level cache and in-order 
execution makes CVU more useful
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Review: Memory Disambiguation
• Question: Given a load that follows a store in program 

order, are the two related?
– Trying to detect RAW hazards through memory 
– Stores commit in order (ROB), so no WAR/WAW memory hazards.

• Implementation 
– Keep queue of stores, in program order
– Watch for position of new loads relative to existing stores
– Typically, this is a different buffer than ROB!

» Could be ROB (has right properties), but too expensive
• When have address for load, check store queue:

– If any store prior to load is waiting for its address?????
– If load address matches earlier store address (associative lookup), 

then we have a memory-induced RAW hazard:
» store value available  return value
» store value not available  return ROB number of source 

– Otherwise, send out request to memory
• Will relax exact dependency checking in later lecture
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Memory Dependence Prediction
• Important to speculate? 

Two Extremes:
– Naïve Speculation: always let 

load go forward
– No Speculation: always wait 

for dependencies to be 
resolved

• Compare Naïve 
Speculation to No 
Speculation

– False Dependency: wait when 
don’t have to

– Order Violation: result of 
speculating incorrectly

• Goal of prediction:
– Avoid false dependencies 

and order violations
From “Memory Dependence Prediction 
using Store Sets”, Chrysos and Emer.
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Said another way: Could we do better?

• Results from same paper: performance improvement with 
oracle predictor

– We can get significantly better performance if we find a good predictor
– Question: How to build a good predictor?
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Premise: Past indicates Future
• Basic Premise is that past dependencies indicate future 

dependencies
– Not always true!  Hopefully true most of time

• Store Set: Set of store insts that affect given load
– Example: Addr Inst

0 Store C
4 Store A
8 Store B
12 Store C

28 Load B  Store set { PC 8 }
32 Load D  Store set { (null) }
36 Load C  Store set { PC 0, PC 12 }
40 Load B  Store set { PC 8 }

– Idea: Store set for load starts empty.  If ever load go forward and this 
causes a violation, add offending store to load’s store set

• Approach: For each indeterminate load:
– If Store from Store set is in pipeline, stall

Else let go forward

• Does this work?
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How well does an infinite tracking work? 

• “Infinite” here means to place no limits on:
– Number of store sets
– Number of stores in given set

• Seems to do pretty well
– Note: “Not Predicted” means load had empty store set
– Only Applu and Xlisp seems to have false dependencies
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How to track Store Sets in reality?

• SSIT: Assigns Loads and Stores to Store Set ID (SSID)
– Notice that this requires each store to be in only one store set!

• LFST: Maps SSIDs to most recent fetched store 
– When Load is fetched, allows it to find most recent store in its store set that is 

executing (if any)  allows stalling until store finished
– When Store is fetched, allows it to wait for previous store in store set

» Pretty much same type of ordering as enforced by ROB anyway
» Transitivity loads end up waiting for all active stores in store set

• What if store needs to be in two store sets?
– Allow store sets to be merged together deterministically 

» Two loads, multiple stores get same SSID
• Want periodic clearing of SSIT to avoid:

– problems with aliasing across program
– Out of control merging
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How well does this do?

• Comparison against Store Barrier Cache
– Marks individual Stores as “tending to cause memory violations”
– Not specific to particular loads….

• Problem with APPLU?
– Analyzed in paper: has complex 3-level inner loop in which loads 

occasionally depend on stores
– Forces overly conservative stalls (i.e. false dependencies)
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Conclusion
• Two-Level Branch Prediction

– Uses complex history (either global or local) to predict next branch
– Two tables: a history table and a pattern table
– Global Predictors: GAg, GAs, GShare, Bimode, YAGS
– Local Predictors: PAg, PAp, PAs

• Dependence Prediction: Try to predict whether load 
depends on stores before addresses are known

– Store set: Set of stores that have had dependencies with load in past

• Last Value Prediction
– Predict that value of load will be similar (same?) as previous value
– Works better than one might expect

• Dependence Prediction: Try to predict whether load 
depends on stores before addresses are known

– Store set: Set of stores that have had dependencies with load in past


