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Abstract

We analyze circuits for kernels from popular quantum
computing applications, characterizing the hardware re-
sources necessary to take ancilla preparation off the crit-
ical path. The result is a chip entirely dominated by an-
cilla generation circuits. To address this issue, we intro-
duce optimized ancilla factories and analyze their struc-
ture and physical layout for ion trap technology. We intro-
duce a new quantum computing architecture with highly
concentrated data-only regions surrounded by shared an-
cilla factories. The results are a reduced dependence on
costly teleportation, more efficient distribution of gener-
ated ancillae and more than five times speedup over pre-
vious proposals.

1 Introduction

Quantum computing shows great potential to speed up
difficult applications such as factorization [1] and quan-
tum mechanical simulation [2]. Unfortunately, quantum
states are so fragile that all quantum bits, or qubits, in
the system must be encoded for redundancy and remain
encoded during computation. Various encoding method-
ologies have been proposed [3, 4], ranging from several
to several dozen physical qubits used to represent a single
encoded qubit to be used in the high-level computation.

It is expected that an encoded qubit will need to un-
dergo a Quantum Error Correction (QEC) step after each
“useful” basic gate is performed upon it. However, the
bulk of a QEC operation is a preparation circuit involv-
ing the creation of encoded ancillary qubits, or ancillae,
which does not involve the data qubit to be corrected.
Consequently, as Chi et al. point out in [5], the critical
path of a quantum circuit could be significantly reduced
if the ancilla preparation work were done in parallel with
useful computation. In particular, the speed of a quantum
computation would be limited solely by data dependen-
cies between encoded qubits. We refer to this fully offline
parallelization of data-independent work as running the
circuit at the speed of data.

Figure 1a shows a possible execution of a simple se-
ries of quantum gates involving qubits Q0, Q1 and Q2.
Each gate involves some encoded ancilla preparation for
the QEC step which must follow it. In addition, some
gates, called non-transversal gates, require further en-
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Figure 1: (a) Standard implementation of a circuit involving
qubits Q0, Q1 and Q2. Only the grey blocks represent inter-
actions with actual data. The bulk of the critical path involves
independent ancilla preparation. (b) An optimized version of
the circuit in which ancilla preparation is pulled off the critical
path through use of increased hardware. Here, the speed of the
computation is limited only by data dependencies (grey blocks).

coded ancilla preparation simply to be performed (elab-
orated upon in Section 2.4). Figure 1b shows these opera-
tions performed at the speed of data. Chi et al. suggest
that these ancilla preparation operations could be done
in advance, but the hardware cost for this parallelization
grows quickly as the critical path is shortened.

In Section 2, we investigate quantum circuits for en-
coded ancilla preparation and evaluate them in terms of
error and complexity. In Section 3, we identify three com-
mon subcircuits of larger quantum algorithms and evalu-
ate their characteristics concerning encoded ancilla needs
for both QEC and non-transversal gates. In Section 4, we
detail the layout and throughput of a pipelined ancilla fac-
tory specialized for generating encoded ancilla qubits. In
Section 5, we combine our analyses to answer the overall
question of the feasibility of running a quantum circuit at
the speed of data, and we conclude in Section 6.

2 Ancilla Preparation Circuits

Typical quantum circuits require many encoded ancilla
qubits. In this section, we discuss several ancilla prepara-
tion circuits and evaluate them in terms of complexity and
error. Ultimately, we select encoding circuits that will be
used in our layouts in Section 4.

2.1 Computing on Encoded Data Bits

Since quantum data is very fragile, it must be encoded at
all times in an appropriate quantum error correction code.
A high-level view of the procedure for error-correcting an
encoded data qubit is shown in Figure 2. Both the bit
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Figure 2: A quantum error correcting (QEC) operation is com-
posed of a bit-flip correction and a phase-flip correction, corre-
sponding to the two types of errors that can happen to a qubit.
The thick bars represent encoded qubits.

value and phasemust be repaired during the QEC step [6].
Two sets of physical ancilla qubits are each encoded into
the zero state and then consumed during correction.

Gates applied to encoded data may be classified into
two types: transversal and non-transversal. A transversal
encoded gate is applied by performing the corresponding
physical gate independently on each of the qubits com-
prising the encoded qubit, as shown in Figure 3a for the
Hadamard gate. A non-transversal encoded gate is de-
composed into a more complex set of physical operations,
including multi-qubit physical operations between phys-
ical qubits within the same encoded qubit; for example,
see the Basic Encoded Zero Ancilla Prepare in Figure 3b.
Since errors are propagated between physical qubits dur-
ing the application of non-transversal gates, such gates
must be designed carefully to avoid introducing uncor-
rectable errors.

A class of quantum codes known as CSS codes [7, 3]
allow transversal implementations of most encoded gates.
For this reason, CSS codes are used in most analyses of
the fault tolerance of quantum circuits. For the rest of this
paper, we use the [[7,1,3]] CSS code [7]. Encoded gates
that can be performed transversally on this code include
the two-qubit CX, as well as the one-qubit X, Y, Z, Phase,
and Hadamard gates. In order to have a universal gate set,
we also need the non-transversal π/8 gate and the encod-
ing procedure to create an encoded ancilla. We will dis-
cuss how to obtain a fault tolerant version of the π/8 gate
later in this section, but first we investigate the problem of
getting a fault tolerant encoding procedure.

2.2 Circuit Evaluation Methodology

Since encoded ancillae are a major component of error
correction, it is critical to generate clean ancillae to avoid
introducing errors during the correcting process. In the
following, we will evaluate circuits by using the tools in
[8] which allow us to lay out circuits. The effects of er-
ror are then modeled by Monte Carlo simulation where
errors can be introduced at any gate or qubit movement

operation. Additionally, we model the fact that two-qubit
gates propagate bit and phase flips between qubits. This
simulation is similar to what was done in [4] except with
the addition of qubit movement error from our detailed
layout. We assume an independent error probability for
each gate and movement operation. The gate error rate is
10−4 and the error per movement op is 10−6. Our gate
and movement error rates are consistent with [9].

2.3 Encoded Ancilla Preparation

Since the Bit Correct and Phase Correct circuits in Fig-
ure 2 are fully transversal (each consisting of a transver-
sal CX, measure and conditional correct [10]), we focus
on the basic zero ancilla preparation circuit, shown in Fig-
ure 3b. The probability of an uncorrectable error in the re-
sulting encoded output of this circuit is 1.8×10−3 based
on our evaluation methodology above. We would like to
improve on this basic result.

There are two different circuit-level techniques for re-
moving general errors from an encoded qubit: verifica-
tion and correction. Verification tests a qubit in a known
state for error and discards it if too much error is found.
Correction is more complex, but it corrects a bit or phase
error from an encoded qubit in an unknown state, thus it
is more suitable for data qubits in a long-running compu-
tation. Encoded zero ancillae are in known state and may
be discarded if necessary, so either method is suitable.

While Figure 3b shows the circuit for preparing an en-
coded ancilla in the zero state in the [[7,1,3]] CSS code,
we would like a more error-free ancilla qubit for interac-
tion with data. Figure 4 shows some example zero ancilla
preparation circuits from the literature [11, 10], with the
overall error rate for each given under the circuit. Cor-
rection alone (Figure 4b) loses to verification alone (Fig-
ure 4a) in both error and area. When comparing Fig-
ures 4a and 4c, it is important to note that they are not
to scale. The “Basic 0” module (expanded in Figure 3b)
is by far the most complex, so by doing both verification
and correction, we get more than an order of magnitude
improvement in error over verification alone for slightly
more than three times the area. Thus, we shall use the
circuit in Figure 4c in this paper.

Since we are using qubit verification as part of our en-
coded zero preparation, we need to know the success rate
of verification. Using the same Monte Carlo simulation
used for error probability calculations, we estimate the
verification failure rate of the subunit 4a to be 0.2%. We
will use this in calculations later in Section 4.4.

2.4 Fault Tolerant π/8 Gate

It has been shown that no quantum error correcting code
has transversal gate implementations for all the gates in a
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Figure 3: (a) A transversal encoded gate involves transversal application of physical gates. (b) A non-transversal encoded gate
involves multi-qubit physical operations between physical qubits within the same encoded qubit.
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Figure 4: Different circuits for the “High-Fidelity Encoded Zero Ancilla Prepare” in Figure 2. Each “Basic 0” module corresponds
to the circuit in Figure 3b. Each “Cat Prep” module corresponds to the preparation of a special 3-qubit state. Thick bars are encoded
qubits (seven physical qubits). The overall error rate of each is given under each circuit.

universal set [12], and indeed, in the [[7,1,3]] CSS code,
we need the non-transversal π/8 gate in order to com-
plete the universal set. In order to maintain fault toler-
ance when performing the π/8 gate on a [[7,1,3]] encoded
qubit, we use a technique developed in [13]. Their ap-
proach is to generate an encoded ancilla qubit encoded in
the π/8 state and perform transversal interactions with the
data, as shown in Figure 5a, to achieve the overall effect
of an encoded π/8 gate.

To encode the π/8 ancilla qubit, we could try to cre-
ate a physical π/8 ancilla qubit and then use the encoding
circuit in Figure 3b, but this would result in errors on the
original physical qubit propagating to each physical qubit
in the final encoded ancilla, which is unacceptable. Thus,
we require the far more complicated circuit shown Fig-
ure 5b, which consists of an encoded zero ancilla prepare,
a 7-qubit cat state prepare (where a cat state is a specially
prepared multi-qubit state) and a series of transversal en-
coded gates.

2.5 Fault Tolerant π/2k Gates

The Quantum Fourier Transform (QFT) requires con-
trolled phase rotation gates by small angles (these gates
replace the explicit tracking of roots of unity in the clas-
sical FFT algorithm). The amount of precision for these
gates scales exponentially in the number of bits involved

in the QFT [6]. A controlled phase rotation by π/2k can
be generated by a CX gate and 3 single qubit π/2k+1 gates
[14]. Thus, using circuit techniques mentioned so far, we
can implement every gate in the QFT fault tolerantly ex-
cept these single qubit rotation gates. There are two prob-
lems with implementing an arbitrary precision phase rota-
tion fault tolerantly:

• For angles smaller than π/2, there is no transversal
gate implementation using the [[7,1,3]] code [12]. In
fact, this seems likely to be true for all codes.

• Such a gate would require the physical implemen-
tation of an arbitrary precision rotation – a difficult
burden on the engineers of these devices.

Due to the above reasons, we adopt a technique by Fowler
[14]. To approximate small angle rotations, we exhaus-
tively search all permutations of T and H gates to find a
minimum length sequence for a π/2k rotation gate up to
an acceptable error.

We also note that if a π/2k physical gate is available
in a given technology, an exact fault-tolerant π/2k can be
implemented as shown in Figure 6. In order to be conser-
vative about the availability of arbitrary precision rotation
gates, we do not use this construction in the circuits in this
paper. However, in Section 4.4.2, we briefly analyze the
performance advantages of this technique.
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Figure 6: Fault tolerant π/2k gates can be performed recursively
with a cascade of π/2i|i = 3...k ancilla factories and k− 2 CX
and X gates. Each measure gate output controls both the sin-
gle qubit X gate and the compound gate involving more ancilla
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“correct” state, in which the remaining circuit is skipped or a
“wrong” state in which a larger rotation has to be done to adjust
the state. The actual output data from the circuit connects to the
first quantum bitline associated with a correct measurement.

3 Circuit Characteristics

We now characterize the runtime properties of some com-
monly used quantum circuits, focusing on the impact of
encoded ancilla generation. Many quantum algorithms
require ancillae to assist in computation. For example,
an n-bit Quantum Ripple-Carry Adder uses two n-bit data
inputs plus n+ 1 ancillae. In addition to this, shorter-
lived ancillae are needed for QEC and for performing non-
transversal encoded gates, as discussed earlier.

Throughout this paper we refer to the longer-lived an-
cillae used in the main computation as “data ancillae” and
to the shorter-lived ones as “ancillae.” We make this dis-
tinction because data ancillae tend to have long enough
lifespans that “discarding” them and restarting their por-
tion of the computation has a relatively high cost. Our
work focuses on the short-lived ancillae which need to be
produced in large quantities and which may more easily
be discarded and re-encoded.

We do most of our analysis in a symbolic fashion so that
it may be applied to varying technologies and assump-
tions. However, we will also be applying the analysis to
a specific technology, trapped ions [17], in order to make
the results of our calculations more concrete. We use the
physical gate latencies shown in Table 1, the [[7,1,3]] CSS
code introduced in Section 2.1 and the encoded ancilla

Physical Latency Latency
Operation Symbol (μs)

One-Qubit Gate t1q 1
Two-Qubit Gate t2q 10
Measurement tmeas 50
Zero Prepare tprep 51

Table 1: The latency values for various physical operations in
ion trap technology [9, 15, 16]. Since these change as more
experiments are done, we show many of our results in a symbolic
fashion before plugging in these values.

preparation circuits shown in Figures 4c and 5b. Note that
the “Zero Prepare” in Table 1 refers to a physical zero
prepare, which is the leftmost set of gates in the Basic
Encoded Zero Ancilla Prepare in Figure 3b.

3.1 Benchmarks

For our benchmarks, we use the 32-bit Quantum Ripple-
Carry Adder (QRCA) circuit from [18], the 32-bit Quan-
tum Carry-Lookahead Adder (QCLA) circuit from [19]
and a 32-bit Quantum Fourier Transform (QFT) circuit
we derived using methodology described in Section 2.5.
All three are core kernels of a varied array of quantum
algorithms, including Shor’s factorization algorithm.

3.2 QEC Circuit Characteristics

We study our benchmark circuits at two extremes of the
latency-area trade-off: 1) No overlap of QEC and compu-
tation (high latency, but low area), and 2) infinitely fast
encoded ancilla production, resulting in an execution lim-
ited only by data dependencies (low latency, but poten-
tially much higher area for encoded ancilla generation).

Table 2 shows for each benchmark the latency of the
critical path in the absence of movement (Column 2),
as well as latencies for the data-dependent and data-
independent (Columns 3 and 4) portions of QEC steps,
assuming a QEC operation must be performed after each
useful gate. The minimal running time is the sum of
Columns 2 and 3, since these involve data qubits. Col-
umn 4 corresponds to encoded ancilla generation time.



Data Op Latency (μs) Data QEC Interact Latency (μs) Ancilla Prep Latency (μs)
Circuit (% of total) (% of total) (% of total)

32-Bit QRCA 29508 (5.2%) 95641 (16.7%) 447726 (78.2%)
32-Bit QCLA 3827 (5.3%) 11921 (16.7%) 55806 (78.0%)
32-Bit QFT 77057 (5.0%) 365792 (23.7%) 1097376 (71.2%)

Table 2: Relative latency of useful data operations, interaction of data with encoded ancillae for QEC and encoded ancilla prepara-
tion for QEC for various circuits, assuming no overlap between them.
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Figure 7: Encoded zero ancilla needs for the QRCA (left), QCLA (middle) and QFT (right) to run at the speed of data.

Avg Zero Ancilla Avg π/8 Ancilla
Bandwidth Needed Bandwidth Needed

Circuit For QEC For π/8 Gates

32-Bit QRCA 34.8 7.0
32-Bit QCLA 306.1 62.7
32-Bit QFT 36.8 8.6

Table 3: Average encoded ancilla bandwidths needed for QEC
and non-transversal gates (in encoded ancillae per millisecond)
if each circuit is to be executed at the speed of data.

Clearly, there is much to be gained in overall execution
time by taking ancilla preparation off the critical path.

Figure 7 shows for the QRCA (left), QCLA (middle)
and QFT (right) the number of encoded ancillae used for
QEC which need to be in the system as execution pro-
gresses in order to keep the circuit operating at the speed
of data. This means that adequate hardware resources ex-
ist to generate and distribute the needed ancillae in time,
but the interaction with data during each QEC step is still
on the critical path of execution. Table 3 summarizes this
figure by giving the average encoded ancilla bandwidth
necessary for each.

These averages do not take into account the handling
of peak periods. In reality, the encoded ancilla bandwidth
necessary to run a circuit optimally may be higher than the
average bandwidth. Figure 8 shows for the QRCA (left),
QCLA (middle) and QFT (right) the circuit execution time
assuming a steady throughput of encoded ancillae being
generated, as specified on the x-axis. These graphs show
us the sustained ancilla bandwidth necessary to run each
circuit at near-optimal speed, but these are only estimates
since they lack the details of movement and layout. In
Section 4, we examine the associated hardware needs.

3.3 Non-Transversal One-Qubit Gates

The encoded ancilla bandwidth needs discussed in Sec-
tion 3.2 for our three benchmarks include only zero an-
cillae needed for error correction. Non-transversal one-
qubit gates account for 40.5%, 41.0% and 46.9% of our
QRCA, QCLA and QFT benchmarks circuits, respec-
tively, when using the [[7,1,3]] encoding. As explained
in Section 2.4, the execution of a non-transversal encoded
gate is performed with the use of a π/8 encoded ancilla
qubit. Column 3 in Table 3 shows the corresponding π/8
ancilla bandwidth needed for each benchmark to achieve
a runtime limited only by the speed of data (the sum of
Columns 2 and 3 in Table 2).

4 Ancilla Factory Layout

In this section, we shall explore the design space of possi-
ble ancilla factories and determine the hardware resources
necessary to produce encoded ancillae at the bandwidths
calculated in Sections 3.2 and 3.3 in order to take ancilla
generation off the critical path of execution.

4.1 Ion Trap Abstraction

Our area calculations are done using an abstraction of ion
trap technology [17], described here.

Qubits: A single qubit capable of holding one bit of
quantum state is an ion. The physical implementation of a
qubit is actually more complicated, but for our purposes,
we may represent each qubit as a single ion.

Movement: Electrodes are used to create potential
wells in which qubits (ions) are trapped. Potential wells
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Figure 8: The execution time of the QRCA (left), QCLA (middle) and QFT (right) as a function of a steady throughput of encoded
zero ancillae. The vertical line in each shows the average bandwidth for that circuit from Table 3.

Physical Operation Latency Symbol Latency (μs)

Straight Move tmove 1
Turn tturn 10

Table 4: Latency values for the two types of move operations
in ion trap technology [9, 15, 16]. A Straight Move is across a
single macroblock (Figure 9).

Dead 
End Gate

Straight 
Channel Gate

Straight 
Channel

Turn Three-Way 
Intersection

Four-W ay 
Intersection

Figure 9: The abstract building blocks of our layouts. Black
boxes are gate locations (which may not occur in an intersec-
tion), grey boxes are abstract “electrodes,” and wide white chan-
nels are valid paths for qubit movement.

and the ions within are moved via an application of precise
pulse sequences to the electrodes. Moving an ion around
a corner takes more time than moving straight [20]. The
latency numbers we use are shown Table 4.

Gates: A gate is performed by firing precise laser pulses
at a trapped ion. We may abstract away the physics and
consider that a gate is performed by arrival at certain spe-
cial “gate locations” in the layout.

Macroblocks: Since qubit movement is performed by
electrodes whose position is fixed at fab time, certain
“channels” for qubit movement are also set at fab time.
The details of electrode structure are still evolving, so de-
termining area in terms of number of ion traps is a bit am-
biguous. For this reason, we use the macroblocks shown
in Figure 9 as the basic building blocks of our layouts.
Each macroblock has one or more “ports” through which
qubits may enter and exit and which connect to an ad-
jacent macroblock. To perform a gate operation, all in-
volved qubits must enter a valid gate location (a black
square in our macroblocks) and remain there for the du-
ration of the gate. Our area numbers are all calculated in
terms of macroblock count.

Encoded
Data
Qubit

Interconnection Network

Interconnection Network

Figure 10: Layout of a single encoded data qubit.

4.2 Data Qubit Area

Over the run of a quantum circuit, encoded data must per-
form four distinct types of operations: transversal one-
qubit gates, non-transversal one-qubit gates, transversal
two-qubit gates and QEC steps. As described in Sec-
tion 2.4, a non-transversal one-qubit gate may be per-
formed by preparing a specific encoded ancilla and inter-
acting it transversally with the data qubit. Likewise, the
data/ancilla interaction portion of a QEC step involves a
transversal two-qubit gate. In the end, the main opera-
tions the encoded data must support are transversal one-
and two-qubit gates.

To support these major operations, we use single com-
pute regions as shown in Figure 10. The design con-
sists of a single column of Straight Channel Gate Mac-
roblocks with enough room for a single encoded qubit
(seven macroblocks for the [[7,1,3]] CSS code), with ac-
cess on either side to whatever interconnect network is be-
ing used. Thus, if we are encoding each qubit intom phys-
ical qubits, the total area used by data is m×nq, where nq
is the total number of data qubits (including data ancillae)
in the circuit.

4.3 Simple Ancilla Factories

We now focus on designing an ancilla factory, a concept
first proposed in [21]. An ancilla factory is a portion of
the layout which consumes stateless physical ancillae and
produces a steady stream of encoded ancillae at some rate.
Figure 11 shows a simple ancilla factory to execute the
circuit in Figure 4c. Each row of gates has room for ten
physical qubits, seven to be encoded and three for veri-
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Figure 11: An ancilla factory for the circuit in Figure 4c. Each
row of gates generates and verifies one of the three encoded zero
ancillae, then bit and phase correction are performed.

fication. The adjacent rows are used for communicating.
When all three are encoded and verified, the middle one
is bit-corrected by the top one and phase-corrected by the
bottom one. Using a hand-optimized schedule, the total
latency of a single ancilla preparation is approximately:
tprep+ 2× tmeas+ 6× t2q+ 2× t1q+ 8× tturn+ 30× tmove.

Substituting in the ion trap latencies in Tables 1 and
4, the layout in Figure 11 has a total latency of 323μs
with a throughput of 3.1 encoded ancillae per millisecond
and an area of 90 macroblocks. Using this simple ancilla
factory, we could produce any desired bandwidth of en-
coded ancillae by replicating the layout as many times as
necessary. Unfortunately this design is inefficient in that
the verification qubits needlessly take up space during the
seven-qubit zero encoding procedure. To combat this in-
efficiency we instead consider a pipelined approach.

4.4 Pipelined Ancilla Factories

Classically, pipelining a circuit is done by inserting syn-
chronization points (registers) into the circuit’s datapath
to enable logic reuse, thereby increasing throughput with
a small increase in latency. We can apply a similar tech-
nique to our ancilla factory layout in an effort to im-
prove area utilization. Due to the precise electrode and
laser pulse sequences needed to implement movement and
gates, ion trap layouts are by definition synchronous with-
out additional synchronization elements. Instead, we must
add a set of communication channels between pipeline
stages allowing qubit movement for maximum gate loca-
tion occupancy.

4.4.1 Encoded Zero Ancilla Factory

We consider the entire circuit for fault tolerant encoded
zero ancilla creation (Figure 4c). Figure 12 shows a fully
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Figure 12: A fully pipelined encoded zero ancilla creation unit
implementing the circuit in Figure 4c.
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Figure 13: A layout of each unit in Figure 12.

pipelined microarchitecture for this circuit, which consists
of four stages. Each stage contains a number of functional
units for its subcircuit such that the output bandwidth of
one stage is matched to the input bandwidth of the next.
Adjacent stages are separated by a crossbar (Figure 13a),
which consists of two vertical columns, fully connected
horizontally, one for upwards movement, the other for
downwards.

Stage 1 consists of preparing a junk physical qubit into
the zero state with an optional Hadamard gate at a single
gate location (Figure 13b). Even though only some of
these qubits need the Hadamard, we group them all into
the same set of functional units.

Stage 2 consists of two types of units. Looking at the
CX portion of the ancilla prepare circuit in Figure 3b, we
see that the first three CX’s can be performed in parallel,
as can the next three, followed by the final three. Thus,



Latency BW (qubits/ms) Area
Functional Unit Symbolic Latency (μs) Stages In Out

Zero Prep tprep+ t1q+2× tturn + tmove 73 1 13.7 13.7 1
CX Stage 3× t2q +6× tturn +5× tmove 95 3 221.1 221.1 28
Cat State Prep 2× t2q +4× tturn +2× tmove 62 2 96.8 96.8 6
Verification tmeas+ t2q+2× tturn +2× tmove 82 1 122.0 85.2 10
B/P Correction tmeas+2×t2q+6×tturn+8×tmove 138 1 152.2 50.7 21

Table 5: For each functional unit in Figure 12, Column 2 gives its symbolic latency. The remaining columns give numeric values
using our ion trap assumptions. “Stages” is the number of pipeline stages within the functional unit itself, and “Area” is given in
number of macroblocks.

Unit Total Total
Functional Unit Count Height Area

Zero Prepare 24 24 24
CX Stage 1 4 28
Cat State Prepare 1 2 6
Verification 3 30 30
B/P Correction 2 42 42

Table 6: The functional unit counts and stage characteristics for
the encoded zero ancilla factory in Figure 12. The CX and Cat
Prepare units in Stage 2 are bandwidth matched to a ratio of 7
to 3 (which is appropriate for verification), and then the other
stages are matched to this.

we may use the pipelined layout in Figure 13c for this
functional unit, with three sets of qubits (each performing
three CX’s with one idle qubit) in this functional unit at a
time. The Cat Prep units (Figure 13d) create a three-qubit
cat state out of three physical zero ancillae by performing
two CX’s in succession.

Verification of the encoded zero ancillae using the cat
states is performed in Stage 3 and involves performing
three CX’s in parallel and then measuring the cat state
qubits to determine success or failure of the encoded an-
cilla. Since the encoded ancilla qubits must wait for the
measurement to complete, we need 10 macroblocks, one
for each qubit as shown in Figure 13e. When this is done,
the three qubits of the cat state are recycled immediately,
as well as the other seven qubits if the verification failed.

Finally, in Stage 4, a verified encoded zero ancilla A is
first bit-corrected by a verified encoded zero ancilla B and
then phase-corrected by a verified encoded zero ancilla C.
Since we need storage room for A plus room to measure
both B and C in parallel (allowing us to overlap these mea-
surements in time), each such functional unit needs space
for three encoded ancillae, as shown in Figure 13f.

Table 5 summarizes the latency breakdown for each
stage of the pipeline and provides numerical values for
various characteristics of each functional unit under our
ion trap assumptions. Note that Stages 3 and 4 have input
bandwidth different from output bandwidth due to the fact
that some qubits are used up and recycled in these stages.
To achieve high resource utilization, we determine unit

count by matching bandwidth between successive stages.
The results are shown Table 6.

For the crossbars, we use a two-column design, one col-
umn for upwards movement, the other for downwards, in
order to avoid congestion. However, physical qubits ex-
iting Stage 1 are funneled inward to the much smaller
Stage 2, so we use a single column crossbar since bi-
directionality is likely unnecessary. The total crossbar
area is thus 24 + 2 * 30 + 2 * 42 = 168 macroblocks, and
the total functional unit area is 24 + 34 + 30 + 42 = 130
macroblocks, resulting in a total area of 298 macroblocks.

For overall throughput, we take the minimum through-
put among the stages. The bottleneck in the factory is the
CX Stage. Each seven physical qubits out of this stage
correspond to an encoded zero ancilla. Approximately
99.8% of these qubits are successfully verified (using the
results of our Monte Carlo simulations mentioned in Sec-
tion 2.3), and two-thirds of them are then used to correct
the other third. Thus, the overall throughput of our zero
ancilla factory is: 221.1

7 ×0.998× 1
3 = 10.5 encoded ancil-

lae / ms.

4.4.2 Encoded π/8 Ancilla Factory

In Section 3.3, we showed that a non-trivial supply of en-
coded π/8 ancillae are also needed by our circuits. The
circuit in Figure 5b shows how to turn a zero ancilla gener-
ated by our pipelined ancilla factories into an encoded π/8
ancilla. This circuit may be divided into four stages: 1)
Cat State Prepare, 2) Transversal Controlled-Z/S/X, plus
Transversal π/8, 3) Decode, 4) One-qubit H, One-qubit
Measure, Transversal Z conditional on measurement.

Table 7 shows the characteristics of each of these
stages. Note that bandwidths here are in physical qubits,
which is why Stages 1 and 3 have differing bandwidths
despite having the same latency. We now match band-
widths just as we did for the zero ancilla factory in order
to get close to full utilization. Table 8 shows the the final
unit counts of our π/8 ancilla factory. Note that only half
the qubits consumed by Stage 2 come from Stage 1 (the
others come from an encoded zero ancilla factory).

The total stage heights are different enough that an
exact layout would likely require partially folding some



Stage Symbolic Latency Latency In BW Out BW Area

Cat State Prepare 7× t2q +14× tturn +8× tmove 218 32.1 32.1 12
Transversal CX/CS/CZ/π/8 3× t2q+2× tturn +3× tmove 53 264.2 264.2 7
Decode (plus Store) 7× t2q +14× tturn +8× tmove 218 64.2 36.7 19
H/M/Transversal Z tmeas+2×t1q+2×tturn+2×tmove 74 108.1 94.6 8

Table 7: For each stage in the encoded π/8 ancilla generation circuit, we give its symbolic latency, plus numeric values for various
characteristics of the stage under our ion trap assumptions.

Unit Total Total
Stage Count Height Area

Cat State Prepare 4 24 48
Transversal CX/CS/CZ/π/8 1 7 7
Decode (plus Store) 4 52 76
H/M/Transversal Z 2 16 16

Table 8: The functional unit counts and characteristics for each
stage of our final π/8 ancilla factory.

stages into others and simulating execution to determine
exact crossbar sizes needed to avoid congestion. For our
purposes, we will allocate two columns to each crossbar,
since qubits must be able to move in both directions at the
same time. Thus, the total crossbar area is 2 * 24 + 2 *
52 + 2 * 52 = 256 macroblocks, and the total functional
unit area is 48 + 7 + 76 + 16 = 147 macroblocks, resulting
in a total area of 403 macroblocks. Note that this is only
the area for turning an encoded zero into an encoded π/8.
This factory needs to be supplied by zero ancilla factories
in order to function, which we account for in Section 5.

The bottleneck of this ancilla factory is the Cat State
Prepare stage. Each seven-qubit cat state produced by this
stage results in one encoded π/8 ancilla produced by the
factory, so the throughput of the factory is equal to the
throughput of this stage: 18.3 encoded π/8 ancillae / ms.

As mentioned in Section 2.5, we build up smaller an-
gle π/2k rotations from combinations of π/8 and H gates
instead of building ancilla factories for them. It is worth-
while to note that if physical gates with adequate preci-
sion are available, the critical path for the data can be de-
creased further. From Figure 6 we see that the critical
path for the data through such a factory would on average
consist of ∑k−2

i=0 1/2k CX gates and one fewer X gates.

5 Architectural Trade-offs

We now bring our analyses together to draw quantita-
tive conclusions about running a quantum circuit at the
speed of data and to compare against proposed architec-
tures from prior work. Following that, we present a more
qualitative discussion of some conclusions we’ve drawn
from this work.

5.1 Matching Production to Need

We divide the microarchitecture of a quantum layout into
three components: 1) hardware resources for generation
of encoded ancillae; 2) hardware resources for data op-
erations, including operations involving data ancillae and
the data/ancilla interaction portion of a QEC step; and 3)
an interconnection network for moving around both en-
coded data and ancillae. Figure 14a shows the (C)QLA
microarchitecture [22, 15] using these components, with
each data qubit (whether in a compute region or memory)
having an associated ancilla generation unit for QEC. Fig-
ure 14b shows an ancilla factory-based microarchitecture
wherein encoded ancillae are being generated across the
chip and distributed to data as need dictates.

Table 9 gives the relative areas of two of the three com-
ponents of the microarchitecture in Figure 14b when run-
ning our benchmarks at (or near) the speed of data under
our ion trap assumptions. We depict our microarchitec-
tural components to scale for the 32-bit QCLA in Fig-
ure 14c. The encoded zero ancilla bandwidth for error cor-
rection is the average bandwidth required for each circuit
(Table 3). A corresponding encoded π/8 ancilla band-
width is computed (but not shown in the table) to run the
circuit at that speed. Column 4 includes only those zero
ancilla factories producing for QEC. Column 5 includes
both π/8 encoding factories and sufficient encoded zero
ancilla factories to supply the π/8 encoding factories.

We see that even the most serial of the benchmarks, the
Quantum Ripple-Carry Adder, requires a substantial por-
tion of the chip (two-thirds) dedicated to encoded ancilla
generation in order to take this generation off the execu-
tion’s critical path, while the more parallel QCLA requires
more than 90%.

5.2 Latency/Area Evaluation

The proposals for both QLA and CQLA specify space for
only serial production of ancillae at each encoded data
qubit location. We generalize this to GQLA and GCQLA
in which we replicate the ancilla area at each data qubit
to allow parallel production of ancillae. CQLA has addi-
tional flexibility in that different numbers of data units can
be present in the compute cache. We wish to quantify the
efficiency of ancilla production in each microarchitecture
by studying area needed for a given execution time.
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Figure 14: A quantum layout microarchitecture may be considered to consist of three components: generators of encoded ancillae,
data qubit computation regions and interconnect. (a) The (C)QLA microarchitecture dedicates an ancilla generation unit to each
data qubit. (b) Our general microarchitecture redirects encoded ancillae to wherever they’re needed on the chip, thus avoiding idle
generators. (c) In order to run at the speed of data, the ancilla generation portion of the chip needs far more hardware than the data
regions, as shown in Table 9.

Encoded Ancilla Data Area QEC Ancilla Factories π/8 Ancilla Factories
Quantum Circuit Bandwidth For QEC (% of total) Area (% of total) Area (% of total)

32-Bit QRCA 34.8 679 (33.6%) 986.9 (48.8%) 354.7 (17.6%)
32-Bit QCLA 306.1 861 (6.8%) 8682.2 (68.4%) 3154.4 (24.8%)
32-Bit QFT 36.8 224 (13.2%) 1043.5 (61.3%) 433.7 (25.5%)

Table 9: Area breakdown to generate encoded ancillae at the QEC bandwidths shown in Table 3. The π/8 ancilla bandwidth is
computed to match. The last column includes area for both π/8 encoding and the zero ancilla factories supplying these encoders.

Methodology: Using dataflow graphs of our bench-
marks and the estimates in Tables 5-8, we implemented
an event-based simulation of ancilla factory production
and data qubit gate consumption. Simulation of the QLA
[22] microarchitecture assumes that each data qubit in the
computation has a dedicated cell with ancilla production.
Data qubits are always moved back to their home base to
do the error correction after each encoded gate. We simu-
late dataflow execution taking into account latency of the
ancilla production and encoded gate execution, using la-
tencies from Tables 5 and 7.

CQLA [15] optimizes the QLA design by adding a
cache of data qubits that are in the current working set. To
simulate this, we added tracking of which qubits are in the
“compute cache” and account for cache miss and write-
back latencies. This was the most complicated simulation
and has an implementation similar to that of sim-cache in
SimpleScalar [23]. We used the same basic ancilla pro-
duction and data gate latencies as for QLA.

Results: Figure 15 shows overall circuit execution time
as a function of total area dedicated to ancilla factories
(of both types) for the different microarchitectures being
tested for QRCA (left), QCLA (middle) and QFT (right).
Total data qubit area is given in the caption for each.

We notice that CQLA takes about half an order to
an order of magnitude longer to execute than Fully-
Multiplexed Ancilla Distribution. This is due to the
incurrence of cache misses in CQLA, whereas Fully-

Multiplexed always distributes encoded ancillae to data
when necessary. CQLA also plateaus half an order to an
order of magnitude higher than Fully-Multiplexed since,
even with very fast encoded ancilla production, cached
misses are still incurred to bring ancillae to data.

QLA requires two orders of magnitude more area for
ancilla production to match execution time with Fully-
Multiplexed, which is logical since many ancilla genera-
tors are idle much of the time in QLA when they could be
used to feed nearby data need. On the other hand, QLA
eventually plateaus at a similar execution time as Fully-
Multiplexed, which makes sense since it has no concept
of cache misses. QLA simply needs very high encoded
ancilla production at each data qubit in order to run at the
speed of data.

5.3 Qalypso: Microarchitectural Implica-
tions of Pipelined Ancilla Factories

The simple encoded zero ancilla factory in Figure 11 has
an area of 90 macroblocks and a throughput of 3.1 en-
coded ancillae per millisecond. The pipelined encoded
zero ancilla factory designed in Section 4.4 has an area of
298 macroblocks and a throughput of 10.5 encoded ancil-
lae / ms. They produce virtually the same encoded zero
ancilla bandwidth per unit area, thus seemingly negating
some of the benefits of pipelining1.

1This is a result of the facts that the technology is inherently syn-
chronous and that individual gate locations are multi-purpose.
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Figure 15: Execution time as a function of total area of encoded ancilla factories. (Left) 32-bit QRCA, Data qubit area = 679
macroblocks; (Middle) 32-bit QCLA, Data qubit area = 861 macroblocks; (Right) 32-bit QFT, Data qubit area = 224 macroblocks.
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Figure 16: (a) Qalypso: our proposed microarchitecture. (b) A single tile consists of a dense data region surrounded by ancilla
factories funneling encoded ancillae as need arises. Ancilla distribution is fully multiplexed within each tile, with factory output
ports placed physically close to the data region.

Nonetheless, we conclude that pipelined ancilla facto-
ries provide significant benefit in having concentrated in-
put and output “ports.” We propose Qalypso, a tiled mi-
croarchitecture shown in Figure 16a using the tile shown
in Figure 16b, with ballistic movement being used within
a tile and teleportation of data between tiles [16]. The
central data region consists of a dense packing of en-
coded data qubits and channels for local ballistic move-
ment. The ancilla factories each have an output port phys-
ically near the data region so encoded ancillae do not have
far to travel. This is beneficial both in reducing aggre-
gate movement error on encoded ancillae and in avoiding
congestion problems from having encoded ancillae gener-
ated uniformly throughout an ancilla factory. Meanwhile,
since the limiting factor on move speed in ion traps is state
decoherence rather than control of the electrodes, stateless
qubits may be recycled to factory input ports much more
quickly, allowing the input ports to be far from the data.

This architecture differs from (C)QLA in two signifi-
cant respects. First, our data regions consist of data alone.
In CQLA, the compute regions consist of both data and
ancilla generation units, meaning that data are physically

quite a bit further apart even within one compute region
and generally require teleportation for movement. Even
if QEC were performed as part of teleportation [24], this
requires twice as many encoded ancillae as a straightfor-
ward QEC step. Thus, we suggest that our data regions
be made as large as possible to allow data qubits to reach
each other using ballistic movement instead of teleporta-
tion as much as possible. Though ballistic movement is
somewhat error prone, the area of a data region consisting
of nothing but encoded data qubits is still quite small, so
teleportation is only necessary between data regions.

Second, ancilla factories surrounding a data region in
our design are shared by all data qubits within that region.
In Figure 14a, which represents the (C)QLA microarchi-
tecture, each ancilla generator is dedicated to a single data
qubit (location), so imbalances in encoded ancilla need
cause some generators to go idle while others cannot meet
need. By having a full crossbar between generators and
consumers (data qubits), as in Figure 14b, fresh ancillae
go where they are needed within a single data region.

The choice of data region size is still an open problem
and depends on the level of parallelism in the target appli-



cation. The determining factors will likely be local move-
ment congestion within the data region and load on the
inter-tile interconnect, which are shown as the grey boxes
in Figure 16a. Analyses concerning these trade-offs will
be the subject of future research.

6 Conclusion

We show that encoded ancilla generation bandwidth is
a major performance bottleneck in a quantum computer.
Our benchmarks highlight two primary consumers of an-
cillae: quantum error correction (QEC) and non-traversal
quantum gates. For ion trap quantum computers, our
benchmarks require from 30 to 300 encoded zero ancil-
lae/ms and 7 to 60 encoded π/8 ancillae/ms in order to
execute at the speed of data. This translates to a majority
of the chip area being dedicated to encoded ancilla gener-
ation in all three cases.

We propose a new microarchitecture called Qalypso
that is optimized for ancilla generation and distribution.
Qalypso features dense data-only regions fed by nearby
ancilla factories. We present layouts for these ancilla fac-
tories and show that pipelining has an important structural
benefit in that it can produce high bandwidth encoded an-
cillae directed at a single output port. Qalypso can pro-
duce circuits of similar speed to previous architectures
with greatly reduced resources or alternatively can pro-
duce circuits of much greater speed than previous archi-
tectures for similar area.
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