
Parallel Parsing:

The Earley and Packrat Algorithms

Seth Fowler and Joshua Paul

May 19, 2009

1 Introduction

Parsing plays a critical role in our modern computer
infrastructure: scripting languages such as Python
and JavaScript, layout languages such as HTML,
CSS, and Postscript/PDF, and data exchange lan-
guages such as XML and JSON are all interpreted,
and so require parsing. Moreover, by some estimates,
the time spent parsing while producing a rendered
page from HTML, CSS, and JavaScript is as much as
40%. Motivated by the importance of parsing, and
also by the wide-spread adoption of chip multiproces-
sors, we are interested in investigating the potential
for parallel parsing algorithms.

We begin with one classical and one more modern
parsing algorithm, the Earley and the Packrat algo-
rithm, respectively, and consider methods for paral-
lelizing both. The general strategy is the same in
both cases: break the string to be parsed into con-
tiguous blocks, process each block in parallel, and
finally re-join the blocks. We find that using this
general framework, we are able to obtain a meaning-
ful speedup relative to serial implementations of each
algorithm. In particular, we obtain a speedup of 5.4
using the parallel Earley implementation on 8 proces-
sors, and a speedup of 2.5 using the parallel Packrat
algorithm on 5 processors.

Another algorithmic property that we consider is
work efficiency, a measure of the amount of extra
work done by the parallel algorithm relative to the
serial algorithm. Poor work efficiency indicates that
the parallel algorithm is doing considerably more
work than is required, and thereby using more en-
ergy. With the relative importance of energy increas-

ing, even a parallel algorithm that achieves significant
speedup may not be worthwhile if it exhibits poor
work efficiency. Though it is difficult to formulate a
precise definition of work efficiency in terms of pro-
gram operations, we qualitatively demonstrate that
our algorithms, with some caveats, exhibit reasonable
work efficiency.

Related work: There is a substantial literature re-
lated to the hardness of parsing context free gram-
mars (CFG), most related to the result of Valiant[8]
that CFG parsing is equivalent to binary matrix mul-
tiplication. This equivalence provides, in theory, par-
allel algorithms for parsing, but these (to the authors’
knowledge) have not been put into practice.

There are several published algorithms (see, for ex-
ample, Hill and Wayne[6]) for parallelizing a variant
of the the Earley algorithm, the CYK algorithm. Un-
fortunately, in practice CYK has a much longer run-
ning time than Earley (even though it has the same
worst-case complexity of O(n3)), and so it is not typ-
ically used.

For the Earley algorithm itself, there are very few
parallelization methods published (though there are
many optimizations – see, for example, Aycock and
Horspool[1]). One such method by Chiang and Fu[3]
uses a decomposition similar to the one we develop,
but goes on develop the algorithm for use on a spe-
cialized VLSI. Similarly, Sandstrom[7] develops an
algorithm based on a similar decomposition, but im-
plements it using a message passing architecture. In
both cases, the grain of the parallelization is much
finer than what we propose, and there is no notion,

1

of speculation, a central component of our algorithm.
Finally, to the authors’ knowledge, there are no

published works on parallelizing the Packrat algo-
rithm.

2 Background

Context-free grammars: A formal grammar is a
set of formation rules that implicitly describe syntac-
tically valid sequences of output symbols from some
alphabet. A context-free grammar is a specific type
of grammar, specified by:

• Σ, a set of terminal symbols.
• V , a set of non-terminal symbols.
• R, a set of production rules, each taking a single

non-terminal to an arbitrary sequence of termi-
nal and non-terminal symbols.
• S, the designated start non-terminal.

Using the production rules, it possible to construct a
sequence of terminals, beginning with the start non-
terminal. Such a sequence is said to be derived from
the grammar, and the steps in the construction com-
prise a derivation of the sequence. The parsing prob-
lem can then be stated formally as follows: given a
sequence of terminals, determine whether it can be
derived by the grammar, and if so, produce one or
more such derivations.

When referring to a context-free grammar, the fol-
lowing notation will be used hereafter: A,B will
be used to denote non-terminals (e.g. A,B ∈ V);
a, b will be used to denote terminals (e.g. a, b ∈
Σ); α, β, γ will be used to denote arbitrary (possi-
bly empty) sequences of terminals and non-terminals
(e.g. α, β, γ ∈ (V ∪ Σ)∗).

The Earley algorithm: Given as input a length-
n sequence of terminals Tn = x1x2 . . . xn, the Earley
algorithm[4] constructs n + 1 Earley sets: an initial
set S0, and a set Si associated with each input termi-
nal xi. Elements of these sets are Earley items, each
of which is intuitively an ‘in-progress’ production rule
of the grammar. The Earley sets are constructed in
such a way that Si contains all possible Earley items

[A α Bβ, j]

[B a, i - 1]

S i-1

S i

Complete

Predict

Scan
[B a , i - 1]

[A αB β, j]

Figure 1: Illustration of the Scan, Predict, and
Complete mechanisms, supposing that our grammar
contains the rule B → a and that xi = a.

for terminals x1x2 . . . xi; upon completion, Sn there-
fore contains all possible Earley items for the entire
input sequence.

Formally, an Earley item comprises a production
rule, a position in the right-hand side of rule indi-
cating how much of the rule has been seen, and an
index to an earlier set indicating where the rule be-
gan (we frequently refer to this as the origin of the
item). Earley items are written:

[A→ α • β, j],

where • denotes the position in the right-hand side
of the rule and j indexes the Earley set Sj . Items
may be added to the set Si using the following three
mechanisms:

Scan : If i > 0, [A→ α•aβ, j] is in Si−1, and a = xi,
add [A→ αa • β, j] to Si.

Predict : If [A → α • Bβ, j] is in Si and B → γ is
a production rule, add [B → •γ, i] to Si.

Complete : If [A → α•, j] is in Si and [B → β •
Aγ, k] is in Sj , add [B → βA • γ, k] to Si.

See Figure 1 for an illustration of each mechanism,
and observe that constructing Earley set Si depends
only on {Sj | j ≤ i}. Thus, dynamic programming
may be used, with Earley sets constructed in increas-
ing order.

Recalling that S is the start non-terminal, Earley
set S0 is initialized to contain [S → •α, 0] for all rules
S → α. Upon completion, the input sequence can be
derived if and only if Sn contains [S → α•, 0] for
some rule S → α; if the sequence can be derived, one
or more derivations may be obtained by traversing

2

Algorithm 1 Earley(Tn)
S0 ← {[S → •α, 0] | S → α ∈ P}
for i = 0 to n do

repeat
apply Scan, Predict, Complete to Si

until nothing new added to Si

end for

if [S → α•, 0] ∈ Sn for some S → α then
return true

else
return false

end if

backwards through the Earley sets. See Algorithm 1
for pseudocode.

Parsing expression grammars: Though their
roots lie in Top-Down Parsing Language[2], a for-
mal grammar invented in the 1970s to characterize
top-down recursive parsers, parsing expression gram-
mars (PEGs) are a relatively recent group of gram-
mars which first appear in the literature in 2002[5].
PEGs, as their heritage suggests, describe the pro-
cess by which a parser may recognize that a string
belongs to a language, rather than the process by
which a string belonging to a language may be gen-
erated. They are defined by a 4-tuple of the same
form as that used for CFGs, but the interpretation of
the rules and the set of operators that may be used
within a rule are different. 1 displays the operators
available in a PEG, many of which resemble regular
expression operators.

Operator Example
Sequence [A← BC]
Ordered choice [A← B/C]
Zero or more [A← B∗]
One or more [A← B+]
Optional [A← B?]
Followed by [A← &B]
Not followed by [A←!B]

Table 1: PEG operators

In a PEG, each rule is treated as a deterministic
algorithm; for example, the simple rule [A ← BC]
instructs the parser that it may recognize an A by
first recognizing a B and then, if that is successful,
by recognizing a C. This property means that PEGs,
unlike CFGs, cannot directly support left-recursion;
[A← AB], which requires that a parser recognize an
A by first recognizing an A, can never match success-
fully. In practice, this is not a problem, since left-
recursive rules can always be rewritten to eliminate
left-recursion[5].

The alternation operator |, used either explicitly or
implicitly in CFGs when there are multiple ways to
construct the same nonterminal, does not have a pre-
cise equivalent in PEGs. Instead, PEGs use the or-
dered choice operator /. From the point of view of the
parser, the alternation operator has the effect that all
of the alternatives are considered simultaneously. It
is possible for more than one of the alternatives to
match, in which case both possibilities must be ex-
plored further by the parser. In contrast, the ordered
choice operator is interpreted in an algorithmic, “if-
else” fashion; for example, [A ← B/C] instructs the
parser to recognize an A by first attempting to rec-
ognize a B and only if that fails to attempt to recog-
nize a C. Because of the difference between these two
operators, CFGs can express ambiguous grammars,
while PEGs cannot, even if there is a need. PEGs
are therefore better suited for machine-readable lan-
guages than natural languages.

Packrat parsing: Just as parsing expression
grammars are a modern extension of TDPL, packrat
parsing extends a theoretical linear-time algorithm
for parsing TDPL which also dates from the 1970s[5].
Packrat parsing, like its ancestor, requires construct-
ing a table in memory that grows in size linearly with
the string to be parsed; this almost always requires
more memory than popular parsing algorithms for
LL(1) and LR(1) grammars, which only require mem-
ory proportional to the depth of the parse tree for a
given input string. This memory requirement made
this algorithm impractical for decades, but modern
machines have enough memory to make packrat pars-
ing realistic.

3

The packrat table is two-dimensional, with the
rows representing nonterminals in the PEG and the
columns representing positions in the input string.
Each cell [Ci, j] in the table stores the result of an
attempt to recognize nonterminal [i] at position [j].
If the nonterminal is matched successfully, the cell
stores the first position after that match – for exam-
ple, if the parser consumed two characters, starting at
position [j], in the process of matching nonterminal
[i], the cell will hold the value [j + 2]. If nontermi-
nal [i] is not matched successfully, the cell will hold a
special value indicating that the recognition attempt
failed.

The rule for matching nonterminal [i] may refer to
another nonterminal. If nonterminal [u] is referenced
at input string position [v], the packrat parser pro-
ceeds by examining the value of cell [Cu, v]; it may
either find a reference to a later position [v + n], in
which case it advances to that position and attempts
to match the next part of the rule for [i], or it may
find the special failure value, which signals that non-
terminal [u] does not exist a position [v]. The packrat
parser may also find that cell [Cu, v] has not yet been
evaluated; in this case, it recursively evaluates [Cu, v]
before completing its original computation. Each cell
memoizes the result of a potentially expensive recur-
sive computation; by ensuring that no cell is ever
evaluated more than once, the packrat parser can
evaluate any PEG in linear time with respect to the
length of the input string.

To parse a string using the packrat algorithm, the
parser begins by evaluating the cell corresponding to
the first position in the string and the start sym-
bol of the grammar. Evaluation of cells continues
recursively until it is possible to determine whether
the start symbol matched or not. The start symbol
matches if and only if the parse was a success and
the input string belongs to the language specified by
the grammar. In the common case, only a fraction of
the cells in the packrat table will have been evaluated
at this point; the majority are never touched because
they could not possibly contribute to matching the
start symbol. In this way, the packrat algorithm uses
lazy evaluation to perform a minimal amount of work
despite the large size of its underlying data structure.

B2,1

B2,0B1,0 B3,0

B3,1

B3,2

B1 B2 B3

S14

S0,0

S14,1

S35,2

Figure 2: Illustration of the partition of the Earley sets
S0, S1, . . . , S35 into the blocks B1, B2, B3, and the associ-
ated decomposition into Earley subsets and sub-blocks.

3 Parallelizing the Earley and
Packrat algorithms

3.1 Parallelizing Earley

We proceed towards a parallel Earley algorithm in
two steps: first, we show that the operation of the
serial Earley algorithm can be decomposed into sub-
blocks that depend upon one another in a very reg-
ular way; second, we propose a method for remov-
ing a key set of dependencies among the sub-blocks,
thereby allowing them to be computed in parallel.

Sub-block decomposition: Recall that the serial
Earley algorithm associates an Earley set Si with
each terminal xi. The first step in the decomposi-
tion is to partition the Earley sets into a sequence
of m contiguous blocks, B1, B2, . . . , Bm. An Earley
item belonging to an Earley set in block Bi may have
origin in any block Bj with j ≤ i. Thus motivated,
the second step in the decomposition is to partition
each Earley set Sp in block Bi into Earley subsets,
Sp,0, Sp,1, . . . Sp,i−1 with:

Sp,j = {e ∈ Sp | block origin of e = i− j}.

Additionally define Bi,j = {Sp,j | Sp ∈ Bi}, and refer
to this as a sub-block of block Bi. An Earley sub-
set Sp,j in sub-block Bi,j contains only Earley items
with an origin in block Bi−j . See Figure 2 for an
illustration of the decomposition and terminology.

Having characterized the decomposition of Earley
sets into sub-blocks, we now describe how to effi-
ciently compute the Earley subsets therein. Suppose

4

B2,1

B2,0B1,0 B3,0

B3,1

B3,2L-Complete

L-Scan

L-Scan

L-Complete

Figure 3: Illustration of the L-Scan and L-Complete
mechanisms for several representative cases. Compare
with the ordinary Scan and Complete mechanisms in
Figure 1.

that we are interested in computing the Earley sub-
set Sp,j in sub-block Bi,j (with j > 0). There are
two mechanisms by which items may be added, both
modifications of the mechanisms described for the or-
dinary Earley algorithm:

L-Scan : Suppose Sp−1 ∈ Bi: then if [A→ α•aβ, p′]
is in Sp−1,j and a = xp, add [A → αa • β, p′] to
Sp,j . Otherwise, Sp−1 ∈ Bi−1: if [A→ α•aβ, p′]
is in Sp−1,j−1 and a = xp, add [A → αa • β, p′]
to Sp,j .

L-Complete : If [A→ α•, p′] is in Sp,k with k ≤ j,
and [B → β • Aγ, p′′] is in Sp′,j−k (in sub-block
Bi−k,j−k), add [B → βA • γ, p′′] to Sp,j .

These mechanisms are restricted relative to the anal-
ogous mechanisms in the serial Earley algorithm since
Earley subsets in sub-block Bi,j contain only Earley
items with origin in block Bi−j . In particular, the
scan mechanism may depend only on Sp−1,j ∈ Bi,j

or Sp−1,j−1 ∈ Bi−1,j−1 since the resulting item must
have origin in block Bi−j = B(i−1)−(j−1). Similarly,
if a completion is made with respect to an Earley item
in block Bi−k (corresponding to the item in Sp,k ∈
Bi,k), it must be in sub-block Bi−k,j−k so that the re-
sulting item has origin in block B(i−k)−(j−k) = Bi−j .
Finally, there is no predict mechanism, since predict
would create Earley items with origin p (and thus in
block Bi 6= Bi−j).

See Figure 3 for an illustration of the mechanisms,
and observe that, analogously to the ordinary Earley
algorithm, the computation of sub-block Bi,j (with
j > 0) depends only on sub-blocks {Bi′,j′ | i′ − j′ ≤
i − j}. We have thus far avoided discussion of sub-
block Bi,0, as it does not naturally fit into the previ-
ous analysis. Indeed, straight-forward computation

B2,1

B2,0B1,0 B3,0

B3,1

B3,2

Figure 4: Computational dependencies for sub-blocks.
The dotted lines are the dependencies associated with the
sub-blocks Bi,0 under a näıve computation.

of the sub-block Bi,0 depends on sub-block Bi−1,0

since successfully applying the predict mechanism
requires all Earley items, regardless of their origin.
This leads to the sub-block dependence graph de-
picted in Figure 4.

Elimination of key dependencies: We now pro-
pose a method for computing the the Earley subset
Sp,0 of sub-block Bi,0 without relying on the afore-
mentioned dependencies. Intuitively, rather than
explicitly depending upon previous sub-blocks, the
method assumes that every Earley item in previous
sub-blocks is present. Such ‘speculative’ Earley items
are represented as ordinary Earley items, but with an
unspecified origin:

[A→ α • β,−1].

There are three mechanisms by which items may be
added to Earley subset Sp,0, both modifications of
the mechanisms described for the ordinary Earley al-
gorithm:

S-Scan : Suppose Sp−1 ∈ Bi: then if [A→ α•aβ, p′]
is in Sp−1,0 and a = xp, add [A → αa • β, p′] to
Sp,0. Otherwise, Sp−1 ∈ Bi−1: add speculative
item [A → αa • β,−1] to Sp,0 for all rules A →
αaβ with a = xp.

S-Predict : If [A→ α•Bβ, p′] is in Sp,0 and B → γ
is a rule in R, add [B → •γ, p] to Sp,0.

S-Complete : Suppose [A → α•, p′] is in Sp,0. If
p′ ≥ 0 and [B → β •Aγ, p′′] is in Sp′,0, add [B →
βA • γ, p′′] to Sp,0. If p′ = −1, add speculative
item [B → βA • γ,−1] to Sp,0 for all rules B →
βAγ.

5

S i-1

S i

[B a , -1]

[A αB β, -1]

[B a, -1]

[C γB δ, -1]

S-Scan

S-Complete

Figure 5: Illustration of the S-Scan and S-Complete
mechanisms, supposing that our grammar contains the
rules A→ αBβ and C → γBδ, and that xi = a.

As in the ordinary Earley algorithm, S0,0 is initialized
to contain [S → •α, 0] for all rules S → α. See Figure
5 for a simple illustration of these mechanisms.

The method described above is potentially compu-
tationally costly, since many speculative items may
have to be processed. Additionally, it may produce
‘excess’ Earley items originating in block i, namely
those that are not produced by the serial algorithm.
Characterizing the number of speculative and ex-
cess items and their effect on the work-efficiency and
speed-up of the parallelized algorithm will be an ob-
jective of the following sections.

Parallel computation: Having eliminated the key
dependencies, sub-blocks can be computed in paral-
lel. In particular, sub-blocks Bi,0 for 1 ≤ i ≤ m do
not depend on any prior computation, and sub-block
Bi,j (for j > 0) directly depends only on the com-
putation of sub-block Bi−1,j−1. Thus, it is natural
to express parallelism at the level of blocks, with the
associated sub-blocks computed one by one, start-
ing with Bi,0. Algorithm 2 provides pseudo-code for
computing block Bi.

Implementation details Though the parallel
Earley algorithm as written above is a complete de-
scription, several implementation details help to pro-
duce a program that achieves a significant speedup.
The most important such implementation details fol-
low:

Memory allocation and caching: Consider the follow-
ing properties of the parallel Earley algorithm:

Algorithm 2 ParallelEarley(Tn, i)
s← start index of block Bi

e← end index of block Bi

if s = 0 then
Ss,0 ← {[S → •α, 0] | S → α ∈ P}

else
Ss,0 ← {[A→ αa • β,−1] | A→ αaβ ∈ P, a = xs}

end if

for i = s to e do
repeat

apply S-Scan,S-Predict,S-Complete to Si,0

until nothing new added to Si,0

end for

for j = 1 to i do
wait for sub-block Bi−1,j−1

for i = s to e do
repeat
apply L-Scan, L-Complete to Si,j

until nothing new added to Si,j

end for
notify sub-block Bi+1,j+1

end for

• After an Earley subset is computed, it can never
be written again.

• An Earley subset may be read several times
thereafter, and each time the reader is interested
exclusively in those Earley items that have ‘ter-
minated’ or those that are ‘in-progress’.

Thus, though a set data type is used to compute an
Earley subset, upon completion the set is converted
to a semi-ordered array to expedite future accesses.
This conversion has the added benefit of saving mem-
ory (sets have significant overhead), and improving
locality (arrays are contiguous in memory).

Moreover, such a conversion requires an iteration
over the set, and so it becomes computationally inex-
pensive to empty the set in the process. Afterwards,
the set may be re-used to compute the next Earley
subset, sparing the allocation and initialization of a
new set object.

Thread and synchronization model: As described
above, the parallel Earley algorithm allocates a sin-
gle thread to each block, with sub-blocks being cal-

6

culated one by one beginning with sub-block Bi,0.
As a result, the only communication required be-
tween threads is ensuring that, prior to computing
Bi,j (for j > 0), Bi−1,j−1 has completed (a result
that follows from induction and the aforementioned
read-only property of computed sub-blocks).

This can be accomplished with a counting
semaphore between each pair of neighboring blocks:
when the thread associated with block Bi−1 com-
pletes sub-block Bi−1,j the semaphore is ‘incre-
mented’, and before the thread associated with block
Bi begins computing Bi,j (j > 0), the semaphore is
‘decremented’.

Finally, note that it may be worthwhile to parti-
tion the input terminal sequence into a number of
blocks greater than the number of processors. In-
tuitively, this allows a processor that completes its
assigned block to move on to a new block, increasing
hardware utilization and performance. We empiri-
cally investigate the consequences of such a partition
in the next section.

3.2 Parallelizing Packrat

The näıve approach: In the serial packrat algo-
rithm, a single thread evaluates cells in the table re-
cursively until it is able to determine whether the
start symbol matches successfully. A näıve approach
to parallelizing this algorithm is to add additional
worker threads working on the same table. Each ad-
ditional thread selects cells to work on based upon
two criteria: the current position of the main thread,
which is moving along the table from left to right,
and a heuristic that it uses to choose the cells that
are the most likely to be evaluated in the future by
the main thread.

In the most general case, each worker thread may
evaluate cells at any position. This creates synchro-
nization problems; each time a thread chooses a cell
to work on, it must ensure that no other threads are
evaluating that cell, or work will be duplicated. Fur-
thermore, all of the threads must constantly observe
the position of the main thread; the further to the
left of the main thread’s position a cell lies, the more
backtracking would be required for the main thread
to reach that cell, and therefore the less likely it is

that the cell will influence the result of the parse if
the grammar is well-behaved. This design is even
more problematic on NUMA machines or multicore
machines which do not share the L2 cache between
processors; the constant reads and writes to different
parts of the packrat table may cause cache contention
that will have a potentially profound effect on perfor-
mance.

The problems of the general case can be solved by
dividing the input string into blocks, and assigning
each worker thread to a block. Each worker thread
no longer has to observe what all of the other worker
threads are doing; they can simply evaluate cells in
their block until the main thread reaches the block’s
left side. When the main thread is about to enter
a worker thread’s block, it notifies that thread to
terminate; this notification is the only synchronized
communication that needs to occur. There are still
problems, however. Terminating each worker thread
as its block is reached means that later blocks have
many more cells speculatively evaluated than earlier
blocks, so that work efficiency gets worse and worse
as we move from left to right in the packrat table.
Depending upon the details of the grammar and the
placement of the block boundaries, the main thread
may enter and exit the same block several times; even
if it restarts the block’s worker thread when it exits
the block, time that could have been spent speculat-
ing is wasted and unnecessary thread creation and
termination overhead must occur. Finally, we still
have not eliminated the requirement that at least two
threads must access every block at some point dur-
ing execution, and the main thread must still access
every block in the packrat table; this is potentially
costly on NUMA machines or in a cluster.

Start symbol synthesis: The existence of the
main thread is desirable because it ensures that the
algorithm does not fall too far behind what a serial al-
gorithm would do. However, the main thread makes
it necessary to share the entire packrat table between
multiple threads and can cause poor behavior as it
enters and exits a block. To maintain much of the
advantage the main thread provides while eliminat-
ing its undesirable properties, we propose a message-

7

passing model based on start symbol synthesis. The
input string is divided into blocks, and each block is
assigned a worker thread. Each block uses heuristics
to speculate until the block to its left has finished.
When a block finishes, its final act is to send the
block to its right a synthesized start symbol. This
new start symbol encapsulates all of the unfinished
work of the block – cells that it could not evaluate
using only the information within the block. It takes
the forum of a PEG rule with the following prop-
erty: the rule matches successfully if and only if the
original start symbol would have matched if its evalu-
ation had continued to the same point. By evaluating
this synthesized start symbol, the next block can con-
tinue the computation that the original start symbol
began.

Preprocessing the grammar is useful for efficient
start symbol synthesis. The repetition operators and
the optional operator are replaced with the expres-
sions in 2. These expression make use of (), the
empty string, a special terminal that always matches
without consuming any input. Simplifying the oper-
ators reduces the complexity of the final algorithm;
in addition, simplifying the repetition operators in
this way is always necessary to guarantee linear time
parsing[5]. Next, the grammar is transformed so that
the rule for each nonterminal only references one op-
erator; this again simplifies the final algorithm, al-
though it may involve creating new nonterminals. Se-
quences in the grammar are also simplified in a man-
ner inspired by lisp: each sequence with more than
two elements is replaced with a sequence with the
same first a element and a new nonterminal as the
second element. The new nonterminal’s rule states
that it matches when a new sequence, consisting
of the remaining elements of the original sequence,
matches. If this new sequence contains more than
two elements, it is subdivided in the same way. Af-
ter this transformation is complete, every sequence
in the grammar has exactly two elements. By sim-
plifying the sequences in this way, we gain simplicity
and efficiency: every time a sequence crosses a block
boundary, the part that extends into the next block
is always an existing nonterminal or terminal. Termi-
nals can always be evaluated very quickly. Existing
nonterminals may already be memoized in the next

Original Transformed
[A← B∗] [A← BA/()]
[A← B+] [A← BA/B]
[A← B?] [A← B/()]

Table 2: PEG operator transformations

block; even if they aren’t, since a row exists for them
in the packrat table they can be memoized if they
need to be evaluated more than once. In contrast,
the portion of an arbitrary sequence that extends into
the next block may be a subsequence that does not
correspond to any nonterminal; if it has to be eval-
uated more than once, it can’t be memoized, which
will make the algorithm take more than linear time.

The start symbol synthesis process fits naturally
into the recursive evaluation of cells in the packrat al-
gorithm. Each cell is expanded to hold two optional
fields: a complete future expression, and a position
in the block corresponding to an incomplete future
expression. A complete future expression is a por-
tion of the final synthesized start symbol that the
block will produce. It is complete because it reaches
all of the way to the end of the block, so no more
cells in the current block need to be evaluated to fin-
ish constructing it. Complete future expressions are
combined using the PEG operators to produce the
final synthesized start symbol. An incomplete future
expression, on the other hand, is suspected to be im-
possible to evaluate without leaving the block, but its
construction is not yet complete. Incomplete future
expressions may be proved not to match within the
current block, but they cannot be proved to match.
They are generated by the ordered choice operator
when a choice with higher priority extends outside
the block, but a choice with lower priority does not.
As each cell in the packrat table is evaluated recur-
sively, it combines all of the complete future expres-
sions of its children and resolves incomplete future
expressions as much as it possibly can. The way in
which it accomplishes these goals depends upon the
operator used by the nonterminal corresponding to
that cell:

Ordered choice: Let c be the first of the choices that

8

either matches successfully within the block, or
yields an incomplete future expression position,
p, when evaluated. Let f be the set of complete
future expressions encountered up to this point.
If f is empty, and c was a successful match, yield
success. If f is not empty, combine the elements
of f using the ordered choice operator to form
e. If c was found, yield e as this cell’s complete
future expression and either p or, if p is not de-
fined, the position following c as this cell’s in-
complete future expression position. If no c was
found, yield e, unless f was empty, in which case
yield failure.

Sequence: Let s1 be the first element of the se-
quence and s2 be the second element. If evaluat-
ing s1 yields failure, yield failure. If evaluating
s1 yields a complete future expression c1, then
if s1 did not also yield an incomplete future ex-
pression position p1, yield a sequence containing
c1 followed by s2 as this cell’s complete future
expression. If s2 yields success and s1 yielded
success, yield success. If s2 yields success and
p1 is defined, yield c1 as this cell’s complete fu-
ture expression and the position following s2 as
this cell’s incomplete future expression position.
If s2 yields a complete future expression c2 and
a possible incomplete future expression position
p2, then if p1 is defined, yield c1 combined with
c2 using the ordered choice operator as this cell’s
complete future expression and p2, if defined, as
this cell’s incomplete future expression position.
If c2 is defined, yield c2 as this cell’s complete
future expression and p2, if defined, as this cell’s
incomplete future expression position.

Not followed by: If the current position is at the
end of the block, yield the current nonterminal
as this cell’s complete future expression. Other-
wise, yield the normal result of evaluating this
rule.

Others: If the current position is at the end of the
input string, yield failure. If the current position
is at the end of the block, yield the current non-
terminal as this cell’s complete future expression.

Otherwise, yield the normal result of evaluating
this rule.

Eventually, the recursive cell evaluations of each
block will return to the start symbol for that block.
At that point, there will be no incomplete future ex-
pression position, and for most blocks, the start sym-
bol will either yield failure or a complete future ex-
pression that forms the synthesized start symbol for
the next block. The rightmost block’s start symbol,
however, will either indicate success or failure when
its evaluation is complete; whichever value it indi-
cates determines the result for the parse as a whole.

The processing window: A final enhancement to
the algorithm is the processing window, which serves
two purposes: it reduces the imbalance in work-
efficiency between the blocks near the beginning of
the string and the blocks at the end, and it can be
used to make the parallel packrat algorithm require
an amount of space constant in the size of the input
string. With a processing window in use, a fixed size
is chosen for each block; ideally, a packrat table of
the size chosen will fit entirely in the cache of each
processing node in the parallel machine the algorithm
is being run on. The ideal size will vary depending
on the number of nonterminals in the grammar of
interest. As many worker threads are then created
as there are processing nodes, unless the input string
is short enough that even fewer are required. These
worker threads then begin parsing the input string,
with the thread corresponding to the leftmost block
processing its start symbol and the others working
speculatively, as described above. If the input string
is long enough, there will be more blocks than worker
threads; it is in this situation that the processing win-
dow kicks in.

When the leftmost block has been completely eval-
uated and the synthesized start symbol it created has
been passed to the right, the thread that was eval-
uating that block is reused. It is given the block
just to the right of the rightmost block that currently
has a thread working on it. The effect is as though
there is a window being held in front of the blocks,
and only the blocks that show through the window
have threads assigned to them; when a block is com-

9

pleted, the window is moved to the right one block,
so that a new block receives a thread to work on it.
This process continues until the processing window
has moved all of the way to the right and there are
no blocks which are not either complete or currently
being evaluated.

This technique is especially beneficial for packrat
parsing since packrat tables can be so large. To save
space, packrat tables can be allocated only for the
blocks within the processing window; as the window
moves, the old tables can either be wiped clean and
returned to a pristine state, or deallocated and re-
placed with freshly allocated ones. If this is done,
the space required by the algorithm becomes constant
instead of linear in the input length, which makes
packrat parsing an even more compelling alternative
to convential parsing algorithms.

4 Results

4.1 Parallel Earley algorithm results

The above Java implementation was coupled with an
‘off-the-shelf’ context free grammar for Java. Using
the parallel and serial Earley algorithms, the below
results are produced deterministically, with the ex-
ception of the speedup results. The timing results
used to compute reported speedups are the arith-
metic mean of the timing results of the final 20 out
of 25 consecutive runs.

Cost of speculation: Recall from Section 3.1 that
the the final step in creating a parallel version of the
Earley algorithm is breaking the dependence of sub-
block Bi,0 on Bi−1,0. As described, this requires in-
corporating speculative Earley items into the com-
putation. Moreover, in using speculative items it
is possible that ‘excess’ items, non-speculative items
not produced by the serial Earley algorithm, are con-
structed. In this section, we attempt to provide some
intuition and quantification of how and when Earley
items are constructed as a by-product of speculation.

We first measure the total number of items in each
Earley subset using both the serial Earley algorithm
and the parallel Earley algorithm with four blocks.

0 20 40 60 80 100

0
1
0
0

2
0
0

3
0
0

4
0

0

Position

#
 E
a
rl
e
y
 I
te
m
s

Figure 6: Total number of Earley items in each Earley
subset using the serial Earley algorithm (gray) and paral-
lel Earley algorithm using four blocks (black), when run
on a typical Java file.

The results for a typical (small) Java file are sum-
marized in Figure 6, and for an atypical Java file
consisting of 30 (empty) nested classes in Figure 7.

In both of these plots, the beginning of each block
is distinguished by a significant elevation in the num-
ber of Earley items, nearly all of which are speculative
items produced by the S-Scan mechanism. Though
the number of speculative and excess items typically
returns to 0 very quickly, infrequent spikes not ex-
plained by the start of a block remain.

Further analysis has shown that these subsequent
spikes occur when a speculative production (namely,
a production that did not begin in the current block)
terminates, causing a cascade of new speculative
items via the S-Complete mechanism. In particu-
lar, this frequently occurs at the end of functions and
classes, when an ‘unmatched’ brace is encountered;
this last explanation matches the observed large num-
ber of speculative items towards the end of both Java
files.

To quantify the effect of the number of blocks,
we measure the total number items over all Earley
subsets produced by the parallel Earley algorithm
for various number of blocks. The results for both
the typical and atypical Java files, normalized to the
number of items produced by the serial algorithm,
are summarized in Figure 8.

10

0 50 100 150

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Position

#
 E
a
rl
e
y
 I
te
m
s

Figure 7: Total number of Earley items in each Earley
subset using the serial Earley algorithm (gray) and paral-
lel Earley algorithm using four blocks (black), when run
on an atypical, deeply-nested Java file.

Note that, for small numbers of blocks, the nor-
malized value for the deeply-nested Java file grows
more rapidly than that for the typical Java file. Once
again, this is explained by the previous observation
that unmatched braces produce large number of spec-
ulative items: in this case, unmatched braces con-
stituting the end of the file (and the resultant large
number of speculative items) are encountered even for
small numbers of blocks. Once this source for spec-
ulative items is saturated, however, both files add
speculative items at similar rates as the number of
blocks grows.

Observed work-efficiency / speedup: Though
the situation portrayed in 8 seems difficult to over-
come, consider that nearly all Java files are ‘typical’,
and are also much longer. As a result, occasional
spikes as in Figure 6 are amortized over long, well-
behaved regions. We consider a more direct mea-
surement of the work-efficiency of the parallel Earley
algorithm over a long (12,000 line) Java file, namely
the ‘speedup’ of the parallel algorithm when run us-
ing a single thread and various numbers of blocks.
Also included in Figure 9 are the results when multi-
ple threads are utilized.

Focusing on the case with a single thread, we see
that using multiple blocks produces a speedup of less

0 5 10 15 20 25 30

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

Blocks

E
a
rl
e
y
 I
te
m
 R
a
ti
o

Figure 8: Ratio of the number of Earley items produced
by the parallel algorithm to the number of Earley items
produced by the serial algorithm for the given block size:
a typical Java file (•), and a deeply-nested Java file (◦).

than one, as expected. Even for 16 blocks, how-
ever, the speedup is greater than 0.8, suggesting the
work efficiency is actually quite good (a reasonable
interpretation is that > 80% of the time is spent
doing useful work). Thus, parallelization is feasible,
and observing the speedups associated with multiple
threads, is realizable. The plot indicates a roughly
linear relationship between speedup and the number
of processors (so long as the number of blocks is suf-
ficiently high). In the best case, a speedup of 5.44
was obtained using 8 threads and 8 blocks.

4.2 Parallel Packrat algorithm results

The parallel packrat algorithm described above was
implemented completely, except for the constant
memory usage feature. The algorithm was evalu-
ated using an off-the-shelf PEG for parsing expres-
sion grammars. It was run against two inputs, a small
648 byte grammar for simple arithmetic, (Calc.peg)
and a larger 2,916 byte grammar for parsing expres-
sion grammars. (PEG.peg) The speculation heuris-
tic used evaluated a nonterminal near the top of the
grammar’s parse tree, Definition, and assumed that
any matches were true matches, skipping over the
positions used in the match when performing further
speculation. Trials were conducted for worker thread

11

1 2 3 4 5 6 7 8

0
1

2
3

4
5

6

Simultaneous Threads

S
p
e
e
d
u
p
 v
e
rs
u
s
 S
e
ri
a
l
Im
p
le
m
e
n
ta
ti
o
n

Figure 9: Speedup of the parallel Earley algorithm over
the serial Earley algorithm as a function of the number of
threads for: 2 blocks (◦), 4 blocks (N), 8 blocks (•), and
16 blocks (+).

counts between 1 and 8 and for block sizes of 250,
500, 750, and 1000. A special ’even’ block size, signi-
fying that the input string was to be divided evenly
among the worker threads, was also evaluated. For
each combination of thread count, block size, and
input, 100 trials were conducted; results are based
on the arithmetic mean of these trials. The machine
used to run these benchmarks was an 8-core Mac Pro.

Work efficiency: The packrat tables used in the
worker threads were inspected after execution of the
algorithm was complete, and the number of cells eval-
uated was recorded. The results are depicted in Fig-
ures 10 and 11, which present the ratio of the num-
ber of cells evaluated by the parallel algorithm to the
number that would have been evaluated using the se-
rial algorithm. We can see that smaller block sizes
generally result in greater speculation in both cases.
The ’even’ line in the Calc.peg example particularly
stands out; Calc.peg is such a small file that evenly di-
viding its characters between more than three threads
results in tiny block sizes that create extreme ineffi-
ciency. At the far right side of the figure, with 8
threads, the block size is only 81 characters; block
sizes as small as this cause a great deal of additional

speculative work to be done because the threads asso-
ciated with later blocks have time to evaluate a much
higher percentage of the cells they consider, and each
thread must wait for all previous blocks to complete
before it stops speculating. The ’even’ measurement
is additionally hurt because, since it divides the en-
tire input string evenly between the workers, it does
not take advantage of the processing window to pre-
vent work on later parts of the string from getting out
of control. Finally, in both figures, the larger block
sizes remain essentially flat after a certain number of
threads has been reached; this is because, with a large
enough block size, only the first few threads have any
work to do.

Speedup: The time taken to execute the paral-
lel parsing algorithm was recorded using the built-in
Java function System.nanoTime(). The time taken
to allocate data structures, such as the packrat ta-
bles, was excluded, since these data structures can
be reused between invocations of the algorithm and it
seems realistic that such an optimization may be em-
ployed in the real-world. The results are depicted in
Figures 12 and 13. Both graphs demonstrate a peak
– for PEG.peg, at 5 threads, and for Calc.peg at 4
threads – but their behavior after the peak is reached
is quite different. Calc.peg’s speedup plunges precip-
itously both to the left and the right; it’s probable
that this peak represents a block size sweet spot at
162 characters per block that has more to do with the
specific content of the input at boundaries between
blocks than with a consistent trend. PEG.peg dis-
plays a better overall speedup – its peak is at about
2.5 instead of 2.3 for Calc.peg – but its results, com-
bined with those of Calc.peg, suggest that the par-
allel packrat algorithm may be limited in its ability
to take advantage of more threads. In both cases,
we see speedup climb to a certain level and then re-
main more or less flat. PEG.peg, which is about 4.5
times as large as Calc.peg, showed an improvement
in speedup potential, but speedup didn’t increase lin-
early with the increase in input size. These data sug-
gest that the speedup of the parallel packrat algo-
rithm, while promising, is far from linear either in
terms of the number of threads or the size of the in-

12

1 2 3 4 5 6 7 8

0.
95

1.
00

1.
05

1.
10

1.
15

1.
20

1.
25

Threads

E
va

lu
at

ed
 C

el
l R

at
io

Even
250
500
750
1000

Figure 10: Ratio of the number of cells evaluated by
the parallel packrat algorithm with a given number of
worker threads to the number of cells evaluated without
speculation, for PEG.peg.

1 2 3 4 5 6 7 8

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

Threads

E
va

lu
at

ed
 C

el
l R

at
io

Even
250
500
750
1000

Figure 11: Ratio of the number of cells evaluated by
the parallel packrat algorithm with a given number of
worker threads to the number of cells evaluated without
speculation, for Calc.peg.

put.

5 Conclusion

We have presented parallel versions of two well-
known parsing algorithms, Earley and Packrat.
Though the algorithms work differently internally,
they are both fundamentally based upon the idea
that the input to a parsing algorithm can be divided
into blocks such that a significant amount of useful
work can be done on a block without having parsed
the input which preceded it. Our results have con-
firmed this intuition and shown that parsing is an
area with a substantial amount of untapped paral-
lelization potential. Both of our algorithms achieved
speedup on realistic inputs; a maximum speedup of
5.44 was observed in the case of Earley, and 2.5 in
the case of Packrat. Our algorithms are reasonably
work-efficient for real-world inputs, and the paral-
lel Packrat algorithm is capable of achieving better
space complexity than the original serial algorithm.

We believe that further improvements to the al-
gorithms and their implementations may yield still
better results. Both algorithms would benefit from a
heuristic to choose where block divisions occur; as we
varied the sizes of the blocks our algorithms used, our
results changed in nonlinear ways that suggest oppor-
tunities to further improve performance. In addition,
the Packrat algorithm depends heavily on the heuris-
tic used to choose cells to speculatively evaluate, and
little work has been invested in optimizing this part of
the algorithm. Beyond heuristics, neither algorithm
currently takes advantage of vector or SIMD instruc-
tions, which may be a fruitful area of further research.
It may even be possible to formulate new vector-style
instructions tailored for parsers that could help these
algorithms improve even further.

These parallel algorithms will become increasingly
relevant as a new wave of computing devices with
a large number of small, simple cores become more
and more popular. Even for traditional computers,
the ubiquity of the Web and interpreted languages
leads us to believe that parallel parsing algorithms
like these will prove useful in the future. We are
excited to have taken a first step towards the parallel

13

1 2 3 4 5 6 7 8

1.
0

1.
5

2.
0

2.
5

Threads

S
pe
ed
up

Even
250
500
750
1000

Figure 12: Speedup of the parallel packrat algorithm as
compared to the single-threaded case, for PEG.peg.

1 2 3 4 5 6 7 8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

Threads

S
pe
ed
up

Even
250
500
750
1000

Figure 13: Speedup of the parallel packrat algorithm as
compared to the single-threaded case, for Calc.peg.

parsing algorithms of tomorrow.

References

[1] J Aycock and R Horspool. Practical earley pars-
ing. The Computer Journal, 46 (6):620–630, 2002.

[2] A. Birman. The tmg recognition schema. PhD
thesis, Princeton University, Princeton, NJ, USA,
1970.

[3] Y. Chiang and K. Fu. Parallel parsing algorithms
and vlsi implementations for syntactic pattern
recognition. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, PAMI-6 (3):302–
314, 1984.

[4] J. Earley. An efficient context-free parsing algo-
rithm. Commun. ACM, 13:94–102, 1970.

[5] B. Ford. Packrat parsing: a practical linear-
time algorithm with backtracking. Master’s the-
sis, Massachusetts Institute of Technology, 2002.

[6] J Hill and A Wayne. A cyk approach to parsing in
parallel: A case study. Proceeding of the Twenty-
Second SIGCSE Technical Symposium on Com-
puter Science Education, pages 240–245, 1991.

[7] G Sandstrom. A parallel extension of earley’s
parsing algorithm. 1994.

[8] L. Valiant. General context-free recognition in
less than cubic time. Journal of Computer Sci-
ence, 10:308–315, 1975.

14

