CS252
Graduate Computer Architecture
Lecture 8

Explicit Renaming (con’t)
Prediction
(Branches, Return Addrs)

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs252

Quick Recap:
Explicit Register Renaming

* Make use of a physical register file that is larger than
number of registers specified by ISA

* Keep a translation table:
— ISA register => physical register mapping

— When register is written, replace table entry with new register from
freelist.

— Physical register becomes free when not being used by any
instructions in progress.

Rename
Table

2/18/09 cs252-S09, Lecture 8

Explicit register renaming:
R10000 Freelist Management

| PO | P2 | P4 | F6 | F8 |P10|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?

/ > Newest
|P32|P34|P36|P38I- « «|P60|P62
Freelist Oldest

» Physical register file larger than ISA register file

* On issue, each instruction that modifies a register is
allocated new physical register from freelist

* Used on: R10000, Alpha 21264, HP PA8000

2/18/09 ¢s252-S09, Lecture 8

Explicit register renaming:
R10000 Freelist Management

P32| P2 | P4 | F6 | F8 |P10|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30

Current Map Table Done?
/ Newest
|P34|P36|P38|P40I- .o
Freelist
LD P32,10(R2) Oldest

* Note that physical register PO is “dead” (or not “live”)
past the point of this load.

— When we go to commit the load, we free up

2/18/09 ¢s252-S09, Lecture 8

Explicit register renaming:
R10000 Freelist Management

|P32| P2 | P4 | P6 | P8 |P34|P12|P14|P16|P18|P20|P22|P24|P26|P28|P30I

Current Map Table Done?

/ Newest
|P36|P38|P40|P42I- oo
. ADDD P34,P4,P32
Freelist 2
LD P32,10(R2) Oldest
2/18/09 cs252-S09, Lecture 8

Explicit register renaming:
R10000 Freelist Management

|P32|P36| P4 | F6 | F8 |P34|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?

/ — Newest

P38|P40|P44|P48] - - - |P6O|P62 - BNE P36,<..> N
F2[P2]D1vp P36,P34,Pd N

Freelist F1dP10| ADDP P34,P4,P34 N
Fo[PO[LDJP32,10(R2) [N] Oldest

h - Checkpoint at BNE instruction

Explicit register renaming:
R10000 Freelist Management

|P40|P36|P38| F6 | F8 |P34|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?
—) |- ST 0(R3),P40 Y

FO[P32[ADDD P40, P38, Pé

F4|P4[LD P38,0(R3)

Pazlpaalpaglpsoff- - .| Po P10 [E=f | BNE P36.<.>
F2[P2 [DIVD P36,P34,P6
. 10[ADDD P34, P4, P32

Freelist
FO| PO | LD P32,10(R2)

h - Checkpoint at BNE instruction
TS252+509;tecture

Newest

<

KIK|IZ|Z]I<

Oldest

Explicit register renaming:
R10000 Freelist Management

|P32|P36| P4 | F6 | F8 |P34|P12|P14|P16|P18|P20|P22|P24|p26|P28|P30I

Current Map Table Done?

Newest

DIVD P36,P34,Pq N
ADDD P34,P4,P3d y
LD P32,10(R2)

Error fixed by kestoRing map table and merging freelist

h - Checkpoint at BNE instruction
TS252+509;tectured

Freelist

Oldest

Advantages of Explicit Renaming

Decouples from

— Pipeline can be exactly like “standard” DLX pipeline (perhaps with
multiple operations issued per cycle)

— Or, pipeline could be tomasulo-like or a scoreboard, etc.
— Standard forwarding or bypassing could be used

Allows data to be fetched from single register file
— No need to bypass values from reorder buffer
— This can be important for balancing pipeline

Many processors use a variant of this technique:
— R10000, Alpha 21264, HP PA8000

Another way to get precise interrupt points:

— All that needs to be “undone” for precise break point
is to undo the table mappings

— Provides an interesting mix between reorder buffer and future file
» Results are written immediately back to register file
» Registers names are “freed” in program order (by ROB)
2/18/09 cs252-S09, Lecture 8 9

Superscalar Register Renaming

* During decode, instructions allocated new physical destination register
« Source operands renamed to physical register with newest value
« Execution unit only sees physical register numbers

Inst1 | Op |Dest|Srci|src2| | Op |Dest|Srci|sSrc2]| Inst 2
|

|
— [

| Read Add .
o L LElss vnamerame | | Fesse
apping 2 i
D * Read Data D Free List

| op |PDest|psrci|psic2| | op [PDest|PSrci|PSrc2|

Does this work?

2/18/09 cs252-S09, Lecture 8 10

Superscalar Register Renaming (Try #2)

Inst 1| op |pest|srci|src2| [op [Dest|srci|src2] Inst 2
[

:: Read Addresses R
'\;dea_te g8 Rename Table Register
apping =8 Free List
Read Data D

Must check for] |
RAW hazards
between
instructions
issuing in same
cycle. Can be
done in parallel

}’VitE rename | op |pDest|PSrcilpsrc2| [op |PDestlPsrci|Psrc2|
ookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle
2/18/09 cs252-S09, Lecture 8 11

Administrative

* Midterm I: Wednesday 3/18
Location: 310 Soda Hall
TIME: 6:00—9:00
— Can have 1 sheet of 8'2x11 handwritten notes — both sides
— No microfiche of the book!
* This info is on the Lecture page (has been)

* Meet at LaVal’s afterwards for Pizza and Beverages
— Great way for me to get to know you better
— I'll Buy!

2/18/09 cs252-S09, Lecture 8 12

Review: Independent “Fetch” unit
Stream of Instructions

To Execute
Instruction Fetch Out-Of-Order
with (BB Execution
Branch Prediction Unit

Correctness Feedback
On Branch Results

* Instruction fetch decoupled from execution

» Often issue logic (+ rename) included with Fetch
2/18/09 cs252-S09, Lecture 8

13

Branches must be resolved quickly

* In our loop-unrolling example, we relied on the fact that
branches were under control of “fast” integer unit in
order to get overlap!

= Loop: LD FO 0 R1
MULTD F4 FO F2
SD F4 O R1
SUBI R1 Rl #8
BNEZ R1 Loop

* What happens if branch depends on result of multd??
— We completely lose all of our advantages!
— Need to be able to “predict” branch outcome.

— If we were to predict that branch was taken, this would be
right most of the time.

* Problem much worse for superscalar machines!
2/18/09 cs252-S09, Lecture 8

Control Flow Penalty

Next fetch
started

Buffer
Buffer
Func.
Units
Result
Buffer

Modern processors may have > 10
pipeline stages between next PC
calculation and branch resolution !

How much work is lost if pipeline
doesn’t follow correct instruction flow?

~ Loop length x pipeline width

Branch
executed
Arch.
State
2/18/09 ¢s252-S09, Lecture 8

15

MIPS Branches and Jumps

Each instruction fetch depends on one or two pieces of
information from the preceding instruction:

1) Is the preceding instruction a taken branch?

2) If so, what is the target address?

Instruction Taken known? Target known?
J After Inst. Decode After Inst. Decode
IR After Inst. Decode After Reg. Fetch

BEQZ/BNEZ After Reg. Fetch” After Inst. Decode

*Assuming zero detect on register read

2/18/09 ¢s252-S09, Lecture 8

Branch Penalties in Modern Pipelines

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

| A | PC Generation/Mux
| P | Instruction Fetch Stage 1
Branch | F | Instruction Fetch Stage 2
Target | B | Branch Address Calc/Begin Decode
Address I | Complete Decode
Known] . . .
. H J | Steer Instructions to Functional units
ranc =] . .
Direction & > R | Register File Read
Target Known ! Remainder of execute pipeline
(+ another 6 stages)
2/18/09 cs252-S09, Lecture 8 17

2/18/09

Reducing Control Flow Penalty

Software solutions
* Eliminate branches - loop unrolling
Increases the run length
* Reduce resolution time - instruction scheduling
Compute the branch condition as early
as possible (of limited value)

Hardware solutions
* Find something else to do - delay slots
Replaces pipeline bubbles with useful work
(requires software cooperation)
« Speculate - branch prediction
Speculative execution of instructions beyond
the branch

cs252-S09, Lecture 8 18

Branch Prediction

» Motivation:

— Branch penalties limit performance of deeply pipelined
processors

— Modern branch predictors have high accuracy:
(>95%) and can reduce branch penalties significantly

* Required hardware support:
— Prediction structures:
» Branch history tables, branch target buffers, etc.

— Mispredict recovery mechanisms:
» Keep result computation separate from commit
» Kill instructions following branch in pipeline
» Restore state to state following branch

2/18/09 cs252-S09, Lecture 8 19

2/18/09

Case for Branch Prediction when
Issue N instructions per clock cycle

Branches will arrive up to n times faster in an n-issue
processor

— Amdahl’s Law => relative impact of the control stalls will be larger
with the lower potential CPI in an n-issue processor

— conversely, need branch prediction to ‘see’ potential parallelism
Performance = f(accuracy, cost of misprediction)

— Misprediction = Flush Reorder Buffer

— Questions: How to increase accuracy or decrease cost of
misprediction?

Decreasing cost of misprediction

— Reduce number of pipeline stages before result known

— Decrease number of instructions in pipeline

— Both contraindicated in high issue-rate processors!

cs252-S09, Lecture 8 20

Static Branch Prediction

Overall probability a branch is taken is ~60-70% but:
|

backward forward
90% 50%

ISA can attach preferred direction semantics to branches, e.g.,
Motorola MC88110

bne0 (preferred taken)

beq0 (not taken)
ISA can allow arbitrary choice of statically predicted direction,

e.g., HP PA-RISC, Intel IA-64
typically reported as ~80% accurate

2/18/09 cs252-S09, Lecture 8 21

Predicated Execution

» Avoid branch prediction by turning branches
into conditionally executed instructions:
if (x) then A =B op C else NOP

— If false, then neither store result nor cause exception
— Expanded ISA of Alpha, MIPS, PowerPC, SPARC have

conditional move; PA-RISC can annul any following instr

— 1A-64: 64 1-bit condition fields selected
so conditional execution of any instruction

— This transformation is called “if-conversion”

* Drawbacks to conditional instructions
— Still takes a clock even if “annulled”
— Stall if condition evaluated late

— Complex conditions reduce effectiveness;
condition becomes known late in pipeline

2/18/09 cs252-S09, Lecture 8

22

Dynamic Branch Prediction

learning based on past behavior

Temporal correlation
The way a branch resolves may be a good predictor of
the way it will resolve at the next execution

Spatial correlation
Several branches may resolve in a highly correlated
manner (a preferred path of execution)

2/18/09 ¢s252-S09, Lecture 8 23

Dynamic Branch Prediction Problem

History
Information

Incoming Branches
{ Address }

Prediction
{ Address, Value }

Corrections
{ Address, Value }

—

* Incoming stream of addresses
» Fast outgoing stream of predictions

* Correction information returned from pipeline
2/18/09 cs252-S09, Lecture 8

24

What does history look like?
E.g.: One-level Branch History Table (BHT)

» Each branch given its own predictor state machine

+ BHT is table of “Predictors” Branch PC
— Could be 1-bit, could be complex state machine
— Indexed by PC address of Branch — without tags
* Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 iterations before exit):
— End of loop case: when it exits instead of looping as before

— First time through loop on next time through code, when it
predicts exit instead of looping

* Thus, most schemes use at least 2 bit predictors

* Performance = f(accuracy, cost of misprediction)
— Misprediction = Flush Reorder Buffer

* In Fetch state of branch:

— Use Predictor to make prediction
* When branch completes

— Update corresponding Predictor

2/18/09 cs252-S09, Lecture 8 25

2-bit predictor

» Solution: 2-bit scheme where change prediction
only if get misprediction twice:

T
NT
Predict Taken = Predict Taken
4
T
NT
Predict Not Predict Not
Taken T Taken
* Red: stop, not taken NT

* Green: go, taken
* Adds hysteresis to decision making process

2/18/09 cs252-S09, Lecture 8 26

Typical Branch History Table

Fetch PC | | Iolol
¢ J
Y H_I |
1 kK L 2k-entry
I-Cache BHT Tndex |H{BHT.
n bits/entry
Instruction l
Opcodel | offset |
|
v I
— |
Branch? Target PC Taken/—-Taken?

4K-entry BHT, 2 bits/entry, —80-90%b correct predictions

2/18/09 ¢s252-S09, Lecture 8 27

Pipeline considerations for BHT

Only predicts branch direction. Therefore, cannot redirect fetch
stream until after branch target is determined.

Correctly PC Generation/Mux
predicted Instruction Fetch Stage 1
taken branch Instruction Fetch Stage 2
penalty

Branch Address Calc/Begin Decode
Complete Decode

Steer Instructions to Functional units
Register File Read

Integer Execute

Jump Register
penalty

[P EE

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III fetch pipeline
2/18/09 ¢s252-S09, Lecture 8 28

Branch Target Buffer

predicted ||BPh
target
Branch
. . ¢ | Target
IMEM . . .
. . ¢ | Buffer
y (2« entries)
— PC
—_— /_/%
— | [| target |[BP

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then Kill the instruction

and update BTB & BPb else update BPb
2/18/09 cs252-S09, Lecture 8 29

Address Collisions in BTB

132 | Jump 100
Assume a
128-entry
BTB 1028 | Add
target BPb
— 236 | [take] i
Instruction
What will be fetched after the instruction at 1028? Memory
BTB prediction = 236
Correct target = 1032
= kill PC=236 and fetch PC=1032
Is this a common occurrence?
Can we avoid these bubbles?
2/18/09 cs252-S09, Lecture 8 30

BTB is only for Control Instructions
BTB contains useful information for branch and
jump instructions only
= Do not update it for other instructions

For all other instructions the next PC is PC+4 !

How to achieve this effect without decoding the
instruction?

2/18/09 ¢s252-S09, Lecture 8 31

Branch Target Buffer (BTB)

2k-entry direct-mapped BTB

I-Cache r
PC (can also be associative)
—] | | Entry PC Valid predicted
target PC
E —_—

. k . . :

L) [} L] [}

L) [} L]]
— match valid target

< Keep both the branch PC and target PC in the BTB

e PC+4 is fetched if match fails

e Only predicted taken branches and jumps held in BTB

« Next PC determined before branch fetched and decoded

2/18/09 ¢s252-S09, Lecture 8 32

Consulting BTB Before Decoding

132 Jump 100

entry PC target BPb
132 [236 | [take] 1028 Add

* The match for PC=1028 fails and 1028+4 is fetched
[eliminates false predictions after ALU instructions

* BTB contains entries only for control transfer instructions
[J more room to store branch targets

2/18/09 cs252-S09, Lecture 8 33

Comblnlng BTB and BHT

BTB entries are considerably more expensive than BHT, but can
redirect fetches at earlier stage in pipeline and can accelerate
indirect branches (JR)

* BHT can hold many more entries and is more accurate

PC Generation/Mux
Instruction Fetch Stage 1
Instruction Fetch Stage 2

BHT in later Branch Address Calc/Begin Decode

pipeline stage
corrects when
BTB misses a
predicted
taken branch

Complete Decode
Steer Instructions to Functional units
Register File Read

[m[=]<|-[w][n]o]>]

Integer Execute

BTB/BHT only updated after branch resolves in E stage

2/18/09 cs252-S09, Lecture 8 34

Uses of Jump Register (JR)

« Switch statements (jump to address of matching case)
BTB works well if same case used repeatedly

* Dynamic function call (jump to run-time function address)

BTB works well if same function usually called,
(e.g., in C++ programming, when objects have
same type in virtual function call)

» Subroutine returns (jump to return address)
BTB works well if usually return to the same place

= Often one function called from many distinct call
sites!

How well does BTB work for each of these cases?

2/18/09 cs252-S09, Lecture 8 35

Subroutine Return Stack

Small structure to accelerate JR for subroutine returns,
typically much more accurate than BTBs.

fa() { fb(); nexta: }
fb() { fc(); nextb: }
fc() { fd(); nextc: }

Push return address when Pop return address
function call executed /\

when subroutine return

decoded
&nextc k entries
&nextb (typically k=8-16)
&nexta
2/18/09 cs252-S09, Lecture 8 36

Mispredict Recovery

In-order execution machines:

— Assume no instruction issued after branch can write-back
before branch resolves

— Kill all instructions in pipeline behind mispredicted branch

Out-of-order execution?

—Multiple instructions following branch in program
order can complete before branch resolves

2/18/09 cs252-S09, Lecture 8 37

In-Order Commit for Precise Exceptions

In-order Out-of-order In-order

\4

Fetch ™ Decode Reorder Buffer Commit

[Execute |

A\ 4

Kill

Inject handler PC

< Instructions fetched and decoded into instruction
reorder buffer in-order

= Execution is out-of-order (= out-of-order completion)

< Commit (write-back to architectural state, i.e., regfile &
memory, is in-order

Temporary storage needed in ROB to hold results before commit ‘

2/18/09 ¢s252-S09, Lecture 8 38

Branch Misprediction in Pipeline

nject correct PC~

Kill
Kill Kill '\
—> Fetch Decode Reorder Buffer/ Commit
Complete
Execute

e Can have multiple unresolved branches in ROB
= Can resolve branches out-of-order by Killing all the
instructions in ROB that follow a mispredicted branch

2/18/09 ¢s252-S09, Lecture 8 39

Recovering ROB/Renaming Table

Rename Rename Register
Table " Snapshots File
i 1 I
- Ins# |use|exed op |pll srcl p2| src2 dl dest | data t,
next to cf)mml t2
SRR OO NS, NN
Ilback R BB
ne)l?avzﬁable\‘
Ptr, —] t,
next available T T
| I 1 I l |
Reorder T T 1 | | !
buffer Commit
Gt | POl R | T
| I
l l l l < t, result >

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

2/18/09 ¢s252-S09, Lecture 8 40

Speculating Both Directions

An alternative to branch prediction is to execute
both directions of a branch speculatively

e resource requirement is proportional to the
number of concurrent speculative executions

= only half the resources engage in useful work
when both directions of a branch are executed
speculatively

* branch prediction takes less resources
than speculative execution of both paths

With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction

2/18/09 cs252-S09, Lecture 8 41

Correlating Branches

* Hypothesis: recent branches are correlated; that is, behavior of
recently executed branches affects prediction of current branch

» Two possibilities; Current branch depends on:

— Last m most recently executed branches anywhere in program
Produces a “GA” (for “global adaptive”) in the Yeh and Patt
classification (e.g. GAg)

— Last m most recent outcomes of same branch.
rrodgcz\es) a “PA” (for “per-address adaptive”) in same classification

e.g. PAg

» ldea: record m most recently executed branches as taken or not
taken, and use that pattern to select the proper branch history table
entry

— A single history table shared by all branches
(appends a “g” at end), indexed by history value.

— Address is used along with history to select table entry
(appends a “p” at end of classification)

— If only portion of address used, often appends an “s” to indicate “set-
indexed” tables (l.e. GAs)

2/18/09 cs252-S09, Lecture 8 42

Exploiting Spatial Correlation
Yeh and Patt, 1992

if (x[i] < 7) then
y += 1;

if (X[i] < 5) then
c -= 4;

If first condition false, second condition also false

History register, H, records the direction of the last N
branches executed by the processor

2/18/09 cs252-S09, Lecture 8 43

Correlating Branches

* For instance, consider global history, set-indexed
BHT. That gives us a GAs history table.

(2,2) GAs predictor

— First 2 means that we keep two
bits of history

— Second means that we have 2
bit counters in each slot.

— Then behavior of recent
branches selects between,
say, four predictions of next
branch, updating just that
prediction

— Note that the original two-bit
counter solution would be a
(0,2) GAs predictor . LT . .

— Note also that aliasing is 2-bit global branch history register

possible here...

Branch address

2-bits per branch predictors

Il Prediction

Each slot is
2-bit counter

2/18/09 cs252-S09, Lecture 8 44

2/18/09

Two-Level Branch Predictor (e.g. GAs)

Pentium Pro uses the result from the last two branches

to select one of the four sets of BHT bits (~95% correct)

| | loo] T,
_

Fetch PC ‘ﬁ/ Kk I I I l

—— | | |

2-bit global branch
history shift register

Shift in Taken/'lTakqnﬁ_,

results of each
—\ /

branch
Taken/"Taken?

cs252-S09, Lecture 8

45

What are Important Metrics?

» Clearly, Hit Rate matters
— Even 1% can be important when above 90% hit rate

» Speed: Does this affect cycle time?

» Space: Clearly Total Space matters!

— Papers which do not try to normalize across different options
are playing fast and lose with data

— Try to get best performance for the cost

2/18/09 cs252-S09, Lecture 8 46

2/18/09

Accuracy of Different Schemes

18% T

16% T

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

2% T 11%

14% T

10% T
8% T+
6% T+
a% 1
2% +

0% -

Frequency of Mispredictions

nasa7
matrix300

tomcatv

doducd
spice
fpppp

gce
espresso
eqntott

W 4,096 entries: 2-bits per entry W uniimited entries: 2-bits/entry W 1,024 entries (2,2)

¢s252-S09, Lecture 8

47

BHT Accuracy

* Mispredict because either:
— Wrong guess for that branch
— Got branch history of wrong branch when index the table

* 4096 entry table programs vary from 1% misprediction
(nasa7, tomcatv) to 18% (eqntott), with spice at 9% and
gcc at 12%

— For SPEC92, 4096 about as good as infinite table

* How could HW predict “this loop will execute 3 times”
using a simple mechanism?
— Need to track history of just that branch
— For given pattern, track most likely following branch direction

* Leads to two separate types of recent history tracking:
— GBHR (Global Branch History Register)
— PABHR (Per Address Branch History Table)

» Two separate types of Pattern tracking
— GPHT (Global Pattern History Table)

— PAPHT (Per Address Pattern History Table)

2/18/09 ¢s252-S09, Lecture 8 48

Yeh and Patt classification

L PABHR
GPHT

PAg

* GAg: Global History Register, Global History Table
» PAg: Per-Address History Register, Global History Table
* PAp: Per-Address History Register, Per-Address History Table

PAp

2/18/09 cs252-S09, Lecture 8

49

Two-Level Adaptive Schemes:
History Registers of Same Length (6 bits)

009
n |] l
[} a Iil L
09600 grm---e- a 2 -- goocee e
a " O mapl BRTISILA oy,
R . . PHPHTIELAZY)
e I Y A -8 - Bpg] BHTEI2A
N o EHTIBL AT
"r’.aa-aa-a mmemn e e]| G BHRIL A, PHTIRSAZL
a
* T TN BRSSP SR
¥
DE0IE Frmmmmmm === = meme e mm e e e mme e e e -
L7600 et 4 +
T E= by a = a = = o 2
SEREEEENEEE
85§ § T8°T oz
g E ¥ L : 3 -

* PAp best: But uses a lot more statse!

* GAg not effective with 6-bit history registers
— Every branch updates the same history register=interference
* PAg performs better because it has a branch history table
2/18/09 cs252-S09, Lecture 8

50

Versions with Roughly same
accuracy (97%)

1.0000
s i ﬁ
] o O
09600 - -O- - @ 4 4 Wy
. 0o o | e
- of BHR(1, 1881,
PHT(2¢13,42),)
™ 0.9200
c — = - PAp(BHT(512,4 sr),
c b 2*PHT(64,A2),]
Y0800 - - e e e e e e e oo | Pag(BHT(512,4 1261,
r PHT(2%12,42),)
a
€ 08400
I
0.8000
0.7600 ——t . : —t
F 5§ § 8 8 5§ 8% 8 8 8§ 2
o o £ w o 2 g = a 3 & o
= = c g ® g g Q
(<] (<] -3 a (4] = = x 3 £
. 5 £ ° 8 g P o8 °
» Cost: g T ¥

— GAg requires 18-bit history register
— PAg requires 12-bit history register
— PAp requires 6-bit history register
* PAg is the cheapest among these
2/18/09 ¢s252-S09, Lecture 8

51

Why doesn’t GAg do better?

 Difference between GAg and both PA variants:
— GAg tracks correllations between different branches
— PAg/PAp track corellations between different instances of the
same branch
* These are two different types of pattern tracking
— Among other things, GAg good for branches in straight-line code,
while PA variants good for loops
* Problem with GAg? It aliases results from different
branches into same table

— Issue is that different branches may take same global pattern and
resolve it differently

— GAg doesn’t leave flexibility to do this

2/18/09 ¢s252-S09, Lecture 8

52

Other Global Variants:
Try to Avoid Aliasing

PAPHT GPHT

GBHR
GBHR

Address

GAs

* GAs: Global History Register,
Per-Address (Set Associative) History Table

» Gshare: Global History Register, Global History Table with
Simple attempt at anti-aliasing

2/18/09 cs252-S09, Lecture 8

GShare

53

2/18/09

Is Glpbal or Local better?

Gshare Better

PAs Better

Gshare Accuracy - PAs Accuracy (%)

o 1 T T T T T T 1 1 T 1 T 1 T T T 1T 1
310 15 20 25 30 35 40 45 30 55 60 635 TO 73 B0 85 40 95 100

Percentile Dynamic Branches
« Neither: Some branches local, some global

— From: “An Analysis of Correlation and Predictabilital: What Makes
Two-Level Branch Predictors Work,” Evers, Patel, Chappell, Patt

— Difference in predictability quite significant for some branches!

cs252-S09, Lecture 8

54

Dynamically finding structure in
Spaghetti

« Consider complex —
“spaghetti code”

» Are all branches likely to

need the same type of >
branch prediction? 5
“No. (=]

 What to do about it?

— How about predicting which
predictor will be best?

— Called a “Tournament predictor”

2/18/09 cs252-S09, Lecture 8

55

2/18/09

Tournament Predictors

» Motivation for correlating branch predictors is 2-
bit predictor failed on important branches; by
adding global information, performance
improved

 Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

* Use the predictor that tends to guess correctly
addr | history

| |
I
N
LH
DNz
!

cs252-S09, Lecture 8

56

% of predictions from local
Tournament Predictor in Alpha 21264 predictor in Tournament Scheme

e 4K 2-bit counters to choose from among a global
predictor and a local predictor

* Global predictor also has 4K entries and is indexed by the

0% 20% 40% 60% 80% 100%

history of the last 12 branches; each entry in the global nasat
predictor is a standard 2-bit predictor matrix300

— 12-bit pattern: ith bit 0 => ith prior branch not taken; tomcatv

ith bit 1 => ith prior branch taken; doduc

e Local predictor consists of a 2-level predictor: spice
— Top level a local history table consisting of 1024 10-bit fpppp
entries; each 10-bit entry corresponds to the most recent 10 gce

branch outcomes for the entry. 10-bit history allows patterns
10 branches to be discovered and predicted.

— Next level Selected entry from the local history table is used
to index a table of 1K entries consisting a 3-bit saturating
counters, which provide the local prediction

* Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)

2/18/09 cs252-S09, Lecture 8 57 2/18/09 cs252-S09, Lecture 8 58

oo Accuracy v. Size (SPECB89)
0
tomcatv %%’6:% 10% -
] 95% 2
doduc A ©
97% =
86% 5
foppp % 9595 0 Profile-based g
1 W 2-bitcounter b
. @
I 5 88% @ Tournament E
98% S
i [
86% o
espresso % —
96% S
b o
88% =
goo —0 . E
o
| ‘ ‘ ‘ ‘ 0 fig 3.40 S
0% 20% 40% 60% 80% 100%
Profile: b h Bre%nlch redic}iontaccuracyt_ 0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
+ Profile: branch profile from last execution . . .
(static in that in encoded in instruction, but profile) Total predictor size (Kbits)

2/18/09 ¢s252-S09, Lecture 8 59 2/18/09 ¢s252-S09, Lecture 8 60

Pitfall:
Sometimes bigger and dumber is better

* 21264 uses tournament predictor (29 Kbits)

« Earlier 21164 uses a simple 2-bit predictor
with 2K entries (or a total of 4 Kbits)
» SPEC95 benchmarks, 21264 outperforms
— 21264 avg. 11.5 mispredictions per 1000 instructions
— 21164 avg. 16.5 mispredictions per 1000 instructions
* Reversed for transaction processing (TP) !
— 21264 avg. 17 mispredictions per 1000 instructions
— 21164 avg. 15 mispredictions per 1000 instructions
* TP code much larger & 21164 hold 2X branch

predictions based on local behavior (2K vs.
1K local predictor in the 21264)

2/18/09 cs252-S09, Lecture 8 61

Special Case Return Addresses
* Register Indirect branch hard to predict address
— SPEC89 85% such branches for procedure return

— Since stack discipline for procedures, save return address in small
buffer that acts like a stack: 8 to 16 entries has small miss rate

— Fetch Unit Select for
Indirect Jumps
[On Fetch]
-— Predicted
Destination From Next PC
Call Instruction
[On Fetch?]
Return Address Stack
2/18/09 cs252-S09, Lecture 8 62

Performance: Return Address Predictor

» Cache most recent return addresses:
— Call = Push a return address on stack
— Return = Pop an address off stack & predict as new PC

70%

go

t? 60% - ‘\ —— m88ksim
e \ ccl
T 50% 7\
o) 4 compress
e
‘E 40% - —¥—xlisp
O ..
2 300 | ijpeg
kel ——perl
95)_ 20% vortex
[%2] .
£ 10% - .

0% e)

<
~ T S~ G
2 4 8 16

Return address buffer entries
2/18/09 csiﬁz-g&, Lecture 8 63

Conclusion

Explicit Renaming: more physical registers than needed by ISA.

— Rename table: tracks current association between architectural registers and
physical registers

— Uses a translation table to perform compiler-like
transformation on the fly

* Prediction works because....
— Programs have patterns
— Just have to figure out what they are
— Basic Assumption: Future can be predicted from past!
Correlation: Recently executed branches correlated with next branch.
— Either different branches (GA)
— Or different executions of same branches (PA).
Two-Level Branch Prediction
— Uses complex history (either global or local) to predict next branch
— Two tables: a history table and a pattern table
— Global Predictors: GAg, GAs, GShare
— Local Predictors: PAg, Pap

2/18/09 ¢s252-S09, Lecture 8 64

