
CS252
Graduate Computer Architecture

Lecture 8

Explicit Renaming (con’t)
Prediction

(Branches, Return Addrs)

John Kubiatowicz
Electrical Engineering and Computer Sciences

University of California, Berkeley

http://www.eecs.berkeley.edu/~kubitron/cs252

2/18/09 cs252-S09, Lecture 8 2

Quick Recap:
Explicit Register Renaming

• Make use of a physical register file that is larger than
number of registers specified by ISA

• Keep a translation table:
– ISA register => physical register mapping
– When register is written, replace table entry with new register from

freelist.
– Physical register becomes free when not being used by any

instructions in progress.

Fetch Decode/
Rename Execute

Rename
Table

2/18/09 cs252-S09, Lecture 8 3

Explicit register renaming:
R10000 Freelist Management

Done?

Oldest

Newest

P0P0 P2P2 P4P4 F6F6 F8F8 P10P10 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P32P32 P34P34 P36P36 P38P38  P60P60 P62P62

Current Map Table

Freelist

• Physical register file larger than ISA register file
• On issue, each instruction that modifies a register is

allocated new physical register from freelist
• Used on: R10000, Alpha 21264, HP PA8000

2/18/09 cs252-S09, Lecture 8 4

Explicit register renaming:
R10000 Freelist Management

F0F0 P0P0 LD P32,10(R2)LD P32,10(R2) NN

Done?

Oldest

Newest

P32P32 P2P2 P4P4 F6F6 F8F8 P10P10 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P34P34 P36P36 P38P38 P40P40  P60P60 P62P62

Current Map Table

Freelist

• Note that physical register P0 is “dead” (or not “live”)
past the point of this load.

– When we go to commit the load, we free up

2/18/09 cs252-S09, Lecture 8 5

Explicit register renaming:
R10000 Freelist Management

F10F10
F0F0

P10P10
P0P0

ADDD P34,P4,P32ADDD P34,P4,P32
LD P32,10(R2)LD P32,10(R2)

NN
NN

Done?

Oldest

Newest

P32P32 P2P2 P4P4 P6P6 P8P8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 P26P26 P28P28 P30P30

P36P36 P38P38 P40P40 P42P42  P60P60 P62P62

Current Map Table

Freelist

2/18/09 cs252-S09, Lecture 8 6

Explicit register renaming:
R10000 Freelist Management

F2F2
F10F10
F0F0

P2P2
P10P10
P0P0

BNE P36,<…>BNE P36,<…> NN
DIVD P36,P34,P6DIVD P36,P34,P6
ADDD P34,P4,P32ADDD P34,P4,P32
LD P32,10(R2)LD P32,10(R2)

NN
NN
NN

Done?

Oldest

Newest

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48  P60P60 P62P62

Current Map Table

Freelist

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48  P60P60 P62P62 Checkpoint at BNE instruction

2/18/09 cs252-S09, Lecture 8 7

Explicit register renaming:
R10000 Freelist Management

F0F0
F4F4

F2F2
F10F10
F0F0

P32P32
P4P4

P2P2
P10P10
P0P0

ST 0(R3),P40ST 0(R3),P40
ADDD P40,P38,P6ADDD P40,P38,P6

YY
YY

LD P38,0(R3)LD P38,0(R3) YY
BNE P36,<…>BNE P36,<…> NN
DIVD P36,P34,P6DIVD P36,P34,P6
ADDD P34,P4,P32ADDD P34,P4,P32
LD P32,10(R2)LD P32,10(R2)

NN
yy
yy

Done?

Oldest

Newest

P40P40 P36P36 P38P38 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P42P42 P44P44 P48P48 P50P50  P0P0 P10P10

Current Map Table

Freelist

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48  P60P60 P62P62 Checkpoint at BNE instruction
2/18/09 cs252-S09, Lecture 8 8

Explicit register renaming:
R10000 Freelist Management

F2F2
F10F10
F0F0

P2P2
P10P10
P0P0

DIVD P36,P34,P6DIVD P36,P34,P6
ADDD P34,P4,P32ADDD P34,P4,P32
LD P32,10(R2)LD P32,10(R2)

NN
yy
yy

Done?

Oldest

Newest

Current Map Table

Freelist

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48  P60P60 P62P62 Checkpoint at BNE instruction

P32P32 P36P36 P4P4 F6F6 F8F8 P34P34 P12P12 P14P14 P16P16 P18P18 P20P20 P22P22 P24P24 p26p26 P28P28 P30P30

P38P38 P40P40 P44P44 P48P48  P0P0 P10P10

Error fixed by restoring map table and merging freelist

2/18/09 cs252-S09, Lecture 8 9

Advantages of Explicit Renaming
• Decouples renaming from scheduling:

– Pipeline can be exactly like “standard” DLX pipeline (perhaps with
multiple operations issued per cycle)

– Or, pipeline could be tomasulo-like or a scoreboard, etc.
– Standard forwarding or bypassing could be used

• Allows data to be fetched from single register file
– No need to bypass values from reorder buffer
– This can be important for balancing pipeline

• Many processors use a variant of this technique:
– R10000, Alpha 21264, HP PA8000

• Another way to get precise interrupt points:
– All that needs to be “undone” for precise break point

is to undo the table mappings
– Provides an interesting mix between reorder buffer and future file

» Results are written immediately back to register file
» Registers names are “freed” in program order (by ROB)

2/18/09 cs252-S09, Lecture 8 10

Superscalar Register Renaming
• During decode, instructions allocated new physical destination register
• Source operands renamed to physical register with newest value
• Execution unit only sees physical register numbers

Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Does this work?

Inst 1 Inst 2

Read Addresses

Read Data

W
rit

e
P

or
ts

2/18/09 cs252-S09, Lecture 8 11

Superscalar Register Renaming (Try #2)

Rename Table

Op Src1 Src2Dest Op Src1 Src2Dest

Register
Free List

Op PSrc1 PSrc2PDestOp PSrc1 PSrc2PDest

Update
Mapping

Inst 1 Inst 2

Read Addresses

Read Data

W
ri
te

P
o
rt

s

=?=?

Must check for
RAW hazards
between
instructions
issuing in same
cycle. Can be
done in parallel
with rename
lookup.

MIPS R10K renames 4 serially-RAW-dependent insts/cycle
2/18/09 cs252-S09, Lecture 8 12

Administrative
• Midterm I: Wednesday 3/18

Location: 310 Soda Hall
TIME: 6:00—9:00

– Can have 1 sheet of 8½x11 handwritten notes – both sides
– No microfiche of the book!

• This info is on the Lecture page (has been)
• Meet at LaVal’s afterwards for Pizza and Beverages

– Great way for me to get to know you better
– I’ll Buy!

2/18/09 cs252-S09, Lecture 8 13

Review: Independent “Fetch” unit

Instruction Fetch
with

Branch Prediction

Out-Of-Order
Execution

Unit

Correctness Feedback
On Branch Results

Stream of Instructions
To Execute

• Instruction fetch decoupled from execution
• Often issue logic (+ rename) included with Fetch

2/18/09 cs252-S09, Lecture 8 14

Branches must be resolved quickly
• In our loop-unrolling example, we relied on the fact that

branches were under control of “fast” integer unit in
order to get overlap!

• Loop: LD F0 0 R1
MULTD F4 F0 F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

• What happens if branch depends on result of multd??
– We completely lose all of our advantages!
– Need to be able to “predict” branch outcome.
– If we were to predict that branch was taken, this would be

right most of the time.
• Problem much worse for superscalar machines!

2/18/09 cs252-S09, Lecture 8 15

I-cache

Fetch
Buffer

Issue
Buffer

Func.
Units

Arch.
State

Execute

Decode

Result
Buffer Commit

PC

Fetch

Branch
executed

Next fetch
started

Modern processors may have > 10
pipeline stages between next PC
calculation and branch resolution !

Control Flow Penalty

How much work is lost if pipeline
doesn’t follow correct instruction flow?

~ Loop length x pipeline width

2/18/09 cs252-S09, Lecture 8 16

Instruction Taken known? Target known?

J

JR
BEQZ/BNEZ

MIPS Branches and Jumps

Each instruction fetch depends on one or two pieces of
information from the preceding instruction:

1) Is the preceding instruction a taken branch?

2) If so, what is the target address?

After Inst. Decode

After Inst. Decode After Inst. Decode

After Inst. Decode After Reg. Fetch

After Reg. Fetch*

*Assuming zero detect on register read

2/18/09 cs252-S09, Lecture 8 17

Branch Penalties in Modern Pipelines

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

UltraSPARC-III instruction fetch pipeline stages
(in-order issue, 4-way superscalar, 750MHz, 2000)

Branch
Target
Address
Known

Branch
Direction &
Jump Register
Target Known

2/18/09 cs252-S09, Lecture 8 18

Reducing Control Flow Penalty
Software solutions

• Eliminate branches - loop unrolling
Increases the run length

• Reduce resolution time - instruction scheduling
Compute the branch condition as early
as possible (of limited value)

Hardware solutions
• Find something else to do - delay slots

Replaces pipeline bubbles with useful work
(requires software cooperation)

• Speculate - branch prediction
Speculative execution of instructions beyond
the branch

2/18/09 cs252-S09, Lecture 8 19

Branch Prediction
• Motivation:

– Branch penalties limit performance of deeply pipelined
processors

– Modern branch predictors have high accuracy:
(>95%) and can reduce branch penalties significantly

• Required hardware support:
– Prediction structures:

» Branch history tables, branch target buffers, etc.

– Mispredict recovery mechanisms:
» Keep result computation separate from commit
» Kill instructions following branch in pipeline
» Restore state to state following branch

2/18/09 cs252-S09, Lecture 8 20

Case for Branch Prediction when
Issue N instructions per clock cycle

• Branches will arrive up to n times faster in an n-issue
processor
– Amdahl’s Law => relative impact of the control stalls will be larger

with the lower potential CPI in an n-issue processor
– conversely, need branch prediction to ‘see’ potential parallelism

• Performance = ƒ(accuracy, cost of misprediction)
– Misprediction  Flush Reorder Buffer
– Questions: How to increase accuracy or decrease cost of

misprediction?
• Decreasing cost of misprediction

– Reduce number of pipeline stages before result known
– Decrease number of instructions in pipeline
– Both contraindicated in high issue-rate processors!

2/18/09 cs252-S09, Lecture 8 21

Static Branch Prediction
Overall probability a branch is taken is ~60-70% but:

ISA can attach preferred direction semantics to branches, e.g.,
Motorola MC88110

bne0 (preferred taken) beq0 (not taken)

ISA can allow arbitrary choice of statically predicted direction,
e.g., HP PA-RISC, Intel IA-64

typically reported as ~80% accurate

JZ

JZ
backward

90%
forward

50%

2/18/09 cs252-S09, Lecture 8 22

• Avoid branch prediction by turning branches
into conditionally executed instructions:
if (x) then A = B op C else NOP

– If false, then neither store result nor cause exception
– Expanded ISA of Alpha, MIPS, PowerPC, SPARC have

conditional move; PA-RISC can annul any following instr.
– IA-64: 64 1-bit condition fields selected

so conditional execution of any instruction
– This transformation is called “if-conversion”

• Drawbacks to conditional instructions
– Still takes a clock even if “annulled”
– Stall if condition evaluated late
– Complex conditions reduce effectiveness;

condition becomes known late in pipeline

x

A =
B op C

Predicated Execution

2/18/09 cs252-S09, Lecture 8 23

Dynamic Branch Prediction
learning based on past behavior

Temporal correlation
The way a branch resolves may be a good predictor of
the way it will resolve at the next execution

Spatial correlation
Several branches may resolve in a highly correlated
manner (a preferred path of execution)

2/18/09 cs252-S09, Lecture 8 24

Dynamic Branch Prediction Problem

• Incoming stream of addresses
• Fast outgoing stream of predictions
• Correction information returned from pipeline

Branch
Predictor

Incoming Branches
{ Address }

Prediction
{ Address, Value }

Corrections
{ Address, Value }

History
Information

2/18/09 cs252-S09, Lecture 8 25

What does history look like?
E.g.: One-level Branch History Table (BHT)

• Each branch given its own predictor state machine
• BHT is table of “Predictors”

– Could be 1-bit, could be complex state machine
– Indexed by PC address of Branch – without tags

• Problem: in a loop, 1-bit BHT will cause two
mispredictions (avg is 9 iterations before exit):

– End of loop case: when it exits instead of looping as before
– First time through loop on next time through code, when it

predicts exit instead of looping
• Thus, most schemes use at least 2 bit predictors
• Performance = ƒ(accuracy, cost of misprediction)

– Misprediction  Flush Reorder Buffer

• In Fetch state of branch:
– Use Predictor to make prediction

• When branch completes
– Update corresponding Predictor

Predictor 0

Predictor 7

Predictor 1Branch PC

2/18/09 cs252-S09, Lecture 8 26

• Solution: 2-bit scheme where change prediction
only if get misprediction twice:

• Red: stop, not taken
• Green: go, taken
• Adds hysteresis to decision making process

2-bit predictor

T

T
NT

NT

Predict Taken

Predict Not
Taken

Predict Taken

Predict Not
TakenT

NT

T

NT

2/18/09 cs252-S09, Lecture 8 27

Typical Branch History Table

4K-entry BHT, 2 bits/entry, ~80-90% correct predictions

0 0Fetch PC

Branch? Target PC

+

I-Cache

Opcode offset
Instruction

k

BHT Index

2k-entry
BHT,
n bits/entry

Taken/¬Taken?

2/18/09 cs252-S09, Lecture 8 28

Pipeline considerations for BHT
Only predicts branch direction. Therefore, cannot redirect fetch
stream until after branch target is determined.

UltraSPARC-III fetch pipeline

Correctly
predicted
taken branch
penalty

Jump Register
penalty

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

Remainder of execute pipeline
(+ another 6 stages)

2/18/09 cs252-S09, Lecture 8 29

Branch Target Buffer

BP bits are stored with the predicted target address.

IF stage: If (BP=taken) then nPC=target else nPC=PC+4
later: check prediction, if wrong then kill the instruction

and update BTB & BPb else update BPb

IMEM

PC

Branch
Target
Buffer
(2k entries)

k

BPbpredicted

target BP

target

2/18/09 cs252-S09, Lecture 8 30

Address Collisions in BTB

What will be fetched after the instruction at 1028?
BTB prediction =
Correct target =



Assume a
128-entry
BTB

BPbtarget
take236

1028 Add

132 Jump 100

Instruction
Memory

236
1032

kill PC=236 and fetch PC=1032

Is this a common occurrence?
Can we avoid these bubbles?

2/18/09 cs252-S09, Lecture 8 31

BTB is only for Control Instructions

BTB contains useful information for branch and
jump instructions only

 Do not update it for other instructions

For all other instructions the next PC is PC+4 !

How to achieve this effect without decoding the
instruction?

2/18/09 cs252-S09, Lecture 8 32

Branch Target Buffer (BTB)

• Keep both the branch PC and target PC in the BTB
• PC+4 is fetched if match fails
• Only predicted taken branches and jumps held in BTB
• Next PC determined before branch fetched and decoded

2k-entry direct-mapped BTB
(can also be associative)

I-Cache PC

k

Valid

valid

Entry PC

=

match

predicted

target

target PC

2/18/09 cs252-S09, Lecture 8 33

Consulting BTB Before Decoding

1028 Add

132 Jump 100

BPbtarget
take236

entry PC
132

• The match for PC=1028 fails and 1028+4 is fetched
� eliminates false predictions after ALU instructions

• BTB contains entries only for control transfer instructions
� more room to store branch targets

2/18/09 cs252-S09, Lecture 8 34

Combining BTB and BHT
• BTB entries are considerably more expensive than BHT, but can

redirect fetches at earlier stage in pipeline and can accelerate
indirect branches (JR)

• BHT can hold many more entries and is more accurate

A PC Generation/Mux
P Instruction Fetch Stage 1
F Instruction Fetch Stage 2
B Branch Address Calc/Begin Decode
I Complete Decode
J Steer Instructions to Functional units
R Register File Read
E Integer Execute

BTB

BHTBHT in later
pipeline stage
corrects when
BTB misses a
predicted
taken branch

BTB/BHT only updated after branch resolves in E stage

2/18/09 cs252-S09, Lecture 8 35

Uses of Jump Register (JR)
• Switch statements (jump to address of matching case)

• Dynamic function call (jump to run-time function address)

• Subroutine returns (jump to return address)

How well does BTB work for each of these cases?

BTB works well if same case used repeatedly

BTB works well if same function usually called,
(e.g., in C++ programming, when objects have
same type in virtual function call)

BTB works well if usually return to the same place
 Often one function called from many distinct call

sites!

2/18/09 cs252-S09, Lecture 8 36

Subroutine Return Stack
Small structure to accelerate JR for subroutine returns,

typically much more accurate than BTBs.

&nexta
&nextb

Push return address when
function call executed

Pop return address
when subroutine return
decoded

fa() { fb(); nexta: }

fb() { fc(); nextb: }

fc() { fd(); nextc: }

&nextc k entries
(typically k=8-16)

2/18/09 cs252-S09, Lecture 8 37

Mispredict Recovery

In-order execution machines:
– Assume no instruction issued after branch can write-back

before branch resolves
– Kill all instructions in pipeline behind mispredicted branch

–Multiple instructions following branch in program
order can complete before branch resolves

Out-of-order execution?

2/18/09 cs252-S09, Lecture 8 38

In-Order Commit for Precise Exceptions

• Instructions fetched and decoded into instruction
reorder buffer in-order

• Execution is out-of-order ( out-of-order completion)
• Commit (write-back to architectural state, i.e., regfile &
memory, is in-order

Temporary storage needed in ROB to hold results before commit

Fetch Decode

Execute

CommitReorder Buffer

In-order In-orderOut-of-order

Kill
Kill Kill

Exception?Inject handler PC

2/18/09 cs252-S09, Lecture 8 39

Branch Misprediction in Pipeline

Fetch Decode

Execute

CommitReorder Buffer

Kill

Kill Kill

Branch
Resolution

Inject correct PC

• Can have multiple unresolved branches in ROB
• Can resolve branches out-of-order by killing all the

instructions in ROB that follow a mispredicted branch

Branch
Prediction

PC

Complete

2/18/09 cs252-S09, Lecture 8 40

t vt vt v

Recovering ROB/Renaming Table

Register
File

Reorder
buffer Load

Unit
FU FU FU Store

Unit

< t, result >

t1
t2
.
.
tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename
Table r1

t v

r2

Take snapshot of register rename table at each predicted
branch, recover earlier snapshot if branch mispredicted

Rename
Snapshots

Ptr2
next to commit

Ptr1
next available

rollback
next available

2/18/09 cs252-S09, Lecture 8 41

Speculating Both Directions

• resource requirement is proportional to the
number of concurrent speculative executions

An alternative to branch prediction is to execute
both directions of a branch speculatively

• branch prediction takes less resources
than speculative execution of both paths

• only half the resources engage in useful work
when both directions of a branch are executed
speculatively

With accurate branch prediction, it is more cost
effective to dedicate all resources to the predicted
direction

2/18/09 cs252-S09, Lecture 8 42

Correlating Branches
• Hypothesis: recent branches are correlated; that is, behavior of

recently executed branches affects prediction of current branch
• Two possibilities; Current branch depends on:

– Last m most recently executed branches anywhere in program
Produces a “GA” (for “global adaptive”) in the Yeh and Patt
classification (e.g. GAg)

– Last m most recent outcomes of same branch.
Produces a “PA” (for “per-address adaptive”) in same classification
(e.g. PAg)

• Idea: record m most recently executed branches as taken or not
taken, and use that pattern to select the proper branch history table
entry

– A single history table shared by all branches
(appends a “g” at end), indexed by history value.

– Address is used along with history to select table entry
(appends a “p” at end of classification)

– If only portion of address used, often appends an “s” to indicate “set-
indexed” tables (I.e. GAs)

2/18/09 cs252-S09, Lecture 8 43

Exploiting Spatial Correlation
Yeh and Patt, 1992

History register, H, records the direction of the last N
branches executed by the processor

if (x[i] < 7) then
y += 1;

if (x[i] < 5) then
c -= 4;

If first condition false, second condition also false

2/18/09 cs252-S09, Lecture 8 44

Correlating Branches

(2,2) GAs predictor
– First 2 means that we keep two

bits of history
– Second means that we have 2

bit counters in each slot.
– Then behavior of recent

branches selects between,
say, four predictions of next
branch, updating just that
prediction

– Note that the original two-bit
counter solution would be a
(0,2) GAs predictor

– Note also that aliasing is
possible here...

Branch address

2-bits per branch predictors

PredictionPrediction

2-bit global branch history register

• For instance, consider global history, set-indexed
BHT. That gives us a GAs history table.

Each slot is
2-bit counter

2/18/09 cs252-S09, Lecture 8 45

Two-Level Branch Predictor (e.g. GAs)
Pentium Pro uses the result from the last two branches
to select one of the four sets of BHT bits (~95% correct)

0 0

kFetch PC

Shift in Taken/¬Taken
results of each
branch

2-bit global branch
history shift register

Taken/¬Taken?
2/18/09 cs252-S09, Lecture 8 46

What are Important Metrics?
• Clearly, Hit Rate matters

– Even 1% can be important when above 90% hit rate

• Speed: Does this affect cycle time?
• Space: Clearly Total Space matters!

– Papers which do not try to normalize across different options
are playing fast and lose with data

– Try to get best performance for the cost

2/18/09 cs252-S09, Lecture 8 47

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

na
sa

7

m
at

rix
30

0

to
m

ca
tv

do
du

cd

sp
ic

e

fp
pp

p gc
c

es
pr

es
so

eq
nt

ot
t li

0%
1%

5%
6% 6%

11%

4%

6%
5%

1%

4,096 entries: 2-bits per entry Unlimited entries: 2-bits/entry 1,024 entries (2,2)

Accuracy of Different Schemes

4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

0%

18%

Fr
eq

ue
nc

y
of

 M
is

pr
ed

ic
tio

ns

2/18/09 cs252-S09, Lecture 8 48

BHT Accuracy
• Mispredict because either:

– Wrong guess for that branch
– Got branch history of wrong branch when index the table

• 4096 entry table programs vary from 1% misprediction
(nasa7, tomcatv) to 18% (eqntott), with spice at 9% and
gcc at 12%

– For SPEC92, 4096 about as good as infinite table
• How could HW predict “this loop will execute 3 times”

using a simple mechanism?
– Need to track history of just that branch
– For given pattern, track most likely following branch direction

• Leads to two separate types of recent history tracking:
– GBHR (Global Branch History Register)
– PABHR (Per Address Branch History Table)

• Two separate types of Pattern tracking
– GPHT (Global Pattern History Table)
– PAPHT (Per Address Pattern History Table)

2/18/09 cs252-S09, Lecture 8 49

Yeh and Patt classification

GBHR

GPHT
GAg

GPHT
PABHR

PAg
PAPHTPABHR

PAp
• GAg: Global History Register, Global History Table
• PAg: Per-Address History Register, Global History Table
• PAp: Per-Address History Register, Per-Address History Table

2/18/09 cs252-S09, Lecture 8 50

Two-Level Adaptive Schemes:
History Registers of Same Length (6 bits)

• PAp best: But uses a lot more state!
• GAg not effective with 6-bit history registers

– Every branch updates the same history registerinterference
• PAg performs better because it has a branch history table

2/18/09 cs252-S09, Lecture 8 51

Versions with Roughly same
accuracy (97%)

• Cost:
– GAg requires 18-bit history register
– PAg requires 12-bit history register
– PAp requires 6-bit history register

• PAg is the cheapest among these
2/18/09 cs252-S09, Lecture 8 52

Why doesn’t GAg do better?
• Difference between GAg and both PA variants:

– GAg tracks correllations between different branches
– PAg/PAp track corellations between different instances of the

same branch

• These are two different types of pattern tracking
– Among other things, GAg good for branches in straight-line code,

while PA variants good for loops

• Problem with GAg? It aliases results from different
branches into same table

– Issue is that different branches may take same global pattern and
resolve it differently

– GAg doesn’t leave flexibility to do this

2/18/09 cs252-S09, Lecture 8 53

Other Global Variants:
Try to Avoid Aliasing

• GAs: Global History Register,
Per-Address (Set Associative) History Table

• Gshare: Global History Register, Global History Table with
Simple attempt at anti-aliasing

GAs

GBHR

PAPHT

GShare

GPHT

GBHR

Address



2/18/09 cs252-S09, Lecture 8 54

Is Global or Local better?

• Neither: Some branches local, some global
– From: “An Analysis of Correlation and Predictability: What Makes

Two-Level Branch Predictors Work,” Evers, Patel, Chappell, Patt
– Difference in predictability quite significant for some branches!

2/18/09 cs252-S09, Lecture 8 55

Dynamically finding structure in
Spaghetti

?

• Consider complex
“spaghetti code”

• Are all branches likely to
need the same type of
branch prediction?

– No.

• What to do about it?
– How about predicting which

predictor will be best?
– Called a “Tournament predictor”

2/18/09 cs252-S09, Lecture 8 56

Tournament Predictors
• Motivation for correlating branch predictors is 2-

bit predictor failed on important branches; by
adding global information, performance
improved

• Tournament predictors: use 2 predictors, 1
based on global information and 1 based on
local information, and combine with a selector

• Use the predictor that tends to guess correctly
addr history

Predictor A Predictor B

2/18/09 cs252-S09, Lecture 8 57

Tournament Predictor in Alpha 21264
• 4K 2-bit counters to choose from among a global

predictor and a local predictor
• Global predictor also has 4K entries and is indexed by the

history of the last 12 branches; each entry in the global
predictor is a standard 2-bit predictor

– 12-bit pattern: ith bit 0 => ith prior branch not taken;
ith bit 1 => ith prior branch taken;

• Local predictor consists of a 2-level predictor:
– Top level a local history table consisting of 1024 10-bit

entries; each 10-bit entry corresponds to the most recent 10
branch outcomes for the entry. 10-bit history allows patterns
10 branches to be discovered and predicted.

– Next level Selected entry from the local history table is used
to index a table of 1K entries consisting a 3-bit saturating
counters, which provide the local prediction

• Total size: 4K*2 + 4K*2 + 1K*10 + 1K*3 = 29K bits!
(~180,000 transistors)

2/18/09 cs252-S09, Lecture 8 58

% of predictions from local
predictor in Tournament Scheme

98%
100%

94%
90%

55%
76%

72%
63%

37%
69%

0% 20% 40% 60% 80% 100%

nasa7

matrix300

tomcatv

doduc

spice

fpppp

gcc

espresso

eqntott

li

2/18/09 cs252-S09, Lecture 8 59

94%

96%

98%

98%

97%

100%

70%

82%

77%

82%

84%

99%

88%

86%

88%

86%

95%

99%

0% 20% 40% 60% 80% 100%

gcc

espresso

li

fpppp

doduc

tomcatv

Branch prediction accuracy

Profile-based
2-bit counter
Tournament

Accuracy of Branch Prediction

• Profile: branch profile from last execution
(static in that in encoded in instruction, but profile)

fig 3.40

2/18/09 cs252-S09, Lecture 8 60

Accuracy v. Size (SPEC89)

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

Total predictor size (Kbits)

Local

Correlating

Tournament

2/18/09 cs252-S09, Lecture 8 61

Pitfall:
Sometimes bigger and dumber is better

• 21264 uses tournament predictor (29 Kbits)
• Earlier 21164 uses a simple 2-bit predictor

with 2K entries (or a total of 4 Kbits)
• SPEC95 benchmarks, 21264 outperforms

– 21264 avg. 11.5 mispredictions per 1000 instructions
– 21164 avg. 16.5 mispredictions per 1000 instructions

• Reversed for transaction processing (TP) !
– 21264 avg. 17 mispredictions per 1000 instructions
– 21164 avg. 15 mispredictions per 1000 instructions

• TP code much larger & 21164 hold 2X branch
predictions based on local behavior (2K vs.
1K local predictor in the 21264)

2/18/09 cs252-S09, Lecture 8 62

Special Case Return Addresses
• Register Indirect branch hard to predict address

– SPEC89 85% such branches for procedure return
– Since stack discipline for procedures, save return address in small

buffer that acts like a stack: 8 to 16 entries has small miss rate

BTBPC Predicted
Next PC

Fetch Unit

Destination From
Call Instruction

[On Fetch?]

Select for
Indirect Jumps

[On Fetch]

Return Address Stack

Mux

2/18/09 cs252-S09, Lecture 8 63

Performance: Return Address Predictor
• Cache most recent return addresses:

– Call  Push a return address on stack
– Return  Pop an address off stack & predict as new PC

0%

10%

20%

30%

40%

50%

60%

70%

0 1 2 4 8 16
Return address buffer entries

M
is

p
re

d
ic

ti
o

n
 f

re
q

u
e

n
c
y

go

m88ksim

cc1

compress

xlisp

ijpeg

perl

vortex

2/18/09 cs252-S09, Lecture 8 64

Conclusion
• Explicit Renaming: more physical registers than needed by ISA.

– Rename table: tracks current association between architectural registers and
physical registers

– Uses a translation table to perform compiler-like
transformation on the fly

• Prediction works because….
– Programs have patterns
– Just have to figure out what they are
– Basic Assumption: Future can be predicted from past!

• Correlation: Recently executed branches correlated with next branch.
– Either different branches (GA)
– Or different executions of same branches (PA).

• Two-Level Branch Prediction
– Uses complex history (either global or local) to predict next branch
– Two tables: a history table and a pattern table
– Global Predictors: GAg, GAs, GShare
– Local Predictors: PAg, Pap

