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Abstract

Conditional  control  instructions
(branches)  have  long  been  a  bottleneck
for  microprocessors.   To  overcome  this
bottleneck  architects  are  now  predicting
the  direction  and  target  of  branches.
However, while years of research has led
to  increasing  accuracy  of  branch
prediction,  the  penalty  of  a  branch
misprediction  has  been  increasing  do  to
increasing pipeline depths.  In this paper,
we attempt to use a small cache to reduce
the  penalty  of  branch  mispredictions,
allowing  for  more  aggressive pipelining
and clock cycle scaling.

Based on Brian Fields and Ras Bodik's
previous work on criticality, we conduct an
in-depth  analysis  on  branch
mispredictions' impact on the performance
of  a  modern microprocessor.   We
introduce  a  criteria called  “critical  D
chains”  that  identifies  the  branches  that
will be most harmful if mispredicted. Once
the  most  important  branches  are
identified,  we  reduce  the  branch
misprediction  penalty  by  using  a  small
trace cache and using predicted criticality
as  the  basis  for  our  replacement policy.
Our cache resulted in small, but noticeable
gains, leading us to believe that with more
engineering  work,  the  concept  of  long
critical D chains can be used to effectively
decrease the  affect  of  branch
mispredictions on overall IPC (Instructions
per Cycle).

1.  Introduction

Most  modern  processors  are
constructed based on the idea of out-of-

order  and  multi-stage  pipelines.   One
direction for improving performance is to
increase  the  number  of  stages  of  the
pipelines and reduce the cpu clock period.
The biggest problem with this modification
is  the  penalty  of  branch  misprediction.
When  a  branch  is  mispredicted,  the
processor must  to  flush the pipeline and
refill  the  pipeline  with  newly  fetched
instructions.   The  time  it  takes  for  the
pipeline to be filled again is proportional to
the length of the pipeline.

Here  we  propose  a  design  that  can
reduce  the  penalty  of  branch
mispredictions.   The  design  incorporates
the idea of criticality  and a trace cache.
We use a the concept of a critical D chain
to determine the “importance” of a branch,
and try  to  exploit  the branches that  are
most costly once mispredicted.

This  paper  will  first  discuss  some
background  information  about  criticality
and branch mispredictions and how they
apply to our study.  Then, we propose an
idea  of  how  to  take  advantage  of
criticality, and finally we show and discuss
results  of  a  simulated  model  of  our
structure.

2.  Criticality

Our  overview  of  criticality  can  be
divided  into  three  main  parts:  critical
paths,  critical  nodes,  and  critical  chains.
The concept  of  critical  paths  and  critical
nodes  are  discussed  in  Ras  Bodik  and
Brian Fields' previous work [1].  On top of
that we present the idea of critical chains.

2.1  Critical Paths
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To define critical paths, we first divide
an  instruction  up  into  different  parts
corresponding to the different stages that
an instruction goes through in a processor
pipeline.  The granularity of any criticality
model  is  determined  by  how  many  and
what  stages  are  chosen in  this  division.
For  our  purposes,  the most  basic  model
was used, which divides an instruction into
decode, execute, and commit.  Each part
is then considered as a node in a graph;
so each instruction consists of three nodes
and a program is a graph with number of
nodes equal to three times the number of
instructions executed.  Dependencies exist
between  different  nodes.   For  instance,
obviously  all  the  commit  nodes  of  the
instructions  will  depend  on  the  execute
nodes of  the  same instructions,  and  the
execute nodes will depend on the decode
nodes.  All the decode and commit nodes
will  depend  on  the  previous  ones  if  we
issue in order and have a reorder buffer.
Furthermore,  if  there  are  data
dependencies between the instructions, a
decode or execute node may depend on a
previous execute node.

Here  we  represent  the  dependencies
between nodes by drawing an arrow from
one node to another node that depends on
it.   The relationship  will  form a  directed
acyclic  graph  with  weighted  edges
(corresponding to the latency between the
two nodes), with the decode node of the
first instruction as the starting node and
the commit node of the last instruction as
the ending node.

With  the  dependency  graph
constructed, we can determine whether or
not an edge is critical.  An edge is defined
to  be non-critical  if  the  overall  run time
stays  the  same  while  we  reduce  the
weight on that edge.  An edge is defined
to be critical if it is not a non-critical edge.
The critical path of a program is formed by
following the edges that are critical.

2.2  Critical Nodes

Critical  nodes  are  defined  merely  for
convenience.   A  node  is  defined  to  be

critical if it is part of the critical path.  This
notation is useful because we can use the
technique  of  token  passing  along  last-
arriving edges described in [1]  to  try  to
estimate the critical path.  Obviously, an
edge is not part of the critical path if it is
not the last arriving edge of a node; we
can decrease the weight of such edges and
there would not be any performance gain
because the node still has to stall until the
last edge arrives.
    If we trace through all the last-arriving
edges, we form an estimate of the actual
critical path.  Of course, this path may not
be  entirely  correct,  but  this  is  a  simple
way to approximate the critical  path.  It
would be unfeasible to compute the actual
critical  path using hardware at run time.
The estimation using last  arriving edges,
on the other hand, can be relatively easily
computed by hardware.

2.3  Critical Chains

With  critical  paths  and  critical  nodes
defined,  we  started  looking  into  critical
chains.   We  define  a  critical  chain  as
follows: a set of nodes after a branch is
considered  to  be  a  critical  chain  if  they
form part of the critical path.  We decided
to  examine the  lengths  of  critical  chains
after mispredicted branches based on the
intuition  that  nodes  after  a  branch  are
likely to be critical because of the pipeline
flush.

2.4  Critical D Chains

From our experiments (see Figure 2), it
is clear that critical chains after a branch
mostly consist  of  decode nodes.  This is
not  surprising  since the processor  would
flush the whole pipeline when a branch is
mispredicted.  After the pipeline is flushed
there would be nothing left to execute and
commit,  and  therefore  the  chain  will  be
made of a list of decode nodes, which we
define as a critical D (decode) chain.
    For  the  interest  of  our  study,  long
critical  D chains are better since there is
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more room for exploiting.  A long critical D
chain  means  that  we  could  potentially
speed  up  the  program more  by  caching
the  instructions  that  are  critical.
Depending  on how much information we
store in our cache, it is possible to remove
all  the  latency  for  the  front  end  of  the
pipeline for each instruction in the cache.

2.4.1   Computing  Critical  D
Chains

Using the lengths of critical D chains in
any structure in an actual microprocessor
would  require  an  efficient  hardware
structure to compute the lengths of these
chains.   A  first  requirement  is  that  the
base architecture must include a criticality
predictor, such as the one described in [1]
based on token passing along last-arriving
edges.  Once this is in place, it may need
to be extended to track D-node criticality.
For example, to modify the token passing
predictor, one would need to plant tokens
at D nodes to find the D criticality since
the  proposed  scheme  finds  only  E
criticality, planting tokens in E nodes.  

Once the criticality  for each node can
be predicted, there is a counter for each
outstanding branch (at most one counter
per  Reorder-Buffer  entry)  that  is
incremented  on  each  consecutive
instruction  that  is  D  critical.   The

information in this counter must then be
retained somewhere.  Section 4 describes
how we decided to retain the information
in these counters.

2.5  Predictability

To  take  advantage  of  long  critical  D
Chains, it may be important to be able to
predict the length for a particular branch.
Thus,  we  took  measurements  for  the
standard  deviation  of  each  branch  away
from  the  mean  (see  Figure  2).
Unfortunately it  seems that many of the
benchmarks  exhibit  extremely  poor
variance,  possibly  to  the  point  of  this
attribute being memoryless.  

Test Mean Standard Dev.

Hist
0

Hist
8

Hist
16

Hist
24

Ana-
gram 72.44 35.69 35.52 34.98 34.20

Gcc 28.85 33.16 31.05 29.03 27.03

Perl 36.68 30.45 27.97 24.57 21.51

Eon 29.83 28.34 17.36 15.66 13.82

Twolf 21.45 23.91 22.96 22.09 20.90

Bzip 32.20 41.96 41.64 41.09 40.15

Mesa 72.47 41.84 40.82 37.84 36.17
Figure 2.  Means and Standard
Deviations for Various Tests,

Hist x indicates pattern history of
length x

We also ran tests using branch pattern
history using a branch history register with
each  information  associated  with  both  a
particular branch and the history register.
The  results  showed  that  using  pattern
history does help with predictability, with
extra  branch  history  register  bits
improving the variance in a linear fashion,
but  the variances of  several  benchmarks
are still  high relative to the mean.   We
conducted  the  rest  of  our  experiments
using  no  history  because  the  extra
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hardware spent on keeping pattern history
seems  to  outweigh  the  minor  gains  in
prediction accuracy.  Nevertheless, it may
still be possible to get some performance
gain simply from the knowledge that the
average (mean) length of the chains are
frequently quite long as we will see in later
sections.

3.  Branch Mispredictions

Our work is predicated on the idea that
to  improve  performance,  architects  will
continue  the  current  trend  of  increasing
pipeline lengths and lowering cycle times.
Recent  work  by  Sprangle  and  Carmean
from Intel  indicates  that  a  Pentium® 4
processor like architecture would continue
to  see  performance  improvements  until
the branch misprediction pipeline reaches
about 52 stages [2].   At  that point,  the
decrease  in  IPC  due  to  branch
mispredictions, makes any further increase
in  frequency/pipeline  length  counter-
productive.  Their  work showed that the
per  clock  sensitivity  of  IPC  due  to
increases branch misprediction latency is
not as high as for other pipelines  such as
the  ALU and  cache pipelines.   However,
since  the  length  of  the  branch
misprediction pipeline is very long, it has
the most impact on overall IPC.  So in our

work,  we  set  out  to  use  the  ability  to
predict  criticality  and  in  particular,  the
ability to compute the length of decode-
critical  chains after branch mispredictions
to  reduce  the  impact  of  branch
mispredictions on IPC.  We varied branch
misprediction penalties up to 50 to verify
that our simulator also showed similar IPC
sensitivity (Figure 3).  

3.1  Branch Prediction
Accuracy

We first attempted to see if the decode-
critical chains could be used to help branch
accuracy,  since  this  would  reduce  the
number  of  times  that  the  long  branch
misprediction  pipeline  would  be  used.
Figure 4 shows the plot of branch accuracy
vs  average  critical  decode  chain  length.
This  plot  shows  very  little  correlation
between the two, leading to the conclusion
the critical decode chains probably cannot
be used to increase branch accuracy.

3.2  Branch Misprediction
Penalty

Since  there  was  little  evidence  to
indicate  that  we  should  pursue  branch
accuracy, reducing the branch penalty was
the  other  target.   Long  branch
misprediction penalties come from the fact
that  the  back-end  of  the  microprocessor
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must be flushed and new instructions are
re-fetched, decoded, renamed, etc on any
branch  misprediction.   So  if  we  could
cache the results of one or more of these
front-end  processes,  the  execution  core
would be reached more quickly the penalty
would  be  reduced.   The  length  of  the
critical decode chain can be viewed as an
indication  of  how  many  instructions  are
bottlenecked by the ability of the front-end
to feed the execution core.  For example,
if  the  critical  decode  chain  is  24
instructions  long  on  an  architecture  that
has  a  throughput  of  4  instructions  per
cycle,  6  cycles  worth  of  instructions  are
bottlenecked by the front-end.

3.3  Trace Cache

One  mechanism  used  to  reduce  both
branch  misprediction  penalty  and  to
increase  branch  prediction  accuracy  is  a
trace  cache.   The  idea  behind  a  trace
cache is that there are some sequences of
instructions  (that  may  or  may  not  run
across  conditional control  instructions)
that  are  executed  frequently.   So  this
trace  cache  stores  entire  sequences  of
instructions.   Storing  traces  allows  for
more sophisticated branch prediction since
subtle correlations between branches may
be captured by a trace cache, but not by a
traditional  branch  predictor.   If  the
contents  of  the  cache  are  pre-decoded
instructions,  then  the  decode  latency  is
reduced  to  looking  up  and  entry  in  the
cache.   This  is  the  aspect  of  the  trace
cache  that  may  be  used  to  reduce  the
branch misprediction penalty.

We propose using a small  trace cache
with predecoded instructions to reduce the
branch  misprediction  penalty.   Since
predecoded  instructions  get  larger  than
plain  instructions,  this  cache  must  have
few entries  to  keep the  overall  size  and
and  access  time  low.   This  cache  is
especially  important  after  branch
mispredictions because of the criticality of
the  front-end  after  branches.
Furthermore,  the  length  of  the  critical

decode chain after a particular branch will
affect how important the cached trace is.
Longer  critical  decode  chains  will  have
more  instructions  sped  up  (finished
earlier)  by  the  trace  cache  than  chains
that aren't as long (assuming that the rest
of  the  trace  selection  mechanism  is
unchanged).   The  following  section
describes the details of our cache system.

4. Our Cache

This section describes the main parts of
our cache, the Auxiliary Branch
Information Buffer, and the Branch
Misprediction Trace Cache, and explains
how they function in a typical modern
microarchitecture.  

4.1  ABIB

The Auxiliary Branch Information Buffer
(ABIB) stores information about branches
to  be used  by other  structures.   In  this
paper, we consider it as an abstract cache-
like  object  which  can  have  a  variety  of
associativities,  sizes  and  replacement
policies.   The  input  to  the  ABIB  is  an
address  and  some  information,  and  a
read/write  signal.   On a  read,  the  ABIB
uses  the input  address as  an index into
the cache and outputs the information at
that location.  On writes, it takes the input
information  and  writes  it  to  the  index
associated  with  the  address.   Some
concrete  examples  of  ABIB  are  Branch
Target  Buffers  and  tables  of  counters
found in branch prediction schemes which
store  addresses  and  branch  history
information  respectively.   The  affect  of
aliasing  due  to  finite  size  and  non-full
associativity in ABIB structures have been
studied before;  so we assume an ideal,
infinite, fully-associative ABIB in our work
to  concentrate  on  the  behavior  of  the
BMTC  (section  4.2).   The  types  of
information we stored in  our  simulations
were current  mean of  the  length  of  the
critical  D  chain,  the  total  number  of
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branches  mispredicted  (or  another
measure of  the frequency of this branch
relative  to  others),  and  traces  for  each
branch.  The mean can be computed on
the  fly  using  an  adder,  multiplier  and
divider,  although  this  will  be  an
approximation  in  hardware  due  to  finite
counter sizes.  We store the trace because
this structure also serves as the source for
traces that enter the BMTC when evictions
occur.

4.2  BMTC

The Branch Misprediction  Trace Cache
(BMTC)   is  the  small,  fully-associative
cache that stores traces with predecoded
instructions.  It also stores in each entry,
a  value  which  is  computed  from  the
information stored in the ABIB.  This value
field is used to determine which entry will
be evicted when necessary, and when it is
necessary to do so.  One of our simulation
parameters is how to compute this value.

The inputs to the BMTC are an two indices,
a  trace,  and  a  read/write  signal,  which
function  similarly  to  the  inputs  of  the
ABIB.  Two indices are required to access
each trace and the individual instructions
of each trace.  Finally, it should be noted
that the value computed can take a long
time without large penalty since the most
important latency is the time to lookup a
trace and not the the latency to update it.
If the BMTC or ABIB is updated slowly, the
only  penalty  is  a  slightly  less  accurate
value in the BMTC; so it may be worth the
tradeoff to make the value as meaningful
as  possible  (by  making  a  pipelined
complex  value  calculation),  but  making
the update slower.

4.3 Interaction

If  the  base  architecture  does  not
already use a trace cache, a trace buffer is
added which takes input from the Decode
section of the processor and keeps a buffer
of the current trace.  This buffer is stops
taking input when it becomes full, or when
its  data  is  written  to  the  BMTC.   The
structure of this buffer is a circular buffer
of  decoded  instructions  with  maximum
size  equal  to  the  number  reorder  buffer
entries.   When  a  branch  is  sent  to  the
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reorder  buffer,  a  pointer  to  the  current
position  in  the  buffer  is  saved  for  that
branch  (this  can  be  saved  in  the  ROB).
When a branch is mispredicted, the trace
along  with  the  length  of  the  critical  D
chain  (computed  as  a  trace  is  being
sequenced) is copied into the BMTC and/or
ABIB when the branch hits the end of the
ROB.  

If  the  base  architecture  does  already
use  a  trace  cache,   the  buffer  stores
micro-ops directly from the primary trace
cache  as  if  it  were  coming  from  the
Decode section of the processor.  For our
simulations, we did not assume this type
of architecture, but our cache could still be
effective  if  it  used  more  aggressive
caching  (see  future  work).   It  is  also
possible that the replacement policy used
in our  cache would be more effective at
keeping the trace in  our  cache over  the
base trace cache.

As  instructions  commit  and  reveal
branch  mispredictions,  the  length  of  the
critical  decode  chain  for  the  current
mispredicted branch is sent to the ABIB to
update  its  information;  the  updated
information  is  computed  using  the
previous  information  for  this  branch and
the  new  information  from  the  current
branch.  This allows a variety of schemes
for using branch information history in our
replacement policy.   The  branch
misprediction also triggers a lookup in the
BMTC to see if the current misprediction is
in the cache.  If it is, the trace is used and
the input to the Rename unit is switched

from the Decoder to the BMTC.  Also, the
value in the BMTC is updated by the newly
computed information for the ABIB.  If it is
not  in  the  trace,  the  regular  branch
misprediction  pipeline  is  used.   We
explored two ways of updating the BMTC.
The first is to use the information that is
being stored in  the ABIB to  immediately
compute  a  new  value  and  compare  it
against  the  weakest  (what  this  means
depends on the value scheme) value in the
BMTC.  If the new value is better than the
old one, an eviction takes place  (Figure
7).  

Another method is to keep the current
best value computed from the information
in the ABIB (but not in the BMTC), in a
register and update this if necessary when
we update the ABIB.  Then, whenever a
value is updated in the BMTC, it is checked
against  this  value  and  an  eviction  takes
place  if  necessary.   This  method  would
save  the  computation  of  finding  the
weakest value in the the BMTC, but does
not maintain the invariant of keeping the
highest k values in the cache.  Simulations
showed that gains using this method are
must worse than using the other method,
so we used the first one.

5.  Simulations

We  evaluated  our  cache  using  the
open-source,  SimpleScalar toolset
originally  developed  by  Todd  Austin  at
University  of  Wisconsin,  now  maintained
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and  developed  by  SimpleScalar  LLC
(www.simplescalar.com).   We  also  used
the criticality package developed by Brian
Fields  and  described  in  [1].   We  chose
these  tools  simply  due  to  their  easy
availability  and  ease  of  modification.
Although SimpleScalar was not developed
to simulate extremely  long pipelines, we
are using it only to get a rough estimate of
possible  gains  and  if  warranted,  further
study  can  be  conducted  using  a  more
detailed simulator/cache model.

5.1  Simulation Methodology

Our baseline SimpleScalar simulation
configuration was as follows:

• 4-way SuperScalar
• Out-of-order Execution Core

• 4 Integer ALUs, 4 FP ALUs
• 1 Integer Multiplier/Divider, 1 FP

Multiplier/Divider
• 128 Entry Reorder Buffer

• 64KB 2-way set associative Split L1
Cache
• 1 cycle hit to I-Cache
• 2 cycle hit to D-Cache

• 256KB 2-way set associative Unified L2
Cache
• 12 cycle hit

• 8 byte bus to DRAM
• 100 Cycle latency for first word from

DRAM
• 2 cycles for rest of the words in a

line
• 4KB 4-way set associative Branch

Target Buffer
• 16KB G-Share branch predictor
• 50 cycle branch misprediction penalty
• All tests run for a max of 25 million

instructions
• The criticality tracer from [1] was

modified to determine the D criticality
for all instructions

We  simulated  the  trace  cache  by
reducing the branch misprediction penalty
linearly with the number of decode critical
instructions in the trace, with a lower limit

of  25  cycles.   Any  non-decode  critical
instructions would not  benefit  from early
decoding,  so  their  penalty  remains
unchanged.  Using this method, we cannot
get exact numbers about the size of the
our  cache,  but  we  can  make  a  rough
estimate  as  follows:   a  trace  cannot  be
longer  than 100  instructions (a  limit  we
set in simulation) and each instruction in
the trace cache takes  up 8 bytes (since
decoding instructions expands them into a
less  dense  encoding,  more  conducive  to
use by the processor's  datapath) and we
have a 5 entry BMTC = 4000 bytes.  This
also ignores the size of the ABIB, but this
structure  can  be  far  away  from  the
execution core and thus can be quite big
and slow.

Although we managed to estimate the
performance  of  our  design  by  running
simulations in SimpleScalar, future studies
should be conducted on another simulator
that  can  correctly  and  accurately  reflect
the performance of our cache model on a
processor with very deep pipelines.

5.2  Results

Figures  8  and  9  show  the  gains
achieved  by  our  cache  scheme  with
various  ways  of  computing  the  “value”
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compared  to  the  baseline  configuration,
and compared to increasing the size of the
L1  cache  by  64K,  an  alternate  way  of
spending  extra  transistors  to  try  to
increase  performance.   Using  just  the
means of the length of the critical D chains
as  our  value  showed  almost  no
improvement.   We attributed this to low
frequency  with  which  those  particular
branches occurred.  Thus, to remove those
outliers,  we tried to weight the mean of
each branch by the number of times that
branch  was  seen  (indicated  by  the
“Weighted” bars in the graph).  This was
also  compared  to  just  using  the  total
number  of  branches  that  the  time  was
seen  as  the  value  (indicated  by  the
“Totals-Only”  bars in the graph).

5.3  Analysis

Our  results  did  not  perform  quite  as
well  as  we  had   hoped.   The  weighted
cache appears to better than a doubled-
size L1 cache except for gcc, and performs
just slightly better than totals-only cache.
Considering  that  the  size  of  a  5-entry
weighted cache (estimated at 4000KB) is
much smaller than doubling the L1 cache
(64KB), it performs quite well compared to

double L1 cache.  However, a equal-size
totals-only cache also performs almost as
well.  This result is not complete surprising
considering the maximum critical D chain
we observed in our benchmarks is no more
than  five  hundred,  while  the  number  of
misses for a branch ranged anywhere from
a  thousand  times  to  thirty  thousand.
Because  the  number  of  misses  for  a
branch is much greater than the critical D
chain length and is has a wider range, the
product will depend largely on the number
of  misses.   Even with the overwhelming
effect of the number of mispredictions, we
observed slight performance gain by using
the weighted cache, which is encouraging.
Due to the lack of time and resources, we
were  unable  to  refine  the  design  of  the
weighted cache.  However, increasing the
weight of the critical D chain length seems
to be the next logical approach and may
yield better results.

The 10-entry cache, while twice as big,
does not achieve nearly twice the gain as
the 5-entry one.  We speculate that the 5-
entry  cache already obtains  most  of  the
gains possible with this technique.  Thus,
although  it  may  be  a  good  solution  in
terms of performance gain per KB of low
latency storage, it does not scale well and
should  thus  be  thought  of  as  a  small
optimization.

While  we  were  examining  the
correlation between average chain length
and branch accuracy, we discovered that
there exists a correlation between number
of times a branch is mispredicted and the
accuracy of the branch.  Branches that are
mispredicted  more  than  a  constant
number of times (this constant varies per
benchmark) have a much lower accuracy
compared  to  the  other  branches.
Therefore,  one  may  argue  that  the
performance  gain  we  obtained  with  our
cache  is  simply  a  result  of  caching  the
branches  that  are  mispredicted  most
often.   Indeed,  the  weighted  cache  has
limited  improvements  compared  to  the
totals-only  cache,  but  we  must  consider
the fact that number of branch misses are
often on the order of thousands or tens of
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thousands, whereas the length of critical D
chains  are  on  the  order  of  hundreds.
Despite  the obvious  fact  that  number of
misses has an overpowering effect, there
is  still  observable  gain  for  using  the
weighted cache.  A more detailed analysis
of  the  value  of  the concept of  critical  D
chain length is  beyond the scope of this
paper.   Nevertheless,  the  results  seem
promising.  We believe it is worthwhile to
further  look  into  the  design  of  the
weighted cache.  There may be significant
performance gain by carefully engineering
of  a  function  of  number  of  misses  and
critical  D chain length, which counteracts
the  overpowering  effect  of  number  of
misses.

6.  Future Work

Other than the hardware structure we
describe in this paper, there are a number
of  ways  of  exploiting  branch
mispredictions using the idea of criticality
and  critical  D  chains  after  branch
mispredictions:  aggressive  caching,
switching  between  an  out-of-order
processor  and  an  in-order  processor  or
between  a  long  pipeline  and  a  short
pipeline,  and  using  reconfigurable
architecture if available.

The focus of this study is exploiting the
critical  D  chains.   Therefore,  with
extremely aggressive caching that  stores
information  about  predecoding,  pre-
renaming,  or  even  pre-issuing/pre-
scheduling,  it  is  possible  to  entirely
eliminate the time spent on the front end
of the pipeline.

It would also be helpful if we were able
to more accurately predict the length  of
critical  D chains for each branch.  If  we
were to know the length length of a critical
D  chain,  we  can  allocate  appropriate
portion  of  the  memory  and  avoiding
wasting cache space.  As  our  simulation
suggests, the average lengths of critical D
chains are all reasonably long.  However,
there  does  not  seem  to  exist  a  clear
correlation between the average critical D

chain  lengths  and  their  variance,  which
means  a  naïve  way  of  predicting  the
length  based on the mean computed on
the fly would not work.  Judging from the
data obtained from our simulations, there
also  seem  to  be  very  little  correlation
between  average  critical  D  chain  length
and  branch  accuracy.   Perhaps  a  close
examination on path and pattern history
would reveal a predictable pattern of the
length of the critical D chains.

The concept of critical  chains can also
be  applied  to  save  power  consumption.
When we are in the midst of executing a
critical  D  chain,  out-of-order  execution
would  not  be  beneficial  since  all
instructions  depend  on  previous
instructions.  In that case switching to an
in-order  processor  would  not  result  in  a
performance loss,  and  the  overall  power
consumption  may  reduce  because  we
could skip some of the required checks for
out-of-order  execution  and  perform  less
computations.   Assuming  we  can
effectively predict the length of critical  D
chains, we may be able to find chains that
are long enough such that switching to an
in-order  processor  would  reduce  the
overall power usage.

Switching to a shorter pipeline when a
branch followed by a long critical D chain
is about to be executed may also reduce
the overall  run time since  it  would  take
less  time  to  refill  a  shorter  pipeline.
Presumably  the  shorter  processor  would
run  at  a  slower  speed,  and  we  would
switch back to the long pipeline once the
pipelines are filled.  However, without an
in-depth study, it is uncertain to us when
and  how  the  switching  between  the
pipelines would be performed.

Finally,  if  there  are  reconfigurable
structures  that  can  function  as  both  a
functional unit and a fetch or decode unit,
we  could  allocate  more  resources  for
decoding and fetching when a long critical
D chain is coming up.  With extra decode
and  fetch  units,  the  front  end  of  the
instructions  would  be  completed  faster,
and we would be able to reduce the time
spent  on  the  critical  D  chain.
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Unfortunately,  such  structures  are
unknown to us.

7.  Conclusion

In this paper, we introduced the idea of
a critical D chain based on previous work
in criticality of instructions [1].  We then
found that there exist many long critical D
chains after mispredicted branches.  This
information then lead to our proposal of a
cache  structure  that  incorporates  a
traditional cache (ABIB) and a small trace
cache (BMTC) with the replacement policy
as  a  function  of  the  predicted  critical  D
chain length.  The results showed that this
structure, using an estimated 4KB of low
latency  memory,  had  small,  but
observable  gains,  even  compared  to  a
configuration that added 64 of L1 cache.
Thus we see that there is some merit in
the ability to predict the length of critical D
chains.  
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