
Exploiting Criticality to Reduce Branch Misprediction Penalties

Tim Lee and Jim Chen
Adviser: John Kubiatowicz

CS252 Fall 2003

Abstract

Conditional control instructions
(branches) have long been a bottleneck
for microprocessors. To overcome this
bottleneck architects are now predicting
the direction and target of branches.
However, while years of research has led
to increasing accuracy of branch
prediction, the penalty of a branch
misprediction has been increasing do to
increasing pipeline depths. In this paper,
we attempt to use a small cache to reduce
the penalty of branch mispredictions,
allowing for more aggressive pipelining
and clock cycle scaling.

Based on Brian Fields and Ras Bodik's
previous work on criticality, we conduct an
in-depth analysis on branch
mispredictions' impact on the performance
of a modern microprocessor. We
introduce a criteria called “critical D
chains” that identifies the branches that
will be most harmful if mispredicted. Once
the most important branches are
identified, we reduce the branch
misprediction penalty by using a small
trace cache and using predicted criticality
as the basis for our replacement policy.
Our cache resulted in small, but noticeable
gains, leading us to believe that with more
engineering work, the concept of long
critical D chains can be used to effectively
decrease the affect of branch
mispredictions on overall IPC (Instructions
per Cycle).

1. Introduction

Most modern processors are
constructed based on the idea of out-of-

order and multi-stage pipelines. One
direction for improving performance is to
increase the number of stages of the
pipelines and reduce the cpu clock period.
The biggest problem with this modification
is the penalty of branch misprediction.
When a branch is mispredicted, the
processor must to flush the pipeline and
refill the pipeline with newly fetched
instructions. The time it takes for the
pipeline to be filled again is proportional to
the length of the pipeline.

Here we propose a design that can
reduce the penalty of branch
mispredictions. The design incorporates
the idea of criticality and a trace cache.
We use a the concept of a critical D chain
to determine the “importance” of a branch,
and try to exploit the branches that are
most costly once mispredicted.

This paper will first discuss some
background information about criticality
and branch mispredictions and how they
apply to our study. Then, we propose an
idea of how to take advantage of
criticality, and finally we show and discuss
results of a simulated model of our
structure.

2. Criticality

Our overview of criticality can be
divided into three main parts: critical
paths, critical nodes, and critical chains.
The concept of critical paths and critical
nodes are discussed in Ras Bodik and
Brian Fields' previous work [1]. On top of
that we present the idea of critical chains.

2.1 Critical Paths

1 of 11

To define critical paths, we first divide
an instruction up into different parts
corresponding to the different stages that
an instruction goes through in a processor
pipeline. The granularity of any criticality
model is determined by how many and
what stages are chosen in this division.
For our purposes, the most basic model
was used, which divides an instruction into
decode, execute, and commit. Each part
is then considered as a node in a graph;
so each instruction consists of three nodes
and a program is a graph with number of
nodes equal to three times the number of
instructions executed. Dependencies exist
between different nodes. For instance,
obviously all the commit nodes of the
instructions will depend on the execute
nodes of the same instructions, and the
execute nodes will depend on the decode
nodes. All the decode and commit nodes
will depend on the previous ones if we
issue in order and have a reorder buffer.
Furthermore, if there are data
dependencies between the instructions, a
decode or execute node may depend on a
previous execute node.

Here we represent the dependencies
between nodes by drawing an arrow from
one node to another node that depends on
it. The relationship will form a directed
acyclic graph with weighted edges
(corresponding to the latency between the
two nodes), with the decode node of the
first instruction as the starting node and
the commit node of the last instruction as
the ending node.

With the dependency graph
constructed, we can determine whether or
not an edge is critical. An edge is defined
to be non-critical if the overall run time
stays the same while we reduce the
weight on that edge. An edge is defined
to be critical if it is not a non-critical edge.
The critical path of a program is formed by
following the edges that are critical.

2.2 Critical Nodes

Critical nodes are defined merely for
convenience. A node is defined to be

critical if it is part of the critical path. This
notation is useful because we can use the
technique of token passing along last-
arriving edges described in [1] to try to
estimate the critical path. Obviously, an
edge is not part of the critical path if it is
not the last arriving edge of a node; we
can decrease the weight of such edges and
there would not be any performance gain
because the node still has to stall until the
last edge arrives.
 If we trace through all the last-arriving
edges, we form an estimate of the actual
critical path. Of course, this path may not
be entirely correct, but this is a simple
way to approximate the critical path. It
would be unfeasible to compute the actual
critical path using hardware at run time.
The estimation using last arriving edges,
on the other hand, can be relatively easily
computed by hardware.

2.3 Critical Chains

With critical paths and critical nodes
defined, we started looking into critical
chains. We define a critical chain as
follows: a set of nodes after a branch is
considered to be a critical chain if they
form part of the critical path. We decided
to examine the lengths of critical chains
after mispredicted branches based on the
intuition that nodes after a branch are
likely to be critical because of the pipeline
flush.

2.4 Critical D Chains

From our experiments (see Figure 2), it
is clear that critical chains after a branch
mostly consist of decode nodes. This is
not surprising since the processor would
flush the whole pipeline when a branch is
mispredicted. After the pipeline is flushed
there would be nothing left to execute and
commit, and therefore the chain will be
made of a list of decode nodes, which we
define as a critical D (decode) chain.
 For the interest of our study, long
critical D chains are better since there is

2 of 11

more room for exploiting. A long critical D
chain means that we could potentially
speed up the program more by caching
the instructions that are critical.
Depending on how much information we
store in our cache, it is possible to remove
all the latency for the front end of the
pipeline for each instruction in the cache.

2.4.1 Computing Critical D
Chains

Using the lengths of critical D chains in
any structure in an actual microprocessor
would require an efficient hardware
structure to compute the lengths of these
chains. A first requirement is that the
base architecture must include a criticality
predictor, such as the one described in [1]
based on token passing along last-arriving
edges. Once this is in place, it may need
to be extended to track D-node criticality.
For example, to modify the token passing
predictor, one would need to plant tokens
at D nodes to find the D criticality since
the proposed scheme finds only E
criticality, planting tokens in E nodes.

Once the criticality for each node can
be predicted, there is a counter for each
outstanding branch (at most one counter
per Reorder-Buffer entry) that is
incremented on each consecutive
instruction that is D critical. The

information in this counter must then be
retained somewhere. Section 4 describes
how we decided to retain the information
in these counters.

2.5 Predictability

To take advantage of long critical D
Chains, it may be important to be able to
predict the length for a particular branch.
Thus, we took measurements for the
standard deviation of each branch away
from the mean (see Figure 2).
Unfortunately it seems that many of the
benchmarks exhibit extremely poor
variance, possibly to the point of this
attribute being memoryless.

Test Mean Standard Dev.

Hist
0

Hist
8

Hist
16

Hist
24

Ana-
gram 72.44 35.69 35.52 34.98 34.20

Gcc 28.85 33.16 31.05 29.03 27.03

Perl 36.68 30.45 27.97 24.57 21.51

Eon 29.83 28.34 17.36 15.66 13.82

Twolf 21.45 23.91 22.96 22.09 20.90

Bzip 32.20 41.96 41.64 41.09 40.15

Mesa 72.47 41.84 40.82 37.84 36.17
Figure 2. Means and Standard
Deviations for Various Tests,

Hist x indicates pattern history of
length x

We also ran tests using branch pattern
history using a branch history register with
each information associated with both a
particular branch and the history register.
The results showed that using pattern
history does help with predictability, with
extra branch history register bits
improving the variance in a linear fashion,
but the variances of several benchmarks
are still high relative to the mean. We
conducted the rest of our experiments
using no history because the extra

3 of 11

0.000

5.000

10.000

15.000

20.000

25.000

30.000

35.000

40.000

45.000

50.000

55.000

60.000

65.000

70.000

75.000

Figure 1. Mean Critical D
Chain Lengths

Anagram

Gcc

Perl

Eon

Ammp

Art

Crafty

Twolf

Bzip

Mesa

A
ve

ra
ge

 D
 C

ha
in

 L
en

gt
h

hardware spent on keeping pattern history
seems to outweigh the minor gains in
prediction accuracy. Nevertheless, it may
still be possible to get some performance
gain simply from the knowledge that the
average (mean) length of the chains are
frequently quite long as we will see in later
sections.

3. Branch Mispredictions

Our work is predicated on the idea that
to improve performance, architects will
continue the current trend of increasing
pipeline lengths and lowering cycle times.
Recent work by Sprangle and Carmean
from Intel indicates that a Pentium® 4
processor like architecture would continue
to see performance improvements until
the branch misprediction pipeline reaches
about 52 stages [2]. At that point, the
decrease in IPC due to branch
mispredictions, makes any further increase
in frequency/pipeline length counter-
productive. Their work showed that the
per clock sensitivity of IPC due to
increases branch misprediction latency is
not as high as for other pipelines such as
the ALU and cache pipelines. However,
since the length of the branch
misprediction pipeline is very long, it has
the most impact on overall IPC. So in our

work, we set out to use the ability to
predict criticality and in particular, the
ability to compute the length of decode-
critical chains after branch mispredictions
to reduce the impact of branch
mispredictions on IPC. We varied branch
misprediction penalties up to 50 to verify
that our simulator also showed similar IPC
sensitivity (Figure 3).

3.1 Branch Prediction
Accuracy

We first attempted to see if the decode-
critical chains could be used to help branch
accuracy, since this would reduce the
number of times that the long branch
misprediction pipeline would be used.
Figure 4 shows the plot of branch accuracy
vs average critical decode chain length.
This plot shows very little correlation
between the two, leading to the conclusion
the critical decode chains probably cannot
be used to increase branch accuracy.

3.2 Branch Misprediction
Penalty

Since there was little evidence to
indicate that we should pursue branch
accuracy, reducing the branch penalty was
the other target. Long branch
misprediction penalties come from the fact
that the back-end of the microprocessor

4 of 11

0 0.25 0.5 0.75 1

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190

Figure 4. Branch Accuracy vs
Average Critical Chain Length

BranchHit Rate

A
ve

ra
g

e
C

ha
in

 L
en

g
th

0.00 10.00 20.00 30.00 40.00 50.00

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 3:
Sensitivity of IPC to Miss Penal-

Anagram

Gcc

Perl

Miss Penalty

N
or

m
al

iz
ed

 I
PC

must be flushed and new instructions are
re-fetched, decoded, renamed, etc on any
branch misprediction. So if we could
cache the results of one or more of these
front-end processes, the execution core
would be reached more quickly the penalty
would be reduced. The length of the
critical decode chain can be viewed as an
indication of how many instructions are
bottlenecked by the ability of the front-end
to feed the execution core. For example,
if the critical decode chain is 24
instructions long on an architecture that
has a throughput of 4 instructions per
cycle, 6 cycles worth of instructions are
bottlenecked by the front-end.

3.3 Trace Cache

One mechanism used to reduce both
branch misprediction penalty and to
increase branch prediction accuracy is a
trace cache. The idea behind a trace
cache is that there are some sequences of
instructions (that may or may not run
across conditional control instructions)
that are executed frequently. So this
trace cache stores entire sequences of
instructions. Storing traces allows for
more sophisticated branch prediction since
subtle correlations between branches may
be captured by a trace cache, but not by a
traditional branch predictor. If the
contents of the cache are pre-decoded
instructions, then the decode latency is
reduced to looking up and entry in the
cache. This is the aspect of the trace
cache that may be used to reduce the
branch misprediction penalty.

We propose using a small trace cache
with predecoded instructions to reduce the
branch misprediction penalty. Since
predecoded instructions get larger than
plain instructions, this cache must have
few entries to keep the overall size and
and access time low. This cache is
especially important after branch
mispredictions because of the criticality of
the front-end after branches.
Furthermore, the length of the critical

decode chain after a particular branch will
affect how important the cached trace is.
Longer critical decode chains will have
more instructions sped up (finished
earlier) by the trace cache than chains
that aren't as long (assuming that the rest
of the trace selection mechanism is
unchanged). The following section
describes the details of our cache system.

4. Our Cache

This section describes the main parts of
our cache, the Auxiliary Branch
Information Buffer, and the Branch
Misprediction Trace Cache, and explains
how they function in a typical modern
microarchitecture.

4.1 ABIB

The Auxiliary Branch Information Buffer
(ABIB) stores information about branches
to be used by other structures. In this
paper, we consider it as an abstract cache-
like object which can have a variety of
associativities, sizes and replacement
policies. The input to the ABIB is an
address and some information, and a
read/write signal. On a read, the ABIB
uses the input address as an index into
the cache and outputs the information at
that location. On writes, it takes the input
information and writes it to the index
associated with the address. Some
concrete examples of ABIB are Branch
Target Buffers and tables of counters
found in branch prediction schemes which
store addresses and branch history
information respectively. The affect of
aliasing due to finite size and non-full
associativity in ABIB structures have been
studied before; so we assume an ideal,
infinite, fully-associative ABIB in our work
to concentrate on the behavior of the
BMTC (section 4.2). The types of
information we stored in our simulations
were current mean of the length of the
critical D chain, the total number of

5 of 11

branches mispredicted (or another
measure of the frequency of this branch
relative to others), and traces for each
branch. The mean can be computed on
the fly using an adder, multiplier and
divider, although this will be an
approximation in hardware due to finite
counter sizes. We store the trace because
this structure also serves as the source for
traces that enter the BMTC when evictions
occur.

4.2 BMTC

The Branch Misprediction Trace Cache
(BMTC) is the small, fully-associative
cache that stores traces with predecoded
instructions. It also stores in each entry,
a value which is computed from the
information stored in the ABIB. This value
field is used to determine which entry will
be evicted when necessary, and when it is
necessary to do so. One of our simulation
parameters is how to compute this value.

The inputs to the BMTC are an two indices,
a trace, and a read/write signal, which
function similarly to the inputs of the
ABIB. Two indices are required to access
each trace and the individual instructions
of each trace. Finally, it should be noted
that the value computed can take a long
time without large penalty since the most
important latency is the time to lookup a
trace and not the the latency to update it.
If the BMTC or ABIB is updated slowly, the
only penalty is a slightly less accurate
value in the BMTC; so it may be worth the
tradeoff to make the value as meaningful
as possible (by making a pipelined
complex value calculation), but making
the update slower.

4.3 Interaction

If the base architecture does not
already use a trace cache, a trace buffer is
added which takes input from the Decode
section of the processor and keeps a buffer
of the current trace. This buffer is stops
taking input when it becomes full, or when
its data is written to the BMTC. The
structure of this buffer is a circular buffer
of decoded instructions with maximum
size equal to the number reorder buffer
entries. When a branch is sent to the

6 of 11

reorder buffer, a pointer to the current
position in the buffer is saved for that
branch (this can be saved in the ROB).
When a branch is mispredicted, the trace
along with the length of the critical D
chain (computed as a trace is being
sequenced) is copied into the BMTC and/or
ABIB when the branch hits the end of the
ROB.

If the base architecture does already
use a trace cache, the buffer stores
micro-ops directly from the primary trace
cache as if it were coming from the
Decode section of the processor. For our
simulations, we did not assume this type
of architecture, but our cache could still be
effective if it used more aggressive
caching (see future work). It is also
possible that the replacement policy used
in our cache would be more effective at
keeping the trace in our cache over the
base trace cache.

As instructions commit and reveal
branch mispredictions, the length of the
critical decode chain for the current
mispredicted branch is sent to the ABIB to
update its information; the updated
information is computed using the
previous information for this branch and
the new information from the current
branch. This allows a variety of schemes
for using branch information history in our
replacement policy. The branch
misprediction also triggers a lookup in the
BMTC to see if the current misprediction is
in the cache. If it is, the trace is used and
the input to the Rename unit is switched

from the Decoder to the BMTC. Also, the
value in the BMTC is updated by the newly
computed information for the ABIB. If it is
not in the trace, the regular branch
misprediction pipeline is used. We
explored two ways of updating the BMTC.
The first is to use the information that is
being stored in the ABIB to immediately
compute a new value and compare it
against the weakest (what this means
depends on the value scheme) value in the
BMTC. If the new value is better than the
old one, an eviction takes place (Figure
7).

Another method is to keep the current
best value computed from the information
in the ABIB (but not in the BMTC), in a
register and update this if necessary when
we update the ABIB. Then, whenever a
value is updated in the BMTC, it is checked
against this value and an eviction takes
place if necessary. This method would
save the computation of finding the
weakest value in the the BMTC, but does
not maintain the invariant of keeping the
highest k values in the cache. Simulations
showed that gains using this method are
must worse than using the other method,
so we used the first one.

5. Simulations

We evaluated our cache using the
open-source, SimpleScalar toolset
originally developed by Todd Austin at
University of Wisconsin, now maintained

7 of 11

and developed by SimpleScalar LLC
(www.simplescalar.com). We also used
the criticality package developed by Brian
Fields and described in [1]. We chose
these tools simply due to their easy
availability and ease of modification.
Although SimpleScalar was not developed
to simulate extremely long pipelines, we
are using it only to get a rough estimate of
possible gains and if warranted, further
study can be conducted using a more
detailed simulator/cache model.

5.1 Simulation Methodology

Our baseline SimpleScalar simulation
configuration was as follows:

• 4-way SuperScalar
• Out-of-order Execution Core

• 4 Integer ALUs, 4 FP ALUs
• 1 Integer Multiplier/Divider, 1 FP

Multiplier/Divider
• 128 Entry Reorder Buffer

• 64KB 2-way set associative Split L1
Cache
• 1 cycle hit to I-Cache
• 2 cycle hit to D-Cache

• 256KB 2-way set associative Unified L2
Cache
• 12 cycle hit

• 8 byte bus to DRAM
• 100 Cycle latency for first word from

DRAM
• 2 cycles for rest of the words in a

line
• 4KB 4-way set associative Branch

Target Buffer
• 16KB G-Share branch predictor
• 50 cycle branch misprediction penalty
• All tests run for a max of 25 million

instructions
• The criticality tracer from [1] was

modified to determine the D criticality
for all instructions

We simulated the trace cache by
reducing the branch misprediction penalty
linearly with the number of decode critical
instructions in the trace, with a lower limit

of 25 cycles. Any non-decode critical
instructions would not benefit from early
decoding, so their penalty remains
unchanged. Using this method, we cannot
get exact numbers about the size of the
our cache, but we can make a rough
estimate as follows: a trace cannot be
longer than 100 instructions (a limit we
set in simulation) and each instruction in
the trace cache takes up 8 bytes (since
decoding instructions expands them into a
less dense encoding, more conducive to
use by the processor's datapath) and we
have a 5 entry BMTC = 4000 bytes. This
also ignores the size of the ABIB, but this
structure can be far away from the
execution core and thus can be quite big
and slow.

Although we managed to estimate the
performance of our design by running
simulations in SimpleScalar, future studies
should be conducted on another simulator
that can correctly and accurately reflect
the performance of our cache model on a
processor with very deep pipelines.

5.2 Results

Figures 8 and 9 show the gains
achieved by our cache scheme with
various ways of computing the “value”

8 of 11

Anagram Gcc Perl

0
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
1

1.1

1.2
1.3

1.4

1.5

1.6
1.7

1.8

Figure 8.
Results of 5 Entry BMTC

Baseline

Double L1

Totals-Only

Weighted

C
P

I (
lo

w
er

 is
 b

et
te

r)

compared to the baseline configuration,
and compared to increasing the size of the
L1 cache by 64K, an alternate way of
spending extra transistors to try to
increase performance. Using just the
means of the length of the critical D chains
as our value showed almost no
improvement. We attributed this to low
frequency with which those particular
branches occurred. Thus, to remove those
outliers, we tried to weight the mean of
each branch by the number of times that
branch was seen (indicated by the
“Weighted” bars in the graph). This was
also compared to just using the total
number of branches that the time was
seen as the value (indicated by the
“Totals-Only” bars in the graph).

5.3 Analysis

Our results did not perform quite as
well as we had hoped. The weighted
cache appears to better than a doubled-
size L1 cache except for gcc, and performs
just slightly better than totals-only cache.
Considering that the size of a 5-entry
weighted cache (estimated at 4000KB) is
much smaller than doubling the L1 cache
(64KB), it performs quite well compared to

double L1 cache. However, a equal-size
totals-only cache also performs almost as
well. This result is not complete surprising
considering the maximum critical D chain
we observed in our benchmarks is no more
than five hundred, while the number of
misses for a branch ranged anywhere from
a thousand times to thirty thousand.
Because the number of misses for a
branch is much greater than the critical D
chain length and is has a wider range, the
product will depend largely on the number
of misses. Even with the overwhelming
effect of the number of mispredictions, we
observed slight performance gain by using
the weighted cache, which is encouraging.
Due to the lack of time and resources, we
were unable to refine the design of the
weighted cache. However, increasing the
weight of the critical D chain length seems
to be the next logical approach and may
yield better results.

The 10-entry cache, while twice as big,
does not achieve nearly twice the gain as
the 5-entry one. We speculate that the 5-
entry cache already obtains most of the
gains possible with this technique. Thus,
although it may be a good solution in
terms of performance gain per KB of low
latency storage, it does not scale well and
should thus be thought of as a small
optimization.

While we were examining the
correlation between average chain length
and branch accuracy, we discovered that
there exists a correlation between number
of times a branch is mispredicted and the
accuracy of the branch. Branches that are
mispredicted more than a constant
number of times (this constant varies per
benchmark) have a much lower accuracy
compared to the other branches.
Therefore, one may argue that the
performance gain we obtained with our
cache is simply a result of caching the
branches that are mispredicted most
often. Indeed, the weighted cache has
limited improvements compared to the
totals-only cache, but we must consider
the fact that number of branch misses are
often on the order of thousands or tens of

9 of 11

Anagram Gcc Perl

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

Figure 9.
Result of 10 Entry BMTC

Base

DoubleL1

Totals-Only

WeightedC
P

I (
lo

w
e

r
is

 b
et

te
r)

thousands, whereas the length of critical D
chains are on the order of hundreds.
Despite the obvious fact that number of
misses has an overpowering effect, there
is still observable gain for using the
weighted cache. A more detailed analysis
of the value of the concept of critical D
chain length is beyond the scope of this
paper. Nevertheless, the results seem
promising. We believe it is worthwhile to
further look into the design of the
weighted cache. There may be significant
performance gain by carefully engineering
of a function of number of misses and
critical D chain length, which counteracts
the overpowering effect of number of
misses.

6. Future Work

Other than the hardware structure we
describe in this paper, there are a number
of ways of exploiting branch
mispredictions using the idea of criticality
and critical D chains after branch
mispredictions: aggressive caching,
switching between an out-of-order
processor and an in-order processor or
between a long pipeline and a short
pipeline, and using reconfigurable
architecture if available.

The focus of this study is exploiting the
critical D chains. Therefore, with
extremely aggressive caching that stores
information about predecoding, pre-
renaming, or even pre-issuing/pre-
scheduling, it is possible to entirely
eliminate the time spent on the front end
of the pipeline.

It would also be helpful if we were able
to more accurately predict the length of
critical D chains for each branch. If we
were to know the length length of a critical
D chain, we can allocate appropriate
portion of the memory and avoiding
wasting cache space. As our simulation
suggests, the average lengths of critical D
chains are all reasonably long. However,
there does not seem to exist a clear
correlation between the average critical D

chain lengths and their variance, which
means a naïve way of predicting the
length based on the mean computed on
the fly would not work. Judging from the
data obtained from our simulations, there
also seem to be very little correlation
between average critical D chain length
and branch accuracy. Perhaps a close
examination on path and pattern history
would reveal a predictable pattern of the
length of the critical D chains.

The concept of critical chains can also
be applied to save power consumption.
When we are in the midst of executing a
critical D chain, out-of-order execution
would not be beneficial since all
instructions depend on previous
instructions. In that case switching to an
in-order processor would not result in a
performance loss, and the overall power
consumption may reduce because we
could skip some of the required checks for
out-of-order execution and perform less
computations. Assuming we can
effectively predict the length of critical D
chains, we may be able to find chains that
are long enough such that switching to an
in-order processor would reduce the
overall power usage.

Switching to a shorter pipeline when a
branch followed by a long critical D chain
is about to be executed may also reduce
the overall run time since it would take
less time to refill a shorter pipeline.
Presumably the shorter processor would
run at a slower speed, and we would
switch back to the long pipeline once the
pipelines are filled. However, without an
in-depth study, it is uncertain to us when
and how the switching between the
pipelines would be performed.

Finally, if there are reconfigurable
structures that can function as both a
functional unit and a fetch or decode unit,
we could allocate more resources for
decoding and fetching when a long critical
D chain is coming up. With extra decode
and fetch units, the front end of the
instructions would be completed faster,
and we would be able to reduce the time
spent on the critical D chain.

10 of 11

Unfortunately, such structures are
unknown to us.

7. Conclusion

In this paper, we introduced the idea of
a critical D chain based on previous work
in criticality of instructions [1]. We then
found that there exist many long critical D
chains after mispredicted branches. This
information then lead to our proposal of a
cache structure that incorporates a
traditional cache (ABIB) and a small trace
cache (BMTC) with the replacement policy
as a function of the predicted critical D
chain length. The results showed that this
structure, using an estimated 4KB of low
latency memory, had small, but
observable gains, even compared to a
configuration that added 64 of L1 cache.
Thus we see that there is some merit in
the ability to predict the length of critical D
chains.

8. References

[1] Brian Fields, Shai Rubin and Rastislav
Bodik. “Focusing Processor Policies via
Critical-Path Prediction.” The 28th
International Symposium on Computer
Architecture, 2001.

[2] Sprangle and Carmean. “Increasing
Processor Performance by Implementing
Deeper Pipelines.” Proceedings of the
29th Annual International Symposium on
Computer Architecture, 2002.

[3] E. Rotenberg et. al. “Trace
Processors.” Proceedings of International
Symposium on Microarchitecture (MICRO-
30), 1997.

11 of 11

