
University of California, Berkeley
College of Engineering

Computer Science Division | EECS

Spring 1998 D.A. Patterson

Quiz 1 Solutions

CS252 Graduate Computer Architecture

Notes for future semesters: This quiz was long. If we were going to give this quiz again, we
would probably drop the third part of question 2, and parts (b), (c), and (i) of question 3.



Question 1: Calculate your Cache

A certain system with a 350 MHz clock uses a separate data and instruction cache, and a uni�ed
second-level cache. The �rst-level data cache is a direct-mapped, write-through, write-allocate
cache with 8kBytes of data total and 8-Byte blocks, and has a perfect write bu�er (never causes
any stalls). The �rst-level instruction cache is a direct-mapped cache with 4kBytes of data total
and 8-Byte blocks. The second-level cache is a two-way set associative, write-back, write-allocate
cache with 2MBytes of data total and 32-Byte blocks.

The �rst-level instruction cache has a miss rate of 2%. The �rst-level data cache has a miss
rate of 15%. The uni�ed second-level cache has a local miss rate of 10%. Assume that 40% of
all instructions are data memory accesses; 60% of those are loads, and 40% are stores. Assume
that 50% of the blocks in the second-level cache are dirty at any time. Assume that there is no
optimization for fast reads on an L1 or L2 cache miss.

All �rst-level cache hits cause no stalls. The second-level hit time is 10 cycles. (That means
that the L1 miss penalty, assuming a hit in the L2 cache, is 10 cycles.) Main memory access time
is 100 cycles to the �rst bus width of data; after that, the memory system can deliver consecutive
bus widths of data on each following cycle. Outstanding non-consecutive memory requests can
not overlap; an access to one memory location must complete before an access to another memory
location can begin. There is a 128-bit bus from memory to the L2 cache, and a 64-bit bus from
both L1 caches to the L2 cache. Assume a perfect TLB for this problem (never causes any stalls).

a) (2 points) What percent of all data memory references cause a main memory access (main
memory is accessed before the memory request is satis�ed)? First show the equation, then the

numeric result.

If you did not treat all stores as L1 misses:
= (L1 miss rate) � (L2 miss rate)
= (.15) � (.10)
= 1.5%

If you treated all stores as L1 misses:
= (% of data ref that are reads)�(L2 miss rate) + (% of data ref that are writes)�(L1 miss
rate)�(L2 miss rate)
= (.4)�(.1) + (.6)�(.15)�(.1)
= 4.9%

b) (3 points) How many bits are used to index each of the caches? Assume the caches are
presented physical addresses.

Data = 8K/8 = 1024 blocks = 10 bits
Inst = 4K/8 = 512 blocks = 9 bits
L2 = 2M/32 = 64k blocks = 32k sets = 15 bits

2



Question 1 (continued)

c) (3 points) How many cycles can the longest possible data memory access take? Describe (brie
y)
the events that occur during this access.

L1 miss, L2 miss, writeback.
1 + 10 + 2�101 = 213 cycles

Note that the time to read an L2 cache line from memory is 101 cycles (the �rst 16 B returns
in 100 cycles; the next 16 return the next cycle).

d) (4 points) What is the average memory access time in cycles (including instruction and data
memory references)? First show the equation, then the numeric result.

If you did not treat all stores as L1 misses:
AMATtotal =

1
1:4
AMATinst +

:4
1:4
AMATdata

AMAT = (L1 hit time) + (L1 miss rate)� [(L2 hit time) + (L2 miss rate)� (mem transfer time)]
AMATinst = 1 + 0.02(10 + .10�1.5�(101)) = 1.503
AMATdata = 1 + .15(10 + .10�1.5�(101)) = 4.7725
AMAT = 2.44

Note that the mem transfer time is multipled by 1.5 to account for writebacks in the L2 cache.

If you treated all stores as L1 misses:
AMATtotal =

1
1:4
AMATinst +

:24
1:4
AMATloads +

:16
1:4
AMATstores

AMAT = (L1 hit time) + (L1 miss rate)� [(L2 hit time) + (L2 miss rate)� (mem transfer time)]
AMATinst = 1 + 0.02(10 + .10�1.5�(101)) = 1.503
AMATloads = 1 + .15(10 + .10�1.5�(101)) = 4.7725
AMATstores = 1 + 1(10 + .10�1.5�(101)) = 26.15
AMAT = 4.88

Note that the mem transfer time is multipled by 1.5 to account for writebacks in the L2 cache.

3



Question 2: Tomasulo's Revenge

Using the DLX code shown below, show the state of the Reservation stations, Reorder bu�ers, and
FP register status for a speculative processor implementing Tomasulo's algorithm. Assume the
following:

� Only one instruction can issue per cycle.

� The reorder bu�er has 8 slots.

� The reorder bu�er implements the functionality of the load bu�ers and store bu�ers.

� All FUs are fully pipelined.

� There are 2 FP multiply reservation stations.

� There are 3 FP add reservation stations.

� There are 3 integer reservation stations, which also execute load and store instructions.

� No exceptions occur during the execution of this code.

� All integer operations require 1 execution cycle. Memory requests occur and complete in this
cycle. (For this problem, assume that, barring structural hazards, loads issue in one cycle,
execute in the next, write in the third, and a dependent instruction can start execution on
the fourth.)

� All FP multiply operations require 4 execution cycles.

� All FP addition operations require 2 execution cycles.

� On a CDB write con
ict, the instruction issued earlier gets priority.

� Execution for a dependent instruction can begin on the cycle after its operand is broadcast
on the CDB.

� If any item changes from \Busy" to \Not Busy", you should update the \Busy" column
to re
ect this, but you should not erase any other information in the row (unless another
instruction then overwrites that information).

� Assume the all reservation stations, reorder bu�ers, and functional units were empty and not
busy when the code show below began execution.

� The \Value" column gets updated when the value is broadcast on the CDB.

Integer registers are not shown, and you do not have to show their state.

4



Question 2 (continued)

a) (4 points) The tables below show the state after the cycle in which the second SUBI from the
code below issued. Show the state after the next cycle.

Lp: LD F0, 0(R1)

LD F2, 0(R2)

MULTD F4, F0, F2

ADDD F6, F0, F0

SUBI R1, R1, 8

SUBI R2, R2, 8

ADDI R3, R3, 1

Reservation stations

Name Busy Op Vj Vk Qj Qk Dest

Add1 N ADDD F0 F0 #4

Add2

Add3

Mult1 Y MULTD F0 F2 #3

Mult2

Int1 Y SUBI R2 8 #6

Int2 Y ADDI R3 1 #7

Int3 Y SUBI R1 8 #5

Reorder bu�er

Entry Busy Instruction State Destination Value

1 N LD F0, 0(R1) Commit F0 Mem[0(R1)]

2 N LD F2, 0(R2) Commit F2 Mem[0(R2)]

3 Y MULTD F4, F0, F2 Execute F4

4 Y ADDD F6, F0, F0 Write F6 F0 + F0

5 Y SUBI R1, R1, 8 Execute R1

6 Y SUBI R2, R2, 8 Execute R2

7 Y ADDI R3, R3, 1 Issue R3

8

FP register status

Field F0 F2 F4 F6 F8 F10 F12 . . . F30

Reorder # 1 2 3 4 . . .

Busy N N Y Y . . .

5



Question 2 (continued)

b) (8 points) The tables below show the state during the cycle in which the second MULTD from the
code below issued. Show the state after two cycles.

MULTD F0, F2, F4

ADDD F6, F6, F0

ADDD F2, F2, F8

LD F4, 0(R2)

ADDI R1, R1, 8

MULTD F8, F10, F12

ADDD F4, F4, F10

ADDI R2, R2, 1

Reservation stations

Name Busy Op Vj Vk Qj Qk Dest

Add1 Y ADDD F6 F0 blank #2

Add2 N ADDD F2 F8 #3

Add3 Y ADDD F4 F10 #7

Mult1 N MULTD F2 F4 #1

Mult2 Y MULTD F10 F12 #6

Int1 N LD R2 0 #4

Int2 Y ADDI R1 8 #5

Int3 Y ADDI R2 1 #8

Reorder bu�er

Entry Busy Instruction State Destination Value

1 N MULTD F0, F2, F4 Commit F0 F2�F4

2 Y ADDD F6, F6, F0 Execute F6

3 Y ADDD F2, F2, F8 Write F2 F2+F8

4 Y LD F4, 0(R2) Write F4 Mem[0(R2)]

5 Y ADDI R1, R1, 8 Execute R1

6 Y MULTD F8, F10, F12 Execute F8

7 Y ADDD F4, F4, F10 Issue F4

8 Y ADDI R2, R2, 1 Issue R2

FP register status

Field F0 F2 F4 F6 F8 F10 F12 . . . F30

Reorder # 1 3 7 2 6 . . .

Busy N Y Y Y Y . . .

6



Question 2 (continued)

c) (8 points) The tables below show the state after the cycle in which the SUB from the code below
issued. Show the state after the next four cycles.

ADDD F4, F0, F0

SUBD F4, F4, F2

ADDI R2, R2, 1

ADDI R3, R3, 1

ADDD F2, F6, F8

MULTD F0, F6, F8

Reservation stations

Name Busy Op Vj Vk Qj Qk Dest

Add1 N ADDD F0 F0 #1

Add2 Y SUBD F4 F2 #2

Add3 Y ADDD F6 F8 #5

Mult1 Y MULTD F6 F8 #6

Mult2

Int1 N ADDI R2 1 #3

Int2 N ADDI R3 1 #4

Int3

Reorder bu�er

Entry Busy Instruction State Destination Value

1 N ADDD F4, F0, F0 Commit F4 F0 + F0

2 Y SUBD F4, F4, F2 Execute F4

3 Y ADDI R2, R2, 1 Write R2 R2 + 1

4 Y ADDI R3, R3, 1 Write R3 R3 + 1

5 Y ADDD F2, F6, F8 Execute F2

6 Y MULTD F0, F6, F8 Issue F0

7

8

FP register status

Field F0 F2 F4 F6 F8 . . . F30

Reorder # 6 5 2 . . .

Busy Y Y Y . . .

7



Question 3: Vector vs DSP Showdown

Examine the two architectures below.
The �rst architecture is a 25 Mhz 3-stage dsp processor. A block diagram showing some of

the fully-bypassed datapath is shown below. The three stages are fetch, decode (where branches

Registers

Multiplier

X Y

ALU

Shifter

Accumulator

Z

Ram

Instruction

Control

W

S

Figure 1: The DSP block diagram

are evaluated and the PC updated), and execute (where memory and register writes also occur).
The processor is able to multiply, accumulate, and shift during its execute stage. It has the same
load, store, and branch instructions as DLX. It also includes a LT instruction, which loads a value
into a register from memory, and decrements the base register to the next element. The arithmetic
operations are slightly di�erent:

� Register 0 always contains the value 0

� Register 1 always contains the value 1

� The result from the shifter is always written to the accumulator on arithmetic operations

� Operations can be speci�ed as MAC W, X, Y, Z, S, where W is the register to be written; X
and Y are registers that go to the multiplier; Z is the register that goes to the alu; and S

speci�es the amount to right shift the result.

� Operations can also be speci�ed as MACA W, X, Y, S, where W is the register to be written; X
and Y are registers that go to the multiplier; the accumulator goes to the alu; and S speci�es
the amount to right shift the result.

The second architecture is a 100 Mhz vector processor with a MVL of 64 elements. It has one
FP add/subtract FU, one FP multiply/divide FU, and a single memory FU. The startup overhead
is 5 cycle for add, subtract, multiply, and divide instructions, and 10 cycles for memory instructions.
It supports 
exible chaining but not tailgating.

8



Question 3 (continued)

Here is the code for the dsp:

LP: LT R2, 0(R5) # Load R2 with new value

MAC R0, R10, R2, R0, 0 # Perform the calculation

MACA R0, R11, R2, 0

MACA R2, R12, R2, 0

BNEZ R5, LP

SW R2, -4(R5) # Delayed branch

a) (2 points) What is the peak performance, in results per second, of the above three-tap �lter?

3 results per loop, 6 instructions per loop, 25 Mhz
12.5M results per second

b) (2 points) What would be the peak performance, in results per second, of the above code, if
it was a �ve-tap �lter?

5 results per loop, 8 instructions per loop, 25 Mhz
15.625M results per second

9



Question 3 (continued)

c) (3 points) Translate the following DLX code to code that will operate on this DSP. Assume that
all 
oating point calculations below can be done in �xed-point on the DSP. Do not worry about
round-o� error from converting between 
oating point and �xed point. Assume that for DLX code,
F0 contains 0, F2 contains 0.5, and F4 contains 2.0. Assume that for the DSP code you will write,
R2 contains the value 2. Assume for both that register R5 contains the correct initial loop count.

LP: LW R3, 0(R5) # Load R3 with the new value

MOVI2FP F6, R3 # Move the value from R3 to F6

CVTI2F F6, F6 # Convert integer value to floating point

MULTF F8, F4, F6 # Multiply by 2

ADDD F10, F8, F0 # Add accumulator to value

MULTF F0, F10, F2 # Divide value by 2

CVTF2I F12, F0 # Convert to integer representation

MOVFP2I R3, F12 # Move it to integer registers

SW R3, 0(R5) # Store value back to mem

ADDI R5, -4 # Point to next element

BNEZ R5, LP # If not done, branch back

MAC R0, R0, R0, R0, 0 # Clear accumulator

LP: LT R3, 0(R5) # Load value

MACA R3, R3, R2, 1 # R3 <- ((R3*2)+acc)/2

BNEZ R5, LP # Branch if done

SW R3, -4(R5) # Delayed branch slot

10



Question 3 (continued)

Here is the code for the vector machine:
LP: LV V1, R5 # Load V1 with new value

MULTSV V2, F0, V1 # Perform the calculation

MULTSV V3, F1, V1

ADDV V2, V2, V3

MULTSV V3, F2, V1

ADDV V2, V2, V3

SV V2, R5

SUBI R5, R5, 8

BNEZ R5, LP

d) (3 points) Show the convoys of vector instructions for the above code. Follow the timing
examples in the book. Draw lines to show the convoys on the existing code shown above.

(Shown above with lines)

e) (4 points) Show the execution time in clock cycles of this loop with n elements (Tn); assume
Tloop = 15. Show the equation, and give the value of execution time for n=64.

Tn =
�
n
64

�
� (Tloop +Tstart) + n� Tchime

T64 =
l
64
64

m
� (Tloop + LVstart + MULTSVstart + MULTSVstart + ADDVstart + MULTSVstart + ADDVstart +

SVstart) + 64� 3

T64 =
l
64
64

m
� (15 + 10 + 5 + 5 + 5 + 5 + 5 + 10) + 64 � 3

T64 = 252

f) (3 points) What is R1 for this loop?

R1 =
Operations per iteration� Clock rate

lim
n!1

Clock cycles per iteration

lim
n!1

Clock cycles per iteration = lim
n!1

�
Tn

n

�
= lim

n!1

�
3n + (60=64)n

n

�
= 3:9375

R1 =
5� 100

3:9375
= 127MFLOPS

11



Question 3 (continued)

g) (3 points) List 6 characteristics of DSP instruction set architectures that di�er from general
purpose microprocessors.

For (g), (h), (i), and (j), there are many possibly answers besides what is listed here.

� Autoincrement addressing

� Circular addressing

� Bit reverse addressing

� FFT speci�c addressing

� Saturating over
ow

� Fast multiply-add

� Narrow data

� Fast loops

h) (1 point) Which of those characteristics are supported in vector architectures?

� Autoincrement addressing

� Multiply-add (with chaining)

� Fast loops

i) (1 point) Which of the unsupported characteristics could be handled in software?

� Circular addressing

j) (2 points) What changes to the hardware would you make to handle the remaining characteristics?

� Saturating over
ow

� Narrow data support

� FFT support

12


