
The Slab Allocator:
An Object-Caching Kernel Memory Allocator

Jeff Bonwick
Sun Microsystems

Abstract

This paper presents a comprehensive design over-
view of the SunOS 5.4 kernel memory allocator.
This allocator is based on a set of object-caching
primitives that reduce the cost of allocating complex
objects by retaining their state between uses. These
same primitives prove equally effective for manag-
ing stateless memory (e.g. data pages and temporary
buffers) because they are space-efficient and fast.
The allocator’s object caches respond dynamically
to global memory pressure, and employ an object-
coloring scheme that improves the system’s overall
cache utilization and bus balance. The allocator
also has several statistical and debugging features
that can detect a wide range of problems throughout
the system.

1. Introduction

The allocation and freeing of objects are among the
most common operations in the kernel. A fast ker-
nel memory allocator is therefore essential. How-
ever, in many cases the cost of initializing and
destroying the object exceeds the cost of allocating
and freeing memory for it. Thus, while improve-
ments in the allocator are beneficial, even greater
gains can be achieved by caching frequently used
objects so that their basic structure is preserved
between uses.

The paper begins with a discussion of object
caching, since the interface that this requires will
shape the rest of the allocator. The next section
then describes the implementation in detail. Section
4 describes the effect of buffer address distribution
on the system’s overall cache utilization and bus
balance, and shows how a simple coloring scheme
can improve both. Section 5 compares the
allocator’s performance to several other well-known
kernel memory allocators and finds that it is

generally superior in both space and time. Finally,
Section 6 describes the allocator’s debugging
features, which can detect a wide variety of prob-
lems throughout the system.

2. Object Caching

Object caching is a technique for dealing with
objects that are frequently allocated and freed. The
idea is to preserve the invariant portion of an
object’s initial state — its constructed state —
between uses, so it does not have to be destroyed
and recreated every time the object is used. For
example, an object containing a mutex only needs
to have mutex_init() applied once — the first
time the object is allocated. The object can then be
freed and reallocated many times without incurring
the expense of mutex_destroy() and
mutex_init() each time. An object’s embedded
locks, condition variables, reference counts, lists of
other objects, and read-only data all generally qual-
ify as constructed state.

Caching is important because the cost of con-
structing an object can be significantly higher than
the cost of allocating memory for it. For example,
on a SPARCstation-2 running a SunOS 5.4 develop-
ment kernel, the allocator presented here reduced
the cost of allocating and freeing a stream head
from 33 microseconds to 5.7 microseconds. As the
table below illustrates, most of the savings was due
to object caching:_ ___________________________________________

Stream Head Allocation + Free Costs (μsec)_ ____________________________________________ ___________________________________________
construction memory other

allocator + destruction allocation init._ ___________________________________________
old 23.6 9.4 1.9
new 0.0 3.8 1.9_ ___________________________________________ ⎜⎜

⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜

Caching is particularly beneficial in a mul-
tithreaded environment, where many of the most



frequently allocated objects contain one or more
embedded locks, condition variables, and other con-
structible state.

The design of an object cache is
straightforward:

To allocate an object:

if (there’s an object in the cache)
take it (no construction required);

else {
allocate memory;
construct the object;

}

To free an object:

return it to the cache (no destruction required);

To reclaim memory from the cache:

take some objects from the cache;
destroy the objects;
free the underlying memory;

An object’s constructed state must be initial-
ized only once — when the object is first brought
into the cache. Once the cache is populated, allo-
cating and freeing objects are fast, trivial operations.

2.1. An Example

Consider the following data structure:

struct foo {

kmutex_t foo_lock;

kcondvar_t foo_cv;

struct bar *foo_barlist;

int foo_refcnt;

};

Assume that a foo structure cannot be freed until
there are no outstanding references to it
(foo_refcnt == 0) and all of its pending bar
events (whatever they are) have completed
(foo_barlist == NULL). The life cycle of a
dynamically allocated foo would be something like
this:

foo = kmem_alloc(sizeof (struct foo),

KM_SLEEP);

mutex_init(&foo->foo_lock, ...);

cv_init(&foo->foo_cv, ...);

foo->foo_refcnt = 0;

foo->foo_barlist = NULL;

use foo;

ASSERT(foo->foo_barlist == NULL);

ASSERT(foo->foo_refcnt == 0);

cv_destroy(&foo->foo_cv);

mutex_destroy(&foo->foo_lock);

kmem_free(foo);

Notice that between each use of a foo object we
perform a sequence of operations that constitutes
nothing more than a very expensive no-op. All of
this overhead (i.e., everything other than ‘‘use foo’’
above) can be eliminated by object caching.

2.2. The Case for Object Caching in the
Central Allocator

Of course, object caching can be implemented
without any help from the central allocator — any
subsystem can have a private implementation of the
algorithm described above. However, there are
several disadvantages to this approach:

(1) There is a natural tension between an object
cache, which wants to keep memory, and the
rest of the system, which wants that memory
back. Privately-managed caches cannot handle
this tension sensibly. They have limited
insight into the system’s overall memory needs
and no insight into each other’s needs. Simi-
larly, the rest of the system has no knowledge
of the existence of these caches and hence has
no way to ‘‘pull’’ memory from them.

(2) Since private caches bypass the central alloca-
tor, they also bypass any accounting mechan-
isms and debugging features that allocator may
possess. This makes the operating system
more difficult to monitor and debug.

(3) Having many instances of the same solution to
a common problem increases kernel code size
and maintenance costs.

Object caching requires a greater degree of coopera-
tion between the allocator and its clients than the
standard kmem_alloc(9F)/kmem_free(9F)
interface allows. The next section develops an
interface to support constructed object caching in
the central allocator.



2.3. Object Cache Interface

The interface presented here follows from two
observations:

(A) Descriptions of objects (name, size, alignment,
constructor, and destructor) belong in the
clients — not in the central allocator. The
allocator should not just ‘‘know’’ that
sizeof (struct inode) is a useful pool
size, for example. Such assumptions are brittle
[Grunwald93A] and cannot anticipate the needs
of third-party device drivers, streams modules
and file systems.

(B) Memory management policies belong in the
central allocator — not in its clients. The
clients just want to allocate and free objects
quickly. They shouldn’t have to worry about
how to manage the underlying memory
efficiently.

It follows from (A) that object cache creation must
be client-driven and must include a full specification
of the objects:

(1) struct kmem_cache *kmem_cache_create(

char *name,

size_t size,

int align,

void (*constructor)(void *, size_t),

void (*destructor)(void *, size_t));

Creates a cache of objects, each of size size,
aligned on an align boundary. The align-
ment will always be rounded up to the
minimum allowable value, so align can be
zero whenever no special alignment is required.
name identifies the cache for statistics and
debugging. constructor is a function that
constructs (that is, performs the one-time ini-
tialization of) objects in the cache; destruc-
tor undoes this, if applicable. The construc-
tor and destructor take a size argument so
that they can support families of similar
caches, e.g. streams messages.
kmem_cache_create returns an opaque
descriptor for accessing the cache.

Next, it follows from (B) that clients should need
just two simple functions to allocate and free
objects:

(2) void *kmem_cache_alloc(

struct kmem_cache *cp,

int flags);

Gets an object from the cache. The object will
be in its constructed state. flags is either
KM_SLEEP or KM_NOSLEEP, indicating

whether it’s acceptable to wait for memory if
none is currently available.

(3) void kmem_cache_free(

struct kmem_cache *cp,

void *buf);

Returns an object to the cache. The object
must still be in its constructed state.

Finally, if a cache is no longer needed the client can
destroy it:

(4) void kmem_cache_destroy(

struct kmem_cache *cp);

Destroys the cache and reclaims all associated
resources. All allocated objects must have
been returned to the cache.

This interface allows us to build a flexible allocator
that is ideally suited to the needs of its clients. In
this sense it is a ‘‘custom’’ allocator. However, it
does not have to be built with compile-time
knowledge of its clients as most custom allocators
do [Bozman84A, Grunwald93A, Margolin71], nor
does it have to keep guessing as in the adaptive-fit
methods [Bozman84B, Leverett82, Oldehoeft85].
Rather, the object-cache interface allows clients to
specify the allocation services they need on the fly.

2.4. An Example

This example demonstrates the use of object cach-
ing for the ‘‘foo’’ objects introduced in Section 2.1.
The constructor and destructor routines are:

void

foo_constructor(void *buf, int size)

{

struct foo *foo = buf;

mutex_init(&foo->foo_lock, ...);

cv_init(&foo->foo_cv, ...);

foo->foo_refcnt = 0;

foo->foo_barlist = NULL;

}

void

foo_destructor(void *buf, int size)

{

struct foo *foo = buf;

ASSERT(foo->foo_barlist == NULL);

ASSERT(foo->foo_refcnt == 0);

cv_destroy(&foo->foo_cv);

mutex_destroy(&foo->foo_lock);

}



To create the foo cache:

foo_cache = kmem_cache_create("foo_cache",

sizeof (struct foo), 0,

foo_constructor, foo_destructor);

To allocate, use, and free a foo object:

foo = kmem_cache_alloc(foo_cache, KM_SLEEP);

use foo;

kmem_cache_free(foo_cache, foo);

This makes foo allocation fast, because the
allocator will usually do nothing more than fetch an
already-constructed foo from the cache.
foo_constructor and foo_destructor
will be invoked only to populate and drain the
cache, respectively.

The example above illustrates a beneficial
side-effect of object caching: it reduces the
instruction-cache footprint of the code that uses
cached objects by moving the rarely-executed con-
struction and destruction code out of the hot path.

3. Slab Allocator Implementation

This section describes the implementation of the
SunOS 5.4 kernel memory allocator, or ‘‘slab allo-
cator,’’ in detail. (The name derives from one of
the allocator’s main data structures, the slab. The
name stuck within Sun because it was more distinc-
tive than ‘‘object’’ or ‘‘cache.’’ Slabs will be dis-
cussed in Section 3.2.)

The terms object, buffer, and chunk will be
used more or less interchangeably, depending on
how we’re viewing that piece of memory at the
moment.

3.1. Caches

Each cache has a front end and back end which are
designed to be as decoupled as possible:

cache

back end front end

kmem_cache_grow

kmem_cache_reap

kmem_cache_alloc

kmem_cache_free

The front end is the public interface to the
allocator. It moves objects to and from the cache,
calling into the back end when it needs more
objects.

The back end manages the flow of real
memory through the cache. The influx routine

(kmem_cache_grow()) gets memory from the
VM system, makes objects out of it, and feeds those
objects into the cache. The outflux routine
(kmem_cache_reap()) is invoked by the VM
system when it wants some of that memory back —
e.g., at the onset of paging. Note that all back-end
activity is triggered solely by memory pressure.
Memory flows in when the cache needs more
objects and flows back out when the rest of the sys-
tem needs more pages; there are no arbitrary limits
or watermarks. Hysteresis control is provided by a
working-set algorithm, described in Section 3.4.

The slab allocator is not a monolithic entity,
but rather is a loose confederation of independent
caches. The caches have no shared state, so the
allocator can employ per-cache locking instead of
protecting the entire arena (kernel heap) with one
global lock. Per-cache locking improves scalability
by allowing any number of distinct caches to be
accessed simultaneously.

Each cache maintains its own statistics —
total allocations, number of allocated and free
buffers, etc. These per-cache statistics provide
insight into overall system behavior. They indicate
which parts of the system consume the most
memory and help to identify memory leaks. They
also indicate the activity level in various subsys-
tems, to the extent that allocator traffic is an accu-
rate approximation. (Streams message allocation is
a direct measure of streams activity, for example.)

The slab allocator is operationally similar to
the ‘‘CustoMalloc’’ [Grunwald93A], ‘‘QuickFit’’
[Weinstock88], and ‘‘Zone’’ [VanSciver88] alloca-
tors, all of which maintain distinct freelists of the
most commonly requested buffer sizes. The
Grunwald and Weinstock papers each demonstrate
that a customized segregated-storage allocator —
one that has a priori knowledge of the most com-
mon allocation sizes — is usually optimal in both
space and time. The slab allocator is in this
category, but has the advantage that its customiza-
tions are client-driven at run time rather than being
hard-coded at compile time. (This is also true of
the Zone allocator.)

The standard non-caching allocation routines,
kmem_alloc(9F) and kmem_free(9F), use
object caches internally. At startup, the system
creates a set of about 30 caches ranging in size
from 8 bytes to 9K in roughly 10-20% increments.
kmem_alloc() simply performs a
kmem_cache_alloc() from the nearest-size
cache. Allocations larger than 9K, which are rare,
are handled directly by the back-end page supplier.



3.2. Slabs

The slab is the primary unit of currency in the slab
allocator. When the allocator needs to grow a
cache, for example, it acquires an entire slab of
objects at once. Similarly, the allocator reclaims
unused memory (shrinks a cache) by relinquishing a
complete slab.

A slab consists of one or more pages of virtu-
ally contiguous memory carved up into equal-size
chunks, with a reference count indicating how many
of those chunks have been allocated. The benefits
of using this simple data structure to manage the
arena are somewhat striking:

(1) Reclaiming unused memory is trivial. When
the slab reference count goes to zero the associated
pages can be returned to the VM system. Thus a
simple reference count replaces the complex trees,
bitmaps, and coalescing algorithms found in most
other allocators [Knuth68, Korn85, Standish80].

(2) Allocating and freeing memory are fast,
constant-time operations. All we have to do is
move an object to or from a freelist and update a
reference count.

(3) Severe external fragmentation (unused
buffers on the freelist) is unlikely. Over time,
many allocators develop an accumulation of small,
unusable buffers. This occurs as the allocator splits
existing free buffers to satisfy smaller requests. For
example, the right sequence of 32-byte and 40-byte
allocations may result in a large accumulation of
free 8-byte buffers — even though no 8-byte buffers
are ever requested [Standish80]. A segregated-
storage allocator cannot suffer this fate, since the
only way to populate its 8-byte freelist is to actually
allocate and free 8-byte buffers. Any sequence of
32-byte and 40-byte allocations — no matter how
complex — can only result in population of the 32-
byte and 40-byte freelists. Since prior allocation is
a good predictor of future allocation [Weinstock88]
these buffers are likely to be used again.

The other reason that slabs reduce external fragmen-
tation is that all objects in a slab are of the same
type, so they have the same lifetime distribution.*
The resulting segregation of short-lived and long-
lived objects at slab granularity reduces the likeli-
hood of an entire page being held hostage due to a
single long-lived allocation [Barrett93, Hanson90].
____________________________________

* The generic caches that back kmem_alloc() are a
notable exception, but they constitute a relatively small fraction
of the arena in SunOS 5.4 — all of the major consumers of
memory now use kmem_cache_alloc().

(4) Internal fragmentation (per-buffer wasted
space) is minimal. Each buffer is exactly the right
size (namely, the cache’s object size), so the only
wasted space is the unused portion at the end of the
slab. For example, assuming 4096-byte pages, the
slabs in a 400-byte object cache would each contain
10 buffers, with 96 bytes left over. We can view
this as equivalent 9.6 bytes of wasted space per
400-byte buffer, or 2.4% internal fragmentation.

In general, if a slab contains n buffers, then the
internal fragmentation is at most 1/n; thus the allo-
cator can actually control the amount of internal
fragmentation by controlling the slab size. How-
ever, larger slabs are more likely to cause external
fragmentation, since the probability of being able to
reclaim a slab decreases as the number of buffers
per slab increases. The SunOS 5.4 implementation
limits internal fragmentation to 12.5% (1/8), since
this was found to be the empirical sweet-spot in the
trade-off between internal and external fragmenta-
tion.

3.2.1. Slab Layout — Logical

The contents of each slab are managed by a
kmem_slab data structure that maintains the slab’s
linkage in the cache, its reference count, and its list
of free buffers. In turn, each buffer in the slab is
managed by a kmem_bufctl structure that holds
the freelist linkage, buffer address, and a back-
pointer to the controlling slab. Pictorially, a slab
looks like this (bufctl-to-slab back-pointers not
shown):

one or more pages

buf buf buf
un-
used

kmem
bufctl

kmem
bufctl

kmem
bufctl

kmem
slab

next slab in cache

prev slab in cache



3.2.2. Slab Layout for Small Objects

For objects smaller than 1/8 of a page, a slab is
built by allocating a page, placing the slab data at
the end, and dividing the rest into equal-size
buffers:

one page

buf buf ... buf buf
un-
used

kmem
slab

Each buffer serves as its own bufctl while on the
freelist. Only the linkage is actually needed, since
everything else is computable. These are essential
optimizations for small buffers — otherwise we
would end up allocating almost as much memory
for bufctls as for the buffers themselves.

The freelist linkage resides at the end of the
buffer, rather than the beginning, to facilitate debug-
ging. This is driven by the empirical observation
that the beginning of a data structure is typically
more active than the end. If a buffer is modified
after being freed, the problem is easier to diagnose
if the heap structure (freelist linkage) is still intact.

The allocator reserves an additional word for
constructed objects so that the linkage doesn’t
overwrite any constructed state.

3.2.3. Slab Layout for Large Objects

The above scheme is efficient for small objects, but
not for large ones. It could fit only one 2K buffer
on a 4K page because of the embedded slab data.
Moreover, with large (multi-page) slabs we lose the
ability to determine the slab data address from the
buffer address. Therefore, for large objects the
physical layout is identical to the logical layout.
The required slab and bufctl data structures come
from their own (small-object!) caches. A per-cache
self-scaling hash table provides buffer-to-bufctl
conversion.

3.3. Freelist Management

Each cache maintains a circular, doubly-linked list
of all its slabs. The slab list is partially sorted, in
that the empty slabs (all buffers allocated) come
first, followed by the partial slabs (some buffers
allocated, some free), and finally the complete slabs
(all buffers free, refcnt == 0). The cache’s freelist
pointer points to its first non-empty slab. Each slab,
in turn, has its own freelist of available buffers.
This two-level freelist structure simplifies memory

reclaiming. When the allocator reclaims a slab it
doesn’t have to unlink each buffer from the cache’s
freelist — it just unlinks the slab.

3.4. Reclaiming Memory

When kmem_cache_free() sees that the slab
reference count is zero, it does not immediately
reclaim the memory. Instead, it just moves the slab
to the tail of the freelist where all the complete
slabs reside. This ensures that no complete slab
will be broken up unless all partial slabs have been
depleted.

When the system runs low on memory it asks
the allocator to liberate as much memory as it can.
The allocator obliges, but retains a 15-second work-
ing set of recently-used slabs to prevent thrashing.
Measurements indicate that system performance is
fairly insensitive to the slab working-set interval.
Presumably this is because the two extremes —
zero working set (reclaim all complete slabs on
demand) and infinite working-set (never reclaim
anything) — are both reasonable, albeit suboptimal,
policies.

4. Hardware Cache Effects

Modern hardware relies on good cache utilization,
so it is important to design software with cache
effects in mind. For a memory allocator there are
two broad classes of cache effects to consider: the
distribution of buffer addresses and the cache foot-
print of the allocator itself. The latter topic has
received some attention [Chen93, Grunwald93B],
but the effect of buffer address distribution on cache
utilization and bus balance has gone largely
unrecognized.

4.1. Impact of Buffer Address Distribution
on Cache Utilization

The address distribution of mid-size buffers can
affect the system’s overall cache utilization. In par-
ticular, power-of-two allocators — where all buffers
are 2n bytes and are 2n-byte aligned — are pes-
simal.* Suppose, for example, that every inode
(∼−300 bytes) is assigned a 512-byte buffer, 512-byte
aligned, and that only the first dozen fields of an
inode (48 bytes) are frequently referenced. Then
the majority of inode-related memory traffic will be
____________________________________

* Such allocators are common because they are easy to
implement. For example, 4.4BSD and SVr4 both employ
power-of-two methods [McKusick88, Lee89].



at addresses between 0 and 47 modulo 512. Thus
the cache lines near 512-byte boundaries will be
heavily loaded while the rest lie fallow. In effect
only 9% (48/512) of the cache will be usable by
inodes. Fully-associative caches would not suffer
this problem, but current hardware trends are toward
simpler rather than more complex caches.

Of course, there’s nothing special about
inodes. The kernel contains many other mid-size
data structures (e.g. 100-500 bytes) with the same
essential qualities: there are many of them, they
contain only a few heavily used fields, and those
fields are grouped together at or near the beginning
of the structure. This artifact of the way data struc-
tures evolve has not previously been recognized as
an important factor in allocator design.

4.2. Impact of Buffer Address Distribution
on Bus Balance

On a machine that interleaves memory across multi-
ple main buses, the effects described above also
have a significant impact on bus utilization. The
SPARCcenter 2000, for example, employs 256-byte
interleaving across two main buses [Cekleov92].
Continuing the example above, we see that any
power-of-two allocator maps the first half of every
inode (the hot part) to bus 0 and the second half to
bus 1. Thus almost all inode-related cache misses
are serviced by bus 0. The situation is exacerbated
by an inflated miss rate, since all of the inodes are
fighting over a small fraction of the cache.

These effects can be dramatic. On a
SPARCcenter 2000 running LADDIS under a
SunOS 5.4 development kernel, replacing the old
allocator (a power-of-two buddy-system [Lee89])
with the slab allocator reduced bus imbalance from
43% to just 17%. In addition, the primary cache
miss rate dropped by 13%.

4.3. Slab Coloring

The slab allocator incorporates a simple coloring
scheme that distributes buffers evenly throughout
the cache, resulting in excellent cache utilization
and bus balance. The concept is simple: each time
a new slab is created, the buffer addresses start at a
slightly different offset (color) from the slab base
(which is always page-aligned). For example, for a
cache of 200-byte objects with 8-byte alignment, the
first slab’s buffers would be at addresses 0, 200,
400, ... relative to the slab base. The next slab’s
buffers would be at offsets 8, 208, 408, ... and so

on. The maximum slab color is determined by the
amount of unused space in the slab. In this exam-
ple, assuming 4K pages, we can fit 20 200-byte
buffers in a 4096-byte slab. The buffers consume
4000 bytes, the kmem_slab data consumes 32
bytes, and the remaining 64 bytes are available for
coloring. Thus the maximum slab color is 64, and
the slab color sequence is 0, 8, 16, 24, 32, 40, 48,
56, 64, 0, 8, ...

One particularly nice property of this coloring
scheme is that mid-size power-of-two buffers
receive the maximum amount of coloring, since
they are the worst-fitting. For example, while 128
bytes goes perfectly into 4096, it goes near-
pessimally into 4096 - 32, which is what’s actually
available (because of the embedded slab data).

4.4. Arena Management

An allocator’s arena management strategy deter-
mines its dynamic cache footprint. These strategies
fall into three broad categories: sequential-fit
methods, buddy methods, and segregated-storage
methods [Standish80].

A sequential-fit allocator must typically search
several nodes to find a good-fitting buffer. Such
methods are, by nature, condemned to a large cache
footprint: they have to examine a significant number
of nodes that are generally nowhere near each other.
This causes not only cache misses, but TLB misses
as well. The coalescing stages of buddy-system
allocators [Knuth68, Lee89] have similar properties.

A segregated-storage allocator, such as the
slab allocator, maintains separate freelists for dif-
ferent buffer sizes. These allocators generally have
good cache locality because allocating a buffer is so
simple. All the allocator has to do is determine the
right freelist (by computation, by table lookup, or
by having it supplied as an argument) and take a
buffer from it. Freeing a buffer is similarly
straightforward. There are only a handful of
pointers to load, so the cache footprint is small.

The slab allocator has the additional advan-
tage that for small to mid-size buffers, most of the
relevant information — the slab data, bufctls, and
buffers themselves — resides on a single page.
Thus a single TLB entry covers most of the action.



5. Performance

This section compares the performance of the slab
allocator to three other well-known kernel memory
allocators:

SunOS 4.1.3, based on [Stephenson83], a
sequential-fit method;

4.4BSD, based on [McKusick88], a power-of-
two segregated-storage method;

SVr4, based on [Lee89], a power-of-two
buddy-system method. This allocator was
employed in all previous SunOS 5.x releases.

To get a fair comparison, each of these allocators
was ported into the same SunOS 5.4 base system.
This ensures that we are comparing just allocators,
not entire operating systems.

5.1. Speed Comparison

On a SPARCstation-2 the time required to allocate
and free a buffer under the various allocators is as
follows:_ ___________________________________________

Memory Allocation + Free Costs_ ____________________________________________ ___________________________________________
allocator time (μsec) interface_ ___________________________________________
slab 3.8 kmem_cache_alloc
4.4BSD 4.1 kmem_alloc
slab 4.7 kmem_alloc
SVr4 9.4 kmem_alloc
SunOS 4.1.3 25.0 kmem_alloc_ ___________________________________________ ⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

Note: The 4.4BSD allocator offers both functional
and preprocessor macro interfaces. These measure-
ments are for the functional version. Non-binary
interfaces in general were not considered, since
these cannot be exported to drivers without expos-
ing the implementation. The 4.4BSD allocator was
compiled without KMEMSTATS defined (it’s on by
default) to get the fastest possible code.

A mutex_enter()/mutex_exit() pair
costs 1.0 μsec, so the locking required to allocate
and free a buffer imposes a lower bound of 2.0
μsec. The slab and 4.4BSD allocators are both very
close to this limit because they do very little work
in the common cases. The 4.4BSD implementation
of kmem_alloc() is slightly faster, since it has
less accounting to do (it never reclaims memory).
The slab allocator’s kmem_cache_alloc()
interface is even faster, however, because it doesn’t
have to determine which freelist (cache) to use —
the cache descriptor is passed as an argument to
kmem_cache_alloc(). In any event, the differ-
ences in speed between the slab and 4.4BSD

allocators are small. This is to be expected, since
all segregated-storage methods are operationally
similar. Any good segregated-storage implementa-
tion should achieve excellent performance.

The SVr4 allocator is slower than most buddy
systems but still provides reasonable, predictable
speed. The SunOS 4.1.3 allocator, like most
sequential-fit methods, is comparatively slow and
quite variable.

The benefits of object caching are not visible
in the numbers above, since they only measure the
cost of the allocator itself. The table below shows
the effect of object caching on some of the most
frequent allocations in the SunOS 5.4 kernel
(SPARCstation-2 timings, in microseconds):_ ___________________________________________

Effect of Object Caching_ ____________________________________________ ___________________________________________
allocation without with improve-
type caching caching ment_ ___________________________________________
allocb 8.3 6.0 1.4x
dupb 13.4 8.7 1.5x
shalloc 29.3 5.7 5.1x
allocq 40.0 10.9 3.7x
anonmap_alloc 16.3 10.1 1.6x
makepipe 126.0 98.0 1.3x_ ___________________________________________ ⎜⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

All of the numbers presented in this section
measure the performance of the allocator in isola-
tion. The allocator’s effect on overall system per-
formance will be discussed in Section 5.3.

5.2. Memory Utilization Comparison

An allocator generally consumes more memory than
its clients actually request due to imperfect fits
(internal fragmentation), unused buffers on the free-
list (external fragmentation), and the overhead of
the allocator’s internal data structures. The ratio of
memory requested to memory consumed is the
allocator’s memory utilization. The complementary
ratio is the memory wastage or total fragmentation.
Good memory utilization is essential, since the ker-
nel heap consumes physical memory.

An allocator’s space efficiency is harder to
characterize than its speed because it is workload-
dependent. The best we can do is to measure the
various allocators’ memory utilization under a fixed
set of workloads. To this end, each allocator was
subjected to the following workload sequence:

(1) System boot. This measures the system’s
memory utilization at the console login prompt
after rebooting.



(2) A brief spike in load, generated by the
following trivial program:

fork(); fork(); fork(); fork();

fork(); fork(); fork(); fork();

fd = socket(AF_UNIX, SOCK_STREAM, 0);

sleep(60);

close(fd);

This creates 256 processes, each of which
creates a socket. This causes a temporary
surge in demand for a variety of kernel data
structures.

(3) Find. This is another trivial spike-
generator:

find /usr -mount -exec file {} \;

(4) Kenbus. This is a standard timesharing bench-
mark. Kenbus generates a large amount of
concurrent activity, creating large demand for
both user and kernel memory.

Memory utilization was measured after each step.
The table below summarizes the results for a 16MB
SPARCstation-1. The slab allocator significantly
outperformed the others, ending up with half the
fragmentation of the nearest competitor (results are
cumulative, so the ‘‘kenbus’’ column indicates the
fragmentation after all four steps were completed):
________________________________________________

Total Fragmentation (waste)________________________________________________________________________________________________
allocator boot spike find kenbus s/m________________________________________________
slab 11% 13% 14% 14% 233
SunOS 4.1.3 7% 19% 19% 27% 210
4.4BSD 20% 43% 43% 45% 205
SVr4 23% 45% 45% 46% 199________________________________________________ ⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

The last column shows the kenbus results,
which measure peak throughput in units of scripts
executed per minute (s/m). Kenbus performance is
primarily memory-limited on this 16MB system,
which is why the SunOS 4.1.3 allocator achieved
better results than the 4.4BSD allocator despite
being significantly slower. The slab allocator
delivered the best performance by an 11% margin
because it is both fast and space-efficient.

To get a handle on real-life performance the
author used each of these allocators for a week on
his personal desktop machine, a 32MB
SPARCstation-2. This machine is primarily used
for reading e-mail, running simple commands and
scripts, and connecting to test machines and com-
pute servers. The results of this obviously non-
controlled experiment were:

_ ___________________________________________
Effect of One Week of Light Desktop Use_ ____________________________________________ ___________________________________________

kernel fragmen-
allocator heap tation_ ___________________________________________
slab 6.0 MB 9%
SunOS 4.1.3 6.7 MB 17%
SVr4 8.5 MB 35%
4.4BSD 9.0 MB 38%_ ___________________________________________ ⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

These numbers are consistent with the results
from the synthetic workload described above. In
both cases, the slab allocator generates about half
the fragmentation of SunOS 4.1.3, which in turn
generates about half the fragmentation of SVr4 and
4.4BSD.

5.3. Overall System Performance

The kernel memory allocator affects overall system
performance in a variety of ways. In previous sec-
tions we considered the effects of several individual
factors: object caching, hardware cache and bus
effects, speed, and memory utilization. We now
turn to the most important metric: the bottom-line
performance of interesting workloads. In SunOS
5.4 the SVr4-based allocator was replaced by the
slab allocator described here. The table below
shows the net performance improvement in several
key areas._ ___________________________________________

System Performance Improvement
with Slab Allocator_ ____________________________________________ ___________________________________________

workload gain what it measures_ ___________________________________________
DeskBench 12% window system
kenbus 17% timesharing
TPC-B 4% database
LADDIS 3% NFS service
parallel make 5% parallel compilation
terminal server 5% many-user typing_ ___________________________________________ ⎜⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

Notes:

(1) DeskBench and kenbus are both memory-
bound in 16MB, so most of the improvement
here is due to the slab allocator’s space
efficiency.

(2) The TPC-B workload causes very little kernel
memory allocation, so the allocator’s speed is
not a significant factor here. The test was run
on a large server with enough memory that it
never paged (under either allocator), so space
efficiency is not a factor either. The 4% per-
formance improvement is due solely to better
cache utilization (5% fewer primary cache
misses, 2% fewer secondary cache misses).



(3) Parallel make was run on a large server that
never paged. This workload generates a lot of
allocator traffic, so the improvement here is
attributable to the slab allocator’s speed, object
caching, and the system’s lower overall cache
miss rate (5% fewer primary cache misses, 4%
fewer secondary cache misses).

(4) Terminal server was also run on a large server
that never paged. This benchmark spent 25%
of its time in the kernel with the old allocator,
versus 20% with the new allocator. Thus, the
5% bottom-line improvement is due to a 20%
reduction in kernel time.

6. Debugging Features

Programming errors that corrupt the kernel heap —
such as modifying freed memory, freeing a buffer
twice, freeing an uninitialized pointer, or writing
beyond the end of a buffer — are often difficult to
debug. Fortunately, a thoroughly instrumented ker-
nel memory allocator can detect many of these
problems.

This section describes the debugging features
of the slab allocator. These features can be enabled
in any SunOS 5.4 kernel (not just special debugging
versions) by booting under kadb (the kernel
debugger) and setting the appropriate flags.* When
the allocator detects a problem, it provides detailed
diagnostic information on the system console.

6.1. Auditing

In audit mode the allocator records its activity in a
circular transaction log. It stores this information in
an extended version of the bufctl structure that
includes the thread pointer, hi-res timestamp, and
stack trace of the transaction. When corruption is
detected by any of the other methods, the previous
owners of the affected buffer (the likely suspects)
can be determined.

6.2. Freed-Address Verification

The buffer-to-bufctl hash table employed by large-
object caches can be used as a debugging feature: if
____________________________________

* The availability of these debugging features adds no cost
to most allocations. The per-cache flag word that indicates
whether a hash table is present — i.e., whether the cache’s
objects are larger than 1/8 of a page — also contains the
debugging flags. A single test checks all of these flags
simultaneously, so the common case (small objects, no
debugging) is unaffected.

the hash lookup in kmem_cache_free() fails,
then the caller must be attempting to free a bogus
address. The allocator can verify all freed addresses
by changing the ‘‘large object’’ threshold to zero.

6.3. Detecting Use of Freed Memory

When an object is freed, the allocator applies its
destructor and fills it with the pattern 0xdeadbeef.
The next time that object is allocated, the allocator
verifies that it still contains the deadbeef pattern. It
then fills the object with 0xbaddcafe and applies its
constructor. The deadbeef and baddcafe patterns are
chosen to be readily human-recognizable in a
debugging session. They represent freed memory
and uninitialized data, respectively.

6.4. Redzone Checking

Redzone checking detects writes past the end of a
buffer. The allocator checks for redzone violations
by adding a guard word to the end of each buffer
and verifying that it is unmodified when the buffer
is freed.

6.5. Synchronous Unmapping

Normally, the slab working-set algorithm retains
complete slabs for a while. In synchronous-
unmapping mode the allocator destroys complete
slabs immediately. kmem_slab_destroy()
returns the underlying memory to the back-end page
supplier, which unmaps the page(s). Any subse-
quent reference to any object in that slab will cause
a kernel data fault.

6.6. Page-per-buffer Mode

In page-per-buffer mode each buffer is given an
entire page (or pages) so that every buffer can be
unmapped when it is freed. The slab allocator
implements this by increasing the alignment for all
caches to the system page size. (This feature
requires an obscene amount of physical memory.)

6.7. Leak Detection

The timestamps provided by auditing make it easy
to implement a crude kernel memory leak detector
at user level. All the user-level program has to do
is periodically scan the arena (via /dev/kmem),
looking for the appearance of new, persistent alloca-
tions. For example, any buffer that was allocated
an hour ago and is still allocated now is a possible
leak.



6.8. An Example

This example illustrates the slab allocator’s response
to modification of a free snode:
kernel memory allocator: buffer modified after being freed
modification occurred at offset 0x18 (0xdeadbeef replaced by 0x34)
buffer=ff8eea20 bufctl=ff8efef0 cache: snode_cache
previous transactions on buffer ff8eea20:

thread=ff8b93a0 time=T-0.000089 slab=ff8ca8c0 cache: snode_cache
kmem_cache_alloc+f8
specvp+48
ufs_lookup+148
lookuppn+3ac
lookupname+28
vn_open+a4
copen+6c
syscall+3e8

thread=ff8b94c0 time=T-1.830247 slab=ff8ca8c0 cache: snode_cache
kmem_cache_free+128
spec_inactive+208
closef+94
syscall+3e8

(transaction log continues at ff31f410)
kadb[0]:

Other errors are handled similarly. These features
have proven helpful in debugging a wide range of
problems during SunOS 5.4 development.

7. Future Directions

7.1. Managing Other Types of Memory

The slab allocator gets its pages from segkmem via
the routines kmem_getpages() and
kmem_freepages(); it assumes nothing about
the underlying segment driver, resource maps, trans-
lation setup, etc. Since the allocator respects this
firewall, it would be trivial to plug in alternate
back-end page suppliers. The ‘‘getpages’’ and
‘‘freepages’’ routines could be supplied as addi-
tional arguments to kmem_cache_create().
This would allow us to manage multiple types of
memory (e.g. normal kernel memory, device
memory, pageable kernel memory, NVRAM, etc.)
with a single allocator.

7.2. Per-Processor Memory Allocation

The per-processor allocation techniques of McKen-
ney and Slingwine [McKenney93] would fit nicely
on top of the slab allocator. They define a four-
layer allocation hierarchy of decreasing speed and
locality: per-CPU, global, coalesce-to-page, and
coalesce-to-VM-block. The latter three correspond
closely to the slab allocator’s front-end, back-end,
and page-supplier layers, respectively. Even in the

absence of lock contention, small per-processor
freelists could improve performance by eliminating
locking costs and reducing invalidation traffic.

7.3. User-level Applications

The slab allocator could also be used as a user-level
memory allocator. The back-end page supplier
could be mmap(2) or sbrk(2).

8. Conclusions

The slab allocator is a simple, fast, and space-
efficient kernel memory allocator. The object-cache
interface upon which it is based reduces the cost of
allocating and freeing complex objects and enables
the allocator to segregate objects by size and life-
time distribution. Slabs take advantage of object
size and lifetime segregation to reduce internal and
external fragmentation, respectively. Slabs also
simplify reclaiming by using a simple reference
count instead of coalescing. The slab allocator
establishes a push/pull relationship between its
clients and the VM system, eliminating the need for
arbitrary limits or watermarks to govern reclaiming.
The allocator’s coloring scheme distributes buffers
evenly throughout the cache, improving the
system’s overall cache utilization and bus balance.
In several important areas, the slab allocator pro-
vides measurably better system performance.

Acknowledgements

Neal Nuckolls first suggested that the allocator
should retain an object’s state between uses, as our
old streams allocator did (it now uses the slab allo-
cator directly). Steve Kleiman suggested using VM
pressure to regulate reclaiming. Gordon Irlam
pointed out the negative effects of power-of-two
alignment on cache utilization; Adrian Cockcroft
hypothesized that this might explain the bus imbal-
ance we were seeing on some machines (it did).

I’d like to thank Cathy Bonwick, Roger
Faulkner, Steve Kleiman, Tim Marsland, Rob Pike,
Andy Roach, Bill Shannon, and Jim Voll for their
thoughtful comments on draft versions of this paper.
Thanks also to David Robinson, Chaitanya Tikku,
and Jim Voll for providing some of the measure-
ments, and to Ashok Singhal for providing the tools
to measure cache and bus activity.

Most of all, I thank Cathy for putting up with
me (and without me) during this project.



References

[Barrett93] David A. Barrett and Benjamin G.
Zorn, Using Lifetime Predictors to Improve Memory
Allocation Performance. Proceedings of the 1993
SIGPLAN Conference on Programming Language
Design and Implementation, pp. 187-196 (1993).

[Boehm88] H. Boehm and M. Weiser, Garbage
Collection in an Uncooperative Environment.
Software - Practice and Experience, v. 18, no. 9, pp
807-820 (1988).

[Bozman84A] G. Bozman, W. Buco, T. Daly, and
W. Tetzlaff, Analysis of Free Storage Algorithms --
Revisited. IBM Systems Journal, v. 23, no. 1, pp.
44-64 (1984).

[Bozman84B] G. Bozman, The Software Lookaside
Buffer Reduces Search Overhead with Linked Lists.
Communications of the ACM, v. 27, no. 3, pp.
222-227 (1984).

[Cekleov92] Michel Cekleov, Jean-Marc Frailong
and Pradeep Sindhu, Sun-4D Architecture. Revision
1.4, 1992.

[Chen93] J. Bradley Chen and Brian N. Bershad,
The Impact of Operating System Structure on
Memory System Performance. Proceedings of the
Fourteenth ACM Symposium on Operating Systems
Principles, v. 27, no. 5, pp. 120-133 (1993).

[Grunwald93A] Dirk Grunwald and Benjamin
Zorn, CustoMalloc: Efficient Synthesized Memory
Allocators. Software - Practice and Experience, v.
23, no. 8, pp. 851-869 (1993).

[Grunwald93B] Dirk Grunwald, Benjamin Zorn
and Robert Henderson, Improving the Cache Local-
ity of Memory Allocation. Proceedings of the 1993
SIGPLAN Conference on Programming Language
Design and Implementation, pp. 177-186 (1993).

[Hanson90] David R. Hanson, Fast Allocation and
Deallocation of Memory Based on Object Lifetimes.
Software - Practice and Experience, v. 20, no. 1, pp.
5-12 (1990).

[Knuth68] Donald E. Knuth, The Art of Computer
Programming, Vol I, Fundamental Algorithms.
Addison-Wesley, Reading, MA, 1968.

[Korn85] David G. Korn and Kiem-Phong Vo, In
Search of a Better Malloc. Proceedings of the
Summer 1985 Usenix Conference, pp. 489-506.

[Lee89] T. Paul Lee and R. E. Barkley, A
Watermark-based Lazy Buddy System for Kernel
Memory Allocation. Proceedings of the Summer
1989 Usenix Conference, pp. 1-13.

[Leverett82] B. W. Leverett and P. G. Hibbard, An
Adaptive System for Dynamic Storage Allocation.
Software - Practice and Experience, v. 12, no. 3, pp.
543-555 (1982).

[Margolin71] B. Margolin, R. Parmelee, and M.
Schatzoff, Analysis of Free Storage Algorithms.
IBM Systems Journal, v. 10, no. 4, pp. 283-304
(1971).

[McKenney93] Paul E. McKenney and Jack
Slingwine, Efficient Kernel Memory Allocation on
Shared-Memory Multiprocessors. Proceedings of
the Winter 1993 Usenix Conference, pp. 295-305.

[McKusick88] Marshall Kirk McKusick and
Michael J. Karels, Design of a General Purpose
Memory Allocator for the 4.3BSD UNIX Kernel.
Proceedings of the Summer 1988 Usenix Confer-
ence, pp. 295-303.

[Oldehoeft85] Rodney R. Oldehoeft and Stephen J.
Allan, Adaptive Exact-Fit Storage Management.
Communications of the ACM, v. 28, pp. 506-511
(1985).

[Standish80] Thomas Standish, Data Structure
Techniques. Addison-Wesley, Reading, MA, 1980.

[Stephenson83] C. J. Stephenson, Fast Fits: New
Methods for Dynamic Storage Allocation. Proceed-
ings of the Ninth ACM Symposium on Operating
Systems Principles, v. 17, no. 5, pp. 30-32 (1983).

[VanSciver88] James Van Sciver and Richard F.
Rashid, Zone Garbage Collection. Proceedings of
the Summer 1990 Usenix Mach Workshop, pp. 1-
15.

[Weinstock88] Charles B. Weinstock and William
A. Wulf, QuickFit: An Efficient Algorithm for Heap
Storage Allocation. ACM SIGPLAN Notices, v.
23, no. 10, pp. 141-144 (1988).

[Zorn93] Benjamin Zorn, The Measured Cost of
Conservative Garbage Collection. Software - Prac-
tice and Experience, v. 23, no. 7, pp. 733-756
(1993).

Author Information

Jeff Bonwick is a kernel hacker at Sun. He likes to
rip out big, slow, old code and replace it with small,
fast, new code. He still can’t believe he gets paid
for this. The author received a B.S. in Mathematics
from the University of Delaware (1987) and an
M.S. in Statistics from Stanford (1990). He can be
flamed electronically at bonwick@eng.sun.com.


