CS162
Operating Systems and
Systems Programming
Lecture 25

Protection and Security
in Distributed Systems

November 29th, 2010
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: RPC Information Flow

bundle
args
: call : send
Client »| Client »| Packet
~ |(caller)}« Stub |« - Handlen
return receive
ufiBufiall 2 mbo.

. ret vals ~
Machine A T %
e e e L R L LU L L LU LI L L IECL L LIEELL LR LU 3 -+
Machine B ® S

bundle Zl 13
ret vals box1
= return send
\‘ ‘? Server »Serven »| Packet
|
——~2/ |(callee Stub |« - andle
\‘@ () call receive
unbundle
args
11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.2

Review: Distributed File Systems

Read Fil
\\‘&?7| Nefwork |

Data
Client
* VFS: Virtual File System layer
- Provides mechanism which gives same system call interface
for different types of file systems
+ Distributed File System:
- Transparent access to files stored on a remote disk
» NFS: Network File System
» AFS: Andrew File System
- Caching for performance
* Cache Consistency: Keeping contents of client caches
consistent with one another
- If multiple clients, some reading and some writing, how do
stale cached copies get updated?
- NFS: check periodically for changes
- AFS: clients register callbacks so can be notified by
server of changes
11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.3

Server

Goals for Today

- Security Mechanisms
- Authentication
- Authorization
- Enforcement
* Cryptographic Mechanisms

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

11/29/10 Kubiatowicz €S5162 ©UCB Fall 2010 Lec 25.4

Protection vs Security

* Protection: one or more mechanisms for controlling the
access of programs, processes, or users to resources
- Page Table Mechanism
- File Access Mechanism
+ Security: use of protection mechanisms to prevent
misuse of resources
- Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data
- Requires consideration of the external environment
within which the system operates

» Most well-constructed system cannot protect information
if user accidentally reveals password

* What we hope to gain today and next time
- Conceptual understanding of how to make systems secure

- Some examples, to illustrate why providing security is
really hard in practice

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.5

Preventing Misuse

* Types of Misuse:
- Accidental:
» If I delete shell, can't log in to fix it!
» Could make it more difficult by asking: “do you really want
to delete the shell?”

- Intentional:
» Some high school brat who can't get a date, so instead he
transfers $3 billion from B to A.
» Doesn't help to ask if they want to do it (of coursel)
*+ Three Pieces to Security
- Authentication: who the user actually is
- Authorization: who is allowed to do what
- Enforcement: make sure people do only what they are
supposed to do
* Loopholes in any carefully constructed system:
- Log in as superuser and you've circumvented
authentication
- Log in as self and can do anything with your resources:
for instance: run program that erases all of your files
- Can you trust software to correctly enforce
Authentication and Authorization???2??

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.6

Authentication: Identifying Users

+ How to identify users to the system?
- Passwords
» Shared secret between two parties

» Since only user knows password, someone types correct
password = must be user typing it

» Very common technique
- Smart Cards

» Electronics embedded in card capable of
providing long passwords or satisfying
challenge — response queries

» May have display to allow reading of password

» Or can be c!:alugged in directly; several
credit cards now in this category

- Biometrics

» Use of one or more intrinsic physical or
behavioral traits to identify someone

» Examples: fingerprint reader,
palm reader, retinal scan

» Becoming quite a bit more common

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.7

Passwords: Secrecy
fem must Keep copy of secret fo —
check against passwords
- What if malicious user gains access to list
of passwords?
» Need to obscure information somehow

- Mechanism: utilize a transformation that is difficult to
reverse without the right key (e.g. encryption)

- Example: UNIX /etc/passwd file
- passwd—one way transform(hash)—encrypted passwd

- System stores only encrypted version, so OK even if
someone reads the filel

- When ¥ou type in your password, system compares
encrypted version
* Problem: Can you trust encryption algorithm?
- Example: one algorithm thought safe had back door
» Governments want back door so they can snoop
- Also, security through obscurity doesn't work

» GSM encryption algorithm was secret; accidentally released:
Berkeley grad students cracked in a few hours
11/29/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 25.8

Passwords: How easy to guess?

* Ways of Compromising Passwords
- Password Guessing:
» Often people use obvious information like birthday,
favorite color, girlfriend's name, etc...
- Dictionary Attack:
» Work way through dictionary and compare encrypted
version of dictionary words with entries in /etc/passwd
- Dumpster Diving:
» Find pieces of paper with passwords written on them
» (Also used to get social-security numbers, etc)
* Paradox:
- Short passwords are easy to crack
- Long ones, people write down!
* Technology means we have to use longer passwords
- UNIX initially required lowercase, 5-letter passwords:
total of 26%=10million passwords
» In 1975, 10ms to check a password—1 day to crack
» In 2005, .Olps to check a password—0.1 seconds to crack
» Even faster today (use multiple processors)
- Takes less time to check for all words in the dictionary!

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.9

Passwords: Making harder to crack

* How can we make passwords harder to crack?
- Can't make it impossible, but can help
* Technique 1: Extend everyone's password with a unique
number (stored in password file)

- Called “salt”. UNIX uses 12-bit “salt”, making dictionary
attacks 4096 times harder

- Without salt, would be possible to pre-compute all the
words in the dictionary hashed with the UNIX algorithm:
would make comparing with /etc/passwd easy!

- Also, way that salt is combined with password designed to
frustrate use of off-the-shelf DES hardware
* Technique 2: Require more complex passwords
- Make people use at least 8-character passwords with
upper-case, lower-case, punctuation, and numbers
» 708=6x10!4=6million seconds=69 days@0.01ps/check
- Unfortunately, people still pick common patterns
» e.g. Capitalize first letter of common word, add one digit

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.10

Passwords: Making harder to crack (con't)

+ Technique 37 Delay checking of passwords
- If attacker doesn't have access to /etc/passwd, delay
every remote login attempt by 1 second
- Makes it infeasible for rapid-fire dictionary attack
* Technique 4: Assign very long passwords
- Long passwords or pass-phrases can have more entropy
(randomness—harder to crack)
- Give everyone a smart card (or ATM card) to carry around
to remember password
» Requires physical theft to steal password
» Can require PIN from user before authenticates self
- Better: have smartcard generate pseudorandom number
» Client and server share initial seed
» Each second/login attempt advances to next random number
* Technique 5: "Zero-Knowledge Proof”
- Require a series of challenge-response questions
» Distribute secret algorithm to user
» Server presents a number, say "5”; user computes something
from the number and returns answer to server
» Server never asks same “question” twice
- Often performed by smartcard plugged into system

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.11

Administrivia

+ Final Exam
- Thursday 12/16, 8:00AM-11:00AM, 10 Evans
- All material from the course

» With slightly more focus on second half, but you are still
responsible for all the material

- Two sheets of notes, both sides
- Will need dumb calculator
+ Should be working on Project 4
- Final Project due on Tuesday 12/7
* In the news: Net Neutrality Heats up..

- Definition: Advocating no restrictions by Internet Service
Providers and governments on content, sites, platforms,
equipment that may be attached, and modes of communication.

- Netflix partner Level 3 vowing to fight Comcast

» Currently, Comcast charging Level 3 a recurring fee for
delivery of Netflix content to Comcast users

» Believes that “"Comcast's current position violates the spirit and
11/20n0 \€Tter of the RCCs proposed dntgrngt@glicy principles™ | o5 12

Administrivia (con't)

* Final Lecture topics submitted to me:

- Real Time Operating systems

- Peer to peer systems and/or Distributed Systems

- OS trends in the mobile phone industry (Android, etc)
» Differences from traditional OSes?

- 6PV and ManyCore programming (and/or OSes?)

- Virtual Machines and/or Trusted Hardware for security

- Systems programming for non-standard computer systems
» i.e. Quantum Computers, Biological Computers, ...

- Net Neutrality and/or making the Internet Faster

- Mesh networks

- Device drivers

- A couple of votes for Dragons...

+ This is a lot of topics...

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.13

Authentication in Distributed Systems
* What if identity must be established across network?

&z

A Network |
e

- Need way to prevent exposure of information while still
proving identity to remote system
- Many of the original UNIX tools sent passwords over the
wire “in clear text”
» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread
* What do we need? Cannot rely on physical security!
- Encryption: Privacy, restrict receivers
- Authentication: Remote Authenticity, restrict senders

ouib :sSV(

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.14

Private Key Cryptography

* Private Key (Symmetric) Encryption:
- Single key used for both encryption and decryption

* Plaintext: Unencrypted Version of message

+ Ciphertext: Encrypted Version of message

—» Encrypt Decrypt
l Insecure

© 2
) o g
s Transmission =3
SPY © I (ciphertext) 1 s CIA
X Key Key %

* Important properties
- Can't derive plain text from ciphertext (decode) without
access to key
- Can't derive key from plain text and ciphertext
- As long as password stays secret, get both secrecy and
authentication
+ Symmetric Key Algorithms: DES, Triple-DES, AES

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.15

Key Distribution

* How do you get shared secret to both places?
- For instance: how do you send authenticated, secret mail
to someone who you have never met?
- Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others
+ Third Party: Authentication Server (like Kerberos)
- Notation:
» K, is key for talking between x and y
» (...S" means encrypt message (..) with the key K
» Clients: A and B, Authentication server S
- A asks server for key:
» A—S: [Hi! I'd like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking
- Server returns session key encrypted using B's key
» S—>A: Message [Use K, (This is Al Use K,)b] ksa
» This allows A to know, "S said use this key”
- Whenever A wants to talk with B
» A—B: Ticket [This is Al Use K, J¥°
» Now, B knows that K, is sanctioned by S

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.16

Authentication Server Continued [Kerberos]

+ Details

- Both A and B use passwords (shared with key server) to
decrypt return from key servers

- Add in timestamps to limit how long tickets will be used
to prevent attacker from replaying messages later

- Also_have to include encrypted checksums (hashed
version of message) to prevent malicious user from
inserting things into messages/changing messages
- Want to minimize # times A types in password
» A—>S (Give me temporary secret)
» 5—>A (Use Ki,pp_s, for next 8 hours)kse
» Can now use K., s, in place of K, in prototcol
11/29/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 25.17

Public Key Encryption
. CGWWWWIGI\:

authentication server?
- Yes. Use a Public-Key Cryptosystem.
* Public Key Details
- Don't have one key, have two: K, piic, Kirivate
» Two keys are mathematically related to one another
» Really hard to derive K. from K., and vice versa
- Forward encryption:
» Encrypt: (cleartext)kpublic= ciphertext,
» Decrypt: (ciphertext,)kprivate = cleartext
- Reverse encryption:
» Encrypt: (cleartext)kerivate = ciphertext,
» Decrypt: (ciphertext,)kpwlic = cleartext
- Note that ciphertext; = ciphertext,
» Can't derive one from the other!
* Public Key Examples:
- RSA: Rivest, Shamir, and Adleman
» K ublic of form (kpuinCI N), K rivate of form (kpr'ivafel N)
»N'z pq. Can break code if know p and q
- ECC: Elliptic Curve Cryptography

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.18

Public Key Encryption Details
- Idéar K, can be made public, Keep K,yq. private

Insecure Channel

Alice Insecure Channel Bob
+ Gives message privacy (restricted receiver):

- Public keys (secure destination points) can be acquired
by anyone/used by anyone

- Only person with private key can decrypt message
* What about authentication?

- Use combination of private and public key

- Alice—»>Bob: [(I'm Alice)“rrivate Rest of message]Brublic

- Provides restricted sender and receiver

« But: how does Alice know that it was Bob who sent
her B,i.? And vice versa..

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.19

Secure Hash Function

Hash DFCD3454BBEA788A

Fox) Function > Zi;ggg?g24D97009

The ved Fox Toah 52EDB79E70F 71D92

runs across [Functi | 6GEB6957008E03CE4
the ice unction | ™1 cag945D3

* Hash Function: Short summary of data (message)
- For instance, h;=H(M,) is the hash of message M,
» h; fixed length, despite size of message M.
» Often, h, is called the “digest” of M.
- Hash function H is considered secure if
- It is infeasible to find M, with h;=H(M,); ie. can't easily
find other message with same digest as given message.
- It is infeasible to locate two messages, m; and m,,
which “collide”, i.e. for which H(m,) = H(m,)
- A small change in a message changes many bits of
digest/can't tell anything about message given its hash

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.20

Use of Hash Functions

- Several Standard Hash Functions:
- MD5: 128-bit output
- SHA-1: 160-bit output, SHA-256: 256-bit output
* Can we use hashing to securely reduce load on server?
- Yes. Use a series of insecure mirror servers (caches)
- First, ask server for digest of desired file
» Use secure channel with server
- Then ask mirror server for file
» Can be insecure channel
» Check digest of result and catch faulty or malicious mirrors

Read File X
Here is h, = H(X)

—_—

Server

Client
11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.21

Signatures/Certificate Authorities
+ Canuse X .. for person X 1o define their identity oplc or person X fo define Their identity

- Presumab y they are the only ones who know X, ...
- Often, we think of X, as a "principle”
- Suppose we want X to sigh message M? _
- Use private key to encrypt the digest, i.e. H(M)Xprivate
- Send both M and its signature:
» Signed message = [M, (I'A‘A)XP'"""“E]
- Now, “anyone can verify that M was signed by X
» Simply decrypt the digest with X
» Verify that result matches H(M) .
* Now: How do we know that the version of X, that
we have is really from X??2?
- Answer: Certificate Authority
» Examples: Verisign, Entrust, Etc.
- X goes to organization, Er‘esenfs identifyin Jpapers
» Organization signs X's key: [Xppiic. H(Xpupic)4P™ere]
» Called a “Certificate”
- Before we use X, ... ask X for certificate verifying key
» Check that sigﬁa'l'ur'e over X produced by trusted
uthori . .
* How do we get keys of certificate authority?
- Compiled into your browser, for instancel!

(userf

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.22

Security through SSL

— 4]

+ SSL Web Protocol —_—

- f}ort 44b?': sﬁcure h1--|-p1-.) _Ns.cert,
- Use public-key encryption ks
for lfey-disfr‘%uﬁonyp < 2 (ms)c

+ Server has a certificate signed by certificate aut
- Contains server info (organization, IP address, etc)
- Also contains server's public key and expiration date
+ Establishment of Shared, 48-byte "master secret”
- Client sends 28-byte random value n_ to server
- Server returns its own 28-byte random value n,, plus its
certificate cert,
- Client verifies certificate by checking with public key of
certificate authority compiled into browser
» Also check expiration date
- Client picks 46-byte “premaster” secret (pms), encrypts
it with public key of server, and sends to server
- Now, both server and client have n., n,, and pms
» Each can compute 48-byte master secret using one-way
and collision-resistant function on three values
» Random “nonces” n. and n; make sure master secret fresh

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.23

hority

Recall: Authorization: Who Can Do What?
- How do we decide who is authorized | 1

to do actions in the system? N R R | A e
+ Access Control Matrix: contains -
all permissions in the system I Bl o
- Resources across top D. | print
» Files, Devices, etc... = =
- Domains in columns | B)
» A domain might be a user or a o, | i | reed

group of permissions
» E.g. above: User D; can read F, or execute F;
- In practice, table would be huge and sparsel!
+ Two approaches to implementation
- Access Control Lists: store Permissions with each object
» Still might be lots of users!
» UNIX limits each file to: r,w,x for owner, group, world
» More recent systems allow definition of groups of users
and permissions for each group
- Capability List: each process tracks objects has
permission to touch
» Popular in the past, idea out of favor today
» Consider page table: Each process has list of pages it has
access to, not each page has list of processes ..

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.24

How fine-grained should access control be?

- Exampte of The problem:
- Suppose you buy a copy of a new game from “Joe's Game
World” and then run it.
- It's running with your userid
» It removes all the files you own, including the project due
the next day...
* How can you prevent this?
- Have to run the program under some userid.
» Could create a second games userid for the user, which
has no write privileges.
» Like the "nobody” userid in UNIX - can't do much
- But what if the game needs to write out a file recording
scores?
» Would need to give write privileges to one particular file
(or directory) to your games userid.
- But what about non-game programs you want to use,
such as Quicken?
» Now you need to create your own private quicken userid, if
you want to make sure tha the copy of Quicken you bought
can't corrupt non-quicken-related %Ies

- But - how to get this right??? Pretty complex...
11/29/10 Kubiatowicz 5162 ©UCB Fall 2010 Lec 25.25

Authorization Continued

* Principle of least privilege: programs, users, and
sxs'rems should get only enough privileges to perform
their tasks

- Very hard to do in practice
» How do you figure out what the minimum set of privileges
is needed to run your programs?
- People often run at higher privilege then necessary
» Such as the “administrator” privilege under windows
* One solution: Signed Software
- Only use software from sources that you trust, thereby
dealing with the problem by means of authentication
- Fine for big, established firms such as Microsoft, since
they can make their signing keys well known and people
trust them
» Actually, not always fine: recently, one of Microsoft's
signing ke¥s was compromised, leading to malicious
software that looked valid
- What about new startups?
» Who “validates” them?
» How easy is it to fool them?

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.26

How to perform Authorization for Distributed Systems?

Different
Authorization
Domains

* Issues: Are all user names in world unique?
- No! They only have small number of characters

» kubi@mit.edu — kubitron@Ics.mit.edu —
kubitron@cs.berkeley.edu

» However, someone thought their friend was kubi@mit.edu
and T got very private email intended for someone else...

- Need something better, more unique to identify person
* Suppose want to connect with any server at any time?
- Need an account on every machine! (possibly with
different user name for each account)
- OR: Need to use something more universal as identity
» Public Keys! (Called "Principles”)
» People are their public keys

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.27

Distributed Access Control
Access Control List (ACL) for X:

File X

Owner Key: __,
0x22347EF..

R: Key: Ox546DFEFA34...
Signature (owner)/RW: Key: 0x467D34EF83..
RX: Group Key: 0xA2D3498672..

S - ~
Client 1 o ~
Domain LN lp ACL:
omes - of DACL verifier : OXA786EFS89A..
: Ox6647DBCOAC..

Server 2: Domain 3 Wy,

- Distributed Access Control List (ACL)
- Contains list of attributes (Read, Write, Execute, etc)
with attached identities (Here, we show public keys)

» ACLs signed by owner of file, only changeable by owner
» Group lists signed by group key

- ACLs can be on different servers than data
» Signatures allow us to validate them
» ACLs could even be stored separately from verifiers

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.28

Analysis of Previous Scheme

* Positive Points:
- Identities checked via signatures and public keys
» Client can't generate request for data unless they have
private key Yo go with their public idenﬁ?
» Server won't use ACLs not properly signed by owner of file
- No problems with multiple domains, since identities
designed to be cross-domain (public keys domain neutral)
* Revocation:
- What if someone steals Your' private key?
» Need to walk through all ACLs with your key and change..!
» This is very expensive
- Better to have unique string identifying you that people
place into ACLs
» Then, ask Certificate Authority to give you a certificate
matching unique string to your current public key
» Client Request: (request + unique ID)%rivate; give server
certificate if they ask for it.
» Key compromise=must distribute “certificate revocation”,
since can't wait for previous certificate to expire.
- What if you remove someone from ACL of a given file?
» If server caches old ACL, then person retains access!
» Here, cache inconsistency leads to security violations!

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.29

Analysis Continued

- WHho signs The data?
- Or: How does client know they are getting valid data?
- Signed by server?
» What if server compromised? Should client trust server?
- Signed by owner of file?
» Better, but now only owner can update filel
» Pretty inconvenient!
- Signed by group of servers that accepted latest update?
» If must have signatures from all servers = Safe, but one
bad server can prevent uxdafe from happenin
» Instead: ask for a threshold number of signatures
» Byzantine agreement can help here
* How do you know that data is up-to-date?
- Valid signature only means data is valid older version
- Freshness attack:
» Malicious server returns old data instead of recent data
» Problem with both ACLs and data
» E.g.: you just got a raise, but enemy breaks into a server
and prevents payroll from seeing latest version of update
- Hard problem
» Needs to be fixed by invalidating old copies or having a
trusted group of servers (Byzanfine Agrement?)

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.30

Conclusion

+ User Identification
- Passwords/Smart Cards/Biometrics
+ Passwords
- Encrypt them to help hid them
- Force them to be longer/not amenable to dictionary attack
- Use zero-knowledge request-response techniques
+ Distributed identity
- Use cryptography
+ Symmetrical (or Private Key) Encryption
- Single Key used to encode and decode
- Introduces key-distribution problem
* Public-Key Encryption

- Two keys: a public key and a private key
+ Secure Hash Function

- Used to summarize data
- Hard to find another block of data with same hash

11/29/10 Kubiatowicz €S162 ©UCB Fall 2010 Lec 25.31

