CS162
Operating Systems and
Systems Programming

Lecture 16

Paging (Really finished!), General I/O
March 21st, 2019

Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Clock Algorithm (Not Recently Used)

L]
- ~ Single Clock Hand:

7 \/ Advances only on page fault!

/ Check for pages not used recently
Mark pages as not used recently

Set of all pages I
in Memory

\

\ /7
~
* Which bits of a PTE entry are useful to us?
— Use: Set when page is referenced; cleared by clock algorithm
— Modified: set when page is modified, cleared when page written to disk
— Valid: ok for program to reference this page
— Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!
» Clock Algorithm: pages arranged in a ring
— On page fault:
» Advance clock hand (not real time)

» Check use bit: 1—used recently; clear and leave alone
O—»selected candidate for replacement

— Crude partitioning of pages into two groups: young and old
3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.2

Recall: Clock Algorithms Details (continued)

* Do we really need hardware-supported “use” or “dirty” bits?
— No. Can emulate them in software!

» Keep software data structure mappin%_?ages =
use, dirty, valid, and read-only bits

» Start by marking all pages invalid (even if in memory)

— On read to invalid page, trap to OS:
» If page actually in memory, OS sets use bit, and marks page read-only
» Otherwise handle page fault

— On write to invalid/read-only page, trap to OS:

» If page actually in memory and supposed to be writable, OS sets use
and dirty bits, and marks page read-write

» Otherwise handle page fault
— When clock hand advances:
» Check software use and dirty bits to decide what to do
» If not reclaiming, mark page invalid and reset software use/dirty bits
* Remember, however, that clock is just an approximation of LRU

— Can we do a better approximation, given that we have to take page
faults on some reads and writes to collect use information?

— Need to identify an old page, not oldest page!
— Answer: second chance list

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.3

Second-Chance List Algorithm (VAX/VMS)
| LRU victim

Directly Second
Mapped Pages Chance List
Marked: RW Marked: Invalid
List: FIFO List: LRU

Page-in New‘ New
From disk Active Pages SC Victims

+ Split memory in two: Active list (RW), SC list (Invalid)
» Access pages in Active list at full speed

» Otherwise, Page Fault

— Always move overflow page from end of Active list to front of
Second-chance list (SC) and mark invalid

— Desired Page On SC List: move to front of Active list, mark RW

— Not on SC list: page in to front of Active list, mark RW; page

out LRU victim at end of SC list
3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.4

Second-Chance List Algorithm (continued)
« How many pages for second chance list?

—If0=FIFO

— If all = LRU, but page fault on every page reference
 Pick intermediate value. Result is:

— Pro: Few disk accesses (page only goes to disk if unused for a
long time)
— Con: Increased overhead trapping to OS (software / hardware
tradeoff)
With page translation, we can adapt to any kind of access
the program makes

— Later, we will show how to use page translation / protection to
share memory between threads on widely separated
machines

» Question: why didn’t VAX include “use” bit?

— Strecker (architect) asked OS people, they said they didn’t
need it, so didn’t implement it

— He later got blamed, but VAX did OK anyway

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.5

Free List
L]
/7 - ~ Advances as needed to
\ keep freelist full (“background”)
/ \
' Set of all pages
in Memory l
\ -
~ .- ree Pages
> For Processes

+ Keep set of free pages ready for use in demand paging
— Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)
— Dirty pages start copying back to disk when enter list
» Like VAX second-chance list
— If page needed before reused, just return to active set
* Advantage: faster for page fault
— Can always use page (or pages) immediately on fault

3/21/19 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.6

Reverse Page Mapping
(Sometimes called “Coremap”)
+ Physical page frames often shared by many different
address spaces/page tables
— All children forked from given process
— Shared memory pages between processes

* Whatever reverse mapping mechanism that is in place
must be very fast

— Must hunt down all page tables pointing at given page frame
when freeing a page

— Must hunt down all PTEs when seeing if pages “active”
* Implementation options:

— For every page descriptor, keep linked list of page table
entries that point to it

» Management nightmare — expensive
— Linux: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser
granularity)

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.7

Allocation of Page Frames (Memory Pages)

* How do we allocate memory among different processes?

— Does every process get the same fraction of memory? Different
fractions?

— Should we completely swap some processes out of memory?
» Each process needs minimum number of pages
— Want to make sure that all processes that are loaded into memory
can make forward progress

— Example: IBM 370 - 6 pages to handle SS MOVE instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

» Possible Replacement Scopes:

— Global replacement — process selects replacement frame from set of
all frames; one process can take a frame from another

— Local replacement — each process selects from only its own set of
allocated frames

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.8

Fixed/Priority Allocation

Equal allocation (Fixed Scheme):
— Every process gets same amount of memory
— Example: 100 frames, 5 processes — process gets 20 frames

Proportional allocation (Fixed Scheme)
— Allocate according to the size of process
— Computation proceeds as follows:
s; = size of process p; and S =Y s;
m = total number of physical frames in the system

. s
a; = (allocation for p;) = ;l Xm

Priority Allocation:
— Proportional scheme using priorities rather than size
» Same type of computation as previous scheme
— Possible behavior: If process p; generates a page fault, select for
replacement a frame from a process with lower priority number

* Perhaps we should use an adaptive scheme instead???
— What if some application just needs more memory?

Page-Fault Frequency Allocation

« Can we reduce Capacity misses by dynamically
changing the number of pages/application?

increase number
of frames

upper bound

page-fault rate

lower bound
{
decrease number|
of frames

number of frames

« Establish “acceptable” page-fault rate
— If actual rate too low, process loses frame
— If actual rate too high, process gains frame

» Question: What if we just don’t have enough memory?

3/21/19 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.9 3/21/19 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.10
Thrashing Locality In A Memory-Reference Pattern
* Program Memory Access — ——
L e Patterns have temporal o FE / 7
E and spatial locality — T '
5 — Group of Pages accessed | bk : 2
a along a given time slice N .
called the “Working Set” - Pidl "
degree of multiprogramming - WOI’king Set defines : 26 fi— - T -
. “ ” minimum number of pages & |
If a process does not have “enough” pages, the nesded for process to N _
page-fault rate is very high. This leads fo:
L behave well S I | 0 SR
—low CPU utilization ; -
—operating system spends most of its time swapping to disk * Not e_nough memory fo_r i
» Thrashing =a process is busy swapping pages in Working Set = Thrashing | w7777 7 q
and out with little or no actual progress — Better to swap out process? |- v =
* Questions: : T U
—How do we detect Thrashing?
—What is best response to Thrashing?
3/21/19 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.11 3/21/19 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.12

Working-Set Model

page reference table
...26157777516223412344434344413234443444. ..
—A—.I —)4
:1 !}‘
WS(t,) = {1.2,5.6,7) WS(t,) = {3.4)

» A = working-set window = fixed number of page references
— Example: 10,000 instructions

» WSi (working set of Process Pi) = total set of pages
referenced in the most recent A (varies in time)

— if A too small will not encompass entire locality
— if A too large will encompass several localities
—if A = o = will encompass entire program
D = X|WSi| = total demand frames
 if D> m = Thrashing
— Policy: if D > m, then suspend/swap out processes
— This can improve overall system behavior by a lot!

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.13

What about Compulsory Misses?

* Recall that compulsory misses are misses that occur the
first time that a page is seen

— Pages that are touched for the first time

— Pages that are touched after process is swapped
out/swapped back in

* Clustering:

— On a page-fault, bring in multiple pages “around” the
faulting page

— Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

» Working Set Tracking:
— Use algorithm to try to track working set of application
— When swapping process back in, swap in working set

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.14

Linux Memory Details?

Memory management in Linux considerably more complex than
the examples we have been discussing

Memory Zones: physical memory categories
— ZONE_DMA: < 16MB memory, DMAable on ISA bus
— ZONE_NORMAL: 16MB — 896MB (mapped at 0xC0000000)
— ZONE_HIGHMEM: Everything else (> 896MB)
Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
Many different types of allocation
— SLAB allocators, per-page allocators, mapped/unmapped
Many different types of allocated memory:
— Anonymous memory (not backed by a file, heap/stack)
— Mapped memory (backed by a file)
Allocation priorities
— Is blocking allowed/etc

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.15

Linux Virtual memory map (Pre-Meltdown)

NXFFFFFFFF OxFFFFFFFFFFFFFFFE
an} Kernel Q Kernel
896MB = _
2 ; Addresses & 64 TiB Addresses
Prysial W Physical
0xC0000000
X 0xFFFF800000000000
“Canonical Hole” Empty
= Space
° User
|_
m Addresses 0x00007FFFFFFFFFFF
3 0
= User
N Addresses
\/OXOOOOOOOO 0x0000000000000000

32-Bit Virtual Address Space 64-Bit Virtual Address Space

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.16

Pre-Meltdown Virtual Map (Details)

+ Kernel memory not generally visible to user

— Exception: special VDSO (virtual dynamically linked shared objects)
facility that maps kernel code into user space to aid in system calls (and
to provide certain actual system calls such as gettimeofday())

» Every physical page described by a “page” structure
— Collected together in lower physical memory
— Can be accessed in kernel virtual space
— Linked together in various “LRU” lists
For 32-bit virtual memory architectures:
— When physical memory < 896MB
» All physical memory mapped at 0xC0000000
— When physical memory >= 896MB
» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000
For 64-bit virtual memory architectures:

— All physical memory mapped above OxFFFF800000000000
3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.17

Post Meltdown Memory Map

+ Meltdown flaw (2018, Intel x86, IBM Power, ARM)
— Exploit speculative execution to observe contents of kernel memory

: // Set up side channel (array flushed from cache)
: uchar array[256 * 4096];
: flush(array); // Make sure array out of cache

: try { // .. catch and ignore SIGSEGV (illegal access)
uchar result = *(uchar *)kernel address;// Try access!
uchar dummy = arrayl[result * 4096]; // leak info!

: } catch(){;} // Could use signal() and setjmp/longjmp

[e) ~Noau WN =

: // scan through 256 array slots to determine which loaded

— Some details:
» Reason we skip 4096 for each value: avoid hardware cache prefetch
» Note that value detected by fact that one cache line is loaded

» Catch and ignore page fault: set signal handler for SIGSEGV, can use
setjump/longjmp....

+ Patch: Need different page tables for user and kernel
— Without PCID tag in TLB, flush TLB twice on syscall (800% overhead!)

— Need at least Linux v 4.14 which utilizes PCID tag in new hardware to
avoid flushing when change address space

« Fix: better hardware without timing side-channels
— Will be coming, but still in works

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.18

Administrivia (1/2)

» Supplemental Project 1 Peer evaluations will be out soon
(Forgot to include the collaboration question):
— Itis very important that you fill this out as well.
— You get 20 points for each partner that you distribute to partners
(with 3 other partners, get 60 total points):

» For instance: happy with all partners, give them each 20 points
» Less happy with one of them, give them 18, 21 to other two, etc
» Everything validated by TA, in the end, of course

— The project grades are a zero-sum game; if you do not
contribute to the project, your points might be distributed to those
who do!

» This is not about giving yourself more points by giving partners
less....

— It is about you evaluating your partners (and they evaluate you!)

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.19

Administrivia (2/2)
* Midterm Survey is up
— Please fill this out so that we can know how we are doing
* Midterm 2: Thursday 4/4
— Will definitely include Scheduling material (lecture 10)
— Will include I/O material from today’s lecture (lecture 16)

— Will have a Midterm review in early part of that week....
Stay tuned.

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.20

The Requirements of I/O

* So far in this course:
— We have learned how to manage CPU and memory

* What about I1/0?
— Without I/O, computers are useless (disembodied brains?)

— But... thousands of devices, each slightly different
» How can we standardize the interfaces to these devices?

— Devices unreliable: media failures and transmission errors
» How can we make them reliable???

— Devices unpredictable and/or slow
» How can we manage them if we don’t know what they will do or

how they will perform?

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.21

OS Basics: 1/0

Threads
Address Spaces Windows
Processes Files Sockets

Software

E Protection

Bound W

rlr

Q Networks
<—>

% B
E/nputs Dlsplays

Kubiatowicz CS162 © UCB Spring 2019

3/21119 Lec 16.22

In a Picture
Read/_ _ _ _ _ _
Write !
Processor E O
Core ™ I/O
i (—l
P I Cantrollecs
Q o E? interrupts
% 8 = -« | Secondary
| & = ® Read
- — \Write Storage
%Jre — E »t-n; o (Disk)
& o |9 |18
2 5] S 2
el [Z| |3 ®

+ 1/O devices you recognize are supported by 1/O Controllers
* Processors accesses them by reading and writing 10 registers
as if they were memory

— Write commands and arguments, read status and results

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.23

Operational Parameters for 1/0O

« Data granularity: Byte vs. Block
— Some devices provide single byte at a time (e.g.,

keyboard)
— Others provide whole blocks (e.g., disks, networks, etc.)

» Access pattern: Sequential vs. Random
— Some devices must be accessed sequentially (e.g.,
tape)
— Others can be accessed “randomly” (e.g., disk, cd, etc.)
» Fixed overhead to start transfers
— Some devices require continual monitoring
— Others generate interrupts when they need service

» Transfer Mechanism: Programmed IO and DMA

3/21/19 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.24

Kernel Device Structure

The System Call Interface
e
Process Memory . Device .
Management | | Management LTSS Control g 1
Concurrency, Virtual Files and dirs: TTYs and oo
multitasking __memory the VFS __ device access _~onnectivity
Fil it 1
! ?rfg::m Network
i Subsystem
Architecture T BEEEE Device
Dependent M c |
Code anager Block ontro IF drivers |1
Devices
, EEEE
1

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.25

The Goal of the I/O Subsystem

* Provide Uniform Interfaces, Despite Wide Range of
Different Devices
— This code works on many different devices:

FILE fd = fopen("/dev/something", "rw");
for (int 1 = 0; i < 10; i++) {
fprintf(fd, "Count %d\n", i);

}
close(fd);

—Why? Because code that controls devices (“device driver”)
implements standard interface

* We will try to get a flavor for what is involved in actually
controlling devices in rest of lecture

— Can only scratch surface!

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.26

Want Standard Interfaces to Devices

* Block Devices: e.g. disk drives, tape drives, DVD-ROM
— Access blocks of data
— Commands include open(), read(), write(), seek()
— Raw I/O or file-system access
— Memory-mapped file access possible
» Character Devices: e.g. keyboards, mice, serial ports, some
USB devices
— Single characters at a time
— Commands include get (), put()
— Libraries layered on top allow line editing
* Network Devices: e.g. Ethernet, Wireless, Bluetooth
— Different enough from block/character to have own interface
— Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality
— Usage: pipes, FIFOs, streams, queues, mailboxes

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.27

How Does User Deal with Timing?

* Blocking Interface: “Wait”

— When request data (e.g. read() system call), put process to
sleep until data is ready

— When write data (e.g. write() system call), put process to
sleep until device is ready for data

* Non-blocking Interface: “Don’t Wait”

— Returns quickly from read or write request with count of bytes
successfully transferred

— Read may return nothing, write may write nothing
* Asynchronous Interface: “Tell Me Later”

— When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

— When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.28

Chip-scale Features of 2015 x86 (Sky Lake)
« Significant pieces:
— Four OOO cores with deeper buffers

» New Intel MPX (Memory Protection
Extensions)

» New Intel SGX (Software Guard Extensions)
» Issue up to 6 p-ops/cycle

- :;\ée)grated GPU, System Agent (Mem, Fast

— Large shared L3 cache with on-chip ring bus
» 2 MB/core instead of 1.5 MB/core
» High-BW access to L3 Cache
Integrated 1/0
— Integrated memory controller (IMC)
» Two independent channels of DRAM
— High-speed PCI-Express (for Graphics cards)

— Direct Media Interface (DMI) Connection to
PCH (Platform Control Hub)

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.29

Sky Lake I/O: PCH

» Platform Controller Hub

Embedded pr——— TR
Digital Display r JE'EE',T-‘L‘,';T.,,.W _ — Connected to processor

£3 5 Processor with proprietary bus
Digital Display == -
= | *16

: » Direct Media Interface
DMI Gen 3

s Wz Types of 1/0 on PCH:
DN I - USB, Ethernet

Intel® CM230 Series Chipset

R _Thunderbolt 3

—Audio, BIOS support

—More PCI Express
(lower speed than on
Processor)

Sky Lake —SATA (for Disks)
System Configuration
3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.30

Modern I/O Systems

\&/

2/

an B
=/ &S \E

SCSI bus
=2
@

=

e e
bridge/memory | /IE]/ SCS| controlier i
| i /‘__ 4 a4 4 < ! —-

L_PCibus . I) T

manitor ‘

B (B
@
E/

graphics ‘

OIS S oy

|) | [7 | o S
) b ‘@W}
IDE disk controller ‘ e’l:;nsm[aza Ak | Ioe\fb.oeld - \'w‘ X o &

s] expansion bus——!

3/21119 Kubiatowicz CS162 © UCB Spring 2019 ~ Lec 16.31

Example: PCI Architecture

RAM |le=Memony f cpyy

Bus
S
{ Host Bridge
S A PCI #0
ISA Bridge PCI Bridge
o | | < PCI #1
ISA
Controller PCI Slots USB SATA @

Controller Controller

DVD m
ROM

Device

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.32

Example Device-Transfer Rates in Mb/s
(Sun Enterprise 6000)

System eoe
HyperTransport {32-pair) _
PCI Express 2,0 (+32) [N
Infiniband (Q0A 12x) D
serial ATA (SATA-300) [
gigabit ethernet [N

scsivus I
Frewiro
pard sk I
0.00001 0.001 01 10 1000 100000 10m

» Device Rates vary over 12 orders of magnitude !!!
— System better be able to handle this wide range
— Better not have high overhead/byte for fast devices!

— Better not waste time waiting for slow devices
3/21119 Kubiatowicz CS162 © UCB Spring 2019

Lec 16.33

How does the processor talk to the device?

Processor Memory Bus

Bus Bus
Adaptg dapto

Regular

Address + Controller
Other Deviceg Data Bus Hardware
Interrupt f—o0rBuses Interface Controller
Controller Interrupt Request
\C?r?tcé Addressable
* CPU interacts with a Controller conftro Memory
— Contains a set of registers that : and/or
can be read and written Registers Queues
— May contain memory for request (port OXZO)Men?On_/ Mapped .

queues or bit-mapped images
» Regardless of the complexity of the connections and buses,
processor accesses registers in two ways:

— I/O instructions: in/out instructions

» Example from the Intel architecture: out ©x21,AL

— Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space

» 1/0 accomplished with load and store instructions

Kubiatowicz CS162 © UCB Spring 2019 Lec 16.34

3/21/19

Example: Memory-Mapped Display Controller

* Memory-Mapped:
— Hardware maps control registers and display ~ 0x80020000 [Graphics
memory into physical address space Command
» Addresses set by HW jumpers or at boot Queue
time 0x80010000 Disol
— Simply writing to display memory (also called M':'I';:y
the “frame buffer”) changes image on screen ry
» Addr: 0x8000F000 — 0x8000FFFF 0x8000F000
— Writing graphics description to cmd queue
» Say enter a set of triangles describing some gx0007F004 | Command
scene 0x0007F000 |Status
» Addr: 0x80010000 — 0x8001FFFF
— Writing to the command register may cause .
on-board graphics hardware to do something
» Say render the above scene l Physical
» Addr: 0x0007F004 | NS 'h Address
« Can protect with address translation & ' Space
3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.35

Transferring Data To/From Controller

* Programmed I/O:

— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

» Direct Memory Access:
— Give controller access to memory bus

— Ask it to transfer

data blocks to/from

memory directly

« Sample interaction |,
with DMA controller

(from OSC book):

3/21/19

5.

. when C = 0, DMA

transfer completion r<

1. device driver is told |
to transfer disk data @

to buffer at address X

DMA controller 2. device driver tells

transfers bytes to disk controller to

buffer X, increasing transfer C bytes

memary address from disk to buffer | cau.:he
and decreasing C at address X o |
untiC =0 e

interrupts CPU to signal

DMA/bus/
interrupt [
controller

CPU ‘

| ! X 1
memory bus —| memory i butter

PCI bus-

Ku

IDE disk
controller

Fioay ./__'\!

@ @
e

'Glsk: :dISBE
S

P

7 A controller initiates

DMA transter

4. disk controller sends
each byte to DMA
controller

Transferring Data To/From Controller

* Programmed I/O:
— Each byte transferred via processor in/out or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

» Direct Memory Access:
— Give controller access to memory bus

_ ASk |t to transfer 1. device driveris told |]
to transfer disk data CPU
data blOCkS to/from to buffer at addrass X| ‘
. 5. DMA controller 2. device driver tells i
memory di reCtly transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memoary address from disk to buffey cat.:he

and decreasing C at address X

+ Sample interaction |, U0 ° s ARG/
H .Iﬂ [emupls : 0 Signa Lk
with DMA controller| ifd i | contoler

(from OSC book): =

PCI bus

g 3. disk controller initiates
IDBdisk DMA transter
controller 4. disk controller sends

each byte to DMA
controller

o
=S
=5

-

Sy
oY

) (s is&:

amy
&/
=

3/21/19 Ky

I/O Device Notifying the OS

* The OS needs to know when:
—The 1/O device has completed an operation
—The I/O operation has encountered an error

* 1/O Interrupt:
— Device generates an interrupt whenever it needs service
—Pro: handles unpredictable events well
— Con: interrupts relatively high overhead
* Polling:
— OS periodically checks a device-specific status register
» 1/O device puts completion information in status register
—Pro: low overhead
— Con: may waste many cycles on polling if infrequent or unpredictable
I/O operations
* Actual devices combine both polling and interrupts
— For instance — High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

3/21/19 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.38

Device Drivers
« Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware

— Supports a standard, internal interface

— Same kernel I/0O system can interact easily with different device
drivers

— Special device-specific configuration supported with the
ioctl() system call

» Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(),
close(), read(), write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver

» Top half will start 1/0 to device, may put thread to sleep until
finished

— Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.39

Life Cycle of An I/O Request

- VO completed
User raquest 10 protess mp;;ﬁ?:m;:ﬁu
Program
- e Iranster dati
L“.‘.\\.\ = - B g l relﬁl.:r;:zré&iﬂ?ﬁ"
Kernel 1/10 “‘-I-;;_j :
Subsystem |

ariver, BIGEK process i
appropriate

OCESS FOQUES], 5US

. . o T
Device Driver Sttt s ekl

configuen controlior 1o diver Ehanga {0 VO subsysiom

TO p H a |f block until lemupled
Device Driver setcocomotsrconmangs T8 | ont o amorbuter

Andied i irg, ‘Imﬂllhkimhm

device diver
Bottom Half 1
.......... VPN s nnnufannnsn
aev(ijce .H:.‘:“.’:.P&;“Eﬁ"?o o compoa,
araware ' :
l lme }/}
312119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.40

Summary

I/O Devices Types:
— Many different speeds (0.1 bytes/sec to GBytes/sec)
— Different Access Patterns:
» Block Devices, Character Devices, Network Devices
— Different Access Timing:
» Blocking, Non-blocking, Asynchronous
I/O Controllers: Hardware that controls actual device
— Processor Accesses through I/O instructions, load/store to
special physical memory
Notification mechanisms
— Interrupts
— Polling: Report results through status register that processor
looks at periodically

» Device drivers interface to 1/0O devices
— Provide clean Read/Write interface to OS above
— Manipulate devices through PIO, DMA & interrupt handling
— Three types: block, character, and network

3/21119 Kubiatowicz CS162 © UCB Spring 2019 Lec 16.41

