
 Page 1/22

University of California, Berkeley
College of Engineering

Computer Science Division EECS
Spring 2019

John Kubiatowicz

Midterm II
SOLUTIONS
April 4th, 2019

CS162: Operating Systems and Systems Programming

Your Name:

Your SID:

TA Name:

Discussion Section
Time:

General Information:
This is a closed book exam. You are allowed 2 pages of notes (both sides). You have 2 hours to
complete as much of the exam as possible. Make sure to read all of the questions first, as some of the
questions are substantially more time consuming. Write all of your answers directly on this paper.
Make your answers as concise as possible. On programming questions, we will be looking for
performance as well as correctness, so think through your answers carefully. If there is something
about the questions that you believe is open to interpretation, please ask us about it!

Problem Possible Score

1 18

2 20

3 22

4 18

5 22

Total 100

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 2/22

[This page left for]

3.14159265358979323846264338327950288419716939937510582097494459230781640628620899

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 3/22

Problem 1: True/False [18 pts]
Please EXPLAIN your answer in TWO SENTENCES OR LESS (Answers longer than this may not
get credit!). Also, answers without an explanation GET NO CREDIT.

Problem 1a[2pts]: A direct mapped cache can sometimes have a higher hit rate than a fully
associative cache with an LRU replacement policy (on the same reference pattern).

 True ⬜ False
Explain: Consider a cache of N cache lines with an N+1 sequential access pattern whose

addresses stride across cache lines (i.e. with 32-byte cache lines, address 0, 32, 64, … 32N, 0, 32, 64,
…. 32N, ….). The LRU cache would miss on every access (since the N+1st entry is never in the cache);
the direct-mapped cache would miss on only 2 out of N+1 accesses, with only 0 and 32N conflicting.

Problem 1b[2pts]: If the Banker's algorithm finds that it's safe to allocate a resource to an existing
thread, then all threads will eventually complete.

 ⬜ True False
Explain: Threads fail to complete for many reasons other than cycles in the resource graph.

For instance, a thread could go into an infinite loop independent of the Banker’s algorithm.

Problem 1c[2pts]: Even though most processors use a physical address to address the cache, it is
possible to overlap the TLB lookup and cache access in hardware.

 True ⬜ False
Explain: Not all bits in a Virtual address are translated during mapping to Physical address.

Particularly, the page offset stays the same. If the cache index fits entirely in the page offset, then the
SRAM lookup of the cache can happen in parallel with the TLB lookup, with the Tag check happening
after the TLB access finishes. [For instance, with 4K pages and a 16-way, 64K cache, the cache index
would come entirely from the offset. For larger caches, those bits of the index that fit inside the offset
could start the cache lookup, with the remainder happening after the TLB lookup completes.]

Problem 1d[2pts]: The lottery scheduler prevents CPU starvation by assigning at least one ticket to
each scheduled thread.

 True ⬜ False
Explain: By assigning at least one ticket to each scheduled thread, the kernel can ensure that

the lottery scheduler will always give at least a little CPU to every thread (probabilistically).

Problem 1e[2pts]: You can always reduce the number of page faults by increasing the amount of
memory available to a process.

⬜ True False
Explain: This result depends on the replacement policy. A FIFO page replacement policy

exhibits Belady’s anomaly, in which certain access patterns experience increased page faults with
increased memory.

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 4/22

Problem 1f[2pts]: The Shortest Remaining Time First (SRTF) algorithm is the best preemptive
scheduling algorithm that can be implemented in an Operating System.

⬜ True False
Explain: Since SRTF relies on knowledge of the future, it cannot be implemented. It is merely

a strawman against which to compare practical scheduling algorithms.

Problem 1g[2pts]: A Patch for the Meltdown security flaw can increase the cost of execution in
Linux significantly (by over 800% in some reports) on some process/kernel combinations.

 True ⬜ False
Explain: The primary software patch for Meltdown involves separate page tables for a user

and kernel (i.e. no more inaccessible kernel mappings in the user’s page table). On processors which
do not have process-ID tags in their TLB (or on OSes that don’t use these bits), this means that every
system call must flush the TLB twice – once on entrance to the kernel and once on exit. [The result is
a huge performance hit – reported to be 800% in some cases…]

Problem 1h[2pts]: Anything that can be done with a monitor can also be done with semaphores.

 True ⬜ False
Explain: Since it is possible to create both locks and condition variables out of semaphores,

once can simply build monitors out of semaphores, then use these monitors to do whatever we want—
thus demonstrating the equivalence.

Problem 1i[2pts]: Page Tables have an important advantage over simple Segmentation Tables (i.e.
using base and bound) for virtual address translation in that they eliminate external fragmentation in
the physical memory allocator.

 True ⬜ False
Explain: Since page tables operate on pages, which are of fixed size, the physical memory

allocator can use any physical page for any part of a virtual address space; thus, there is no externally
wasted physical memory. In a simple segmentation scheme, however, the chunks of physical memory
vary widely in size (based on the size of the segments); thus, the physical memory allocator is forced
to find variable sized chunks – leading to external fragmentation.

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 5/22

Problem 2: Multiple Choice [20pts]
Problem 2a[2pts]: When a process asks the kernel for resources that cannot be granted without
causing deadlock (as determined by the Banker’s algorithm), the kernel must (choose one):

A: ⬜ Preempt the requested resources from another process and give them to the requesting
process, thereby avoiding cycles in the resource dependency graph.

B: Put the requesting process to sleep until the resources become available.

C: ⬜ Send a SIGKILL to the requesting process to prevent deadlock from occurring.

D: ⬜ This question does not make sense because the Banker’s algorithm is run only when a new
process begins execution.

Problem 2b[2pts]: Suppose that two chess programs are running against one another on the same
CPU with equal “nice” values. Also assume that the programs are given real-time limits on the total
time they spend making decisions (similar to a real chess tournament). Why might one of the
programs want to perform a lot of superfluous I/O operations? (choose one):

A: ⬜ To hide the fact that the program was cheating by receiving information from a real chess
master over the network.

B: ⬜ The random completion time for these I/O operations will serve as an important source of
randomness, thereby improving the chess playing heuristics.

C: This will split up the long-running heuristic computation into many short bursts, thereby
causing the chess program to be classified as “interactive” by the scheduler and thus
receiving higher priority than the competing program.

D: ⬜ This question does not make sense, since the extra I/O operations will only slow down chess
program.

Problem 2c[2pts]: A processor which provides “Precise Exceptions” is one in which (choose one):

A: ⬜ There is never any ambiguity as to which type of exception occurred in the user’s program.

B: At the time that an exception handler begins execution, there is a well-defined instruction
address in the instruction stream for which all prior instructions have committed their results
and no following instructions (including the excepting one) have modified processor state.

C: ⬜ Important exceptions are synchronous (always occurring at the same place in the instruction
stream) as opposed to asynchronous. This helps during restart after the exception is handled.

D: ⬜ The Operating System can disable out-of-order execution during critical sections of the
user’s program, thereby preventing instructions following an exception from being partially
executed.

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 6/22

Problem 2d[2pts]: The Meltdown security flaw (made public in 2018) was able to gain access to
protected information in the kernel because (choose one):

A: ⬜ Data-specific variability in the processing of system-calls (related to how Intel processors
handled synchronous exceptions) by one process (the victim) allowed another process (the
attacker) to successfully guess values stored in the kernel stack of the victim process.

B: ⬜ A POSIX-compatible system call implemented by multiple operating systems neglected to
properly check arguments and could thus be fooled into returning the contents of protected
memory to users.

C: ⬜ There was a wide-spread bug in the x86 architecture that caused certain loads to ignore
kernel/user distinctions in the page table under the right circumstances. This allowed user-
code to directly load and use data that was supposed to be protected in kernel space.

D: Many processors allowed timing windows in which illegal accesses could be performed
speculatively and made to impact cache state – even though the speculatively loaded data
was later squashed in the pipeline and could not be directly used.

Problem 2e[2pts]: Earliest Deadline First (EDF) scheduling has an important advantage over other
scheduling schemes discussed in class because (choose one):

A: ⬜ It can hand out more total processor cycles to an asynchronously arriving mix of real-time
and non-realtime tasks than other scheduling schemes.

B: It can allocate up to 100% of processor cycles to real-time periodic tasks while still
providing a guarantee of meeting real-time deadlines.

C: ⬜ It can operate non-preemptively and is thus simpler than many other scheduling schemes.

D: ⬜ It can provide the lowest average responsiveness to a set of tasks under all circumstances—
even in the presence of long-running computations.

Problem 2f[2pts]: What is the Clock Algorithm and where is it used? (choose one)

A: ⬜ The Clock Algorithm provides fair queueing of CPU cycles within the Linux CFS
scheduler; it uses virtual time to give each thread its fair fraction of cycles and is considered
a simpler alternative to the Linux O(1) scheduler.

B: ⬜ The Clock Algorithm helps to synchronize time over the network and is capable of
synchronizing to better than 10ms over the scale of a metropolitan area. It is used to help
timestamp all activities within the operating system.

C: The Clock Algorithm is used to select replacement pages in the virtual memory subsystem.
It places physical pages in a giant ring and scans through them for idle pages by
manipulating the hardware “use” bit. Pages in the ring are marked as “valid” and accessible
by running programs until they are chosen for replacement.

D: ⬜ The Clock Algorithm is used to select replacement pages in the virtual memory subsystem.
It places pages into two groups – an active group that is mapped as “valid” and managed in
a FIFO list and an inactive group that is mapped as “invalid” and managed as an LRU list.

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 7/22

Problem 2g[2pts]: Consider a computer system with the following parameters:

Variable Measurement Value
PTLB Probability of TLB miss 0.1

PF Probability of a page fault when a TLB miss occurs on user
pages (assume page faults do not occur on page tables).

0.0002

PL1 Probability of a first-level cache miss for all accesses 0.1
PL2 Probability of a second-level cache miss for all accesses 0.0004

TTLB Time to access TLB (hit) 1 ns
TL1 Time to access L1 cache (hit) 5ns
TL2 Time to access L2 cache (hit) 20ns
TM Time to access DRAM 100ns
TD Time to transfer a page to/from disk 10 ms = 10,000,000 ns

The TLB is refilled automatically by the hardware on a miss. The 2-level page tables are kept in
physical memory and are cached like other accesses. Assume that the costs of the page replacement
algorithm and updates to the page table are included in the TD measurement. Also assume that no
dirty pages are replaced and that pages mapped on a page fault are not cached.

What is the effective access time (the time for an application program to do one memory
reference) on this computer? Assume physical memory is 100% utilized and ignore any software
overheads in the kernel.

A: ⬜ 𝑇 𝑇 𝑃 𝑇 𝑃 𝑇 𝑃 𝑃 𝑇

B: ⬜ 𝑇 𝑇 𝑃 𝑇 𝑃 𝑇 𝑃 2 𝑇 𝑃 𝑇 𝑃 𝑇 𝑃 𝑇

C: ⬜ 𝑇 𝑇 𝑃 𝑇 𝑃 𝑇 𝑃 2𝑇 𝑃 𝑇

D: 𝑇 1 𝑃 𝑃 𝑇 𝑃 𝑇 𝑃 𝑇
 𝑃 2 𝑇 𝑃 𝑇 𝑃 𝑇 𝑃 𝑇 𝑇 𝑇 𝑇

Problem 2h[3pts]: Debugging in Pintos can often be very difficult due to the complexity of the
code base and often just staring at the code is an ineffective strategy, Mark all of the following that
are good general strategies to debug Pintos:
A: Setting breakpoints in GDB to walk through specific function calls.

B: Setting memory watchpoints in GDB to watch for variable modifications.

C: Checking function pre- and post-conditions with ASSERT statements.

D: Checking execution progress with PANIC statements.

E: Checking variables with print statements.

F: ⬜ None of the above.

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 8/22

Problem 2i[3pts]: Which of the following schedulers gives priority to interactive processes (those
getting input from users) over long-running ones and can be used in a workstation without requiring
annotations from the programmer or other supplemental mechanisms (mark all that apply):
A: Linux CFS

B: ⬜ SRTF

C: ⬜ EDF

D: ⬜ Round-Robin

E: Multi-Level Scheduler

F: ⬜ None of the above.

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 9/22

Problem 3: Potpourri [22pts]
Problem 3a[8pts]: For the following problem, assume a hypothetical machine with 4 pages
of physical memory and 7 pages of virtual memory. Given the access pattern:

A B C D E A A E C F F G A C G D C F
Indicate in the following table which pages are mapped to which physical pages for each of the
following policies. Assume that a blank box matches the element to the left. We have given the FIFO
policy as an example.
Access→ A B C D E A A E C F F G A C G D C F

F
IF

O

1 A E C
2 B A D
3 C F
4 D G

M
IN

1 A F
2 B E F G F
3 C F
4 D F

L
R

U

1 A E A F
2 B A G
3 C
4 D F D

Problem 3b[2pts]: Suppose that you decide to try running PintOS on a real piece of hardware.
Everything seems to work at first, but after testing for some time in user mode you realize that none
of your syscalls are working. It turns out that the CPU you’re testing is faulty; for some reason, the
int (interrupt) instruction is treated as a no-op by your CPU. In one sentence, briefly explain how
you could modify the Pintos kernel in order to service syscalls if the int instruction does not work
on your CPU. Your modification is allowed reduce the usability of the CPU in other ways.

You could change any of the synchronous exception handlers (e.g. divide by zero, bad
instruction opcode, page fault to a particular unmapped address, etc) to handle system calls.
You could also potentially use x86 features like the sysenter/sysexit or call gate mechanisms to
handle syscalls. The only requirements are that the operation synchronously enter the kernel
and be recognizable as the intended syscall rather than a fault that kills the process. So, if you
did a divide-by-zero, the kernel would have to notice that the divide came from libc() to be
recognized as a syscall rather than error.

Problem 3c[2pts]: Assuming that you made the above modification to the kernel correctly, show
an example of x86 code that a user could write in order to call the practice() system call, which
takes one argument that is stored in register eax, and has a syscall number of 1. Do not worry about
a return value or the exact syntax of x86 assembly code.

Practice:

 push eax #push argument onto stack___
 push 1 #push syscall number onto stack

move ebx, 0 #setup for divide by zero______
div ebx # divide by zero (syscall!)____

Any one of these

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 10/22

Problem 3d[4pts]: You are designing a kernel from scratch and need to make sure that system calls
properly check user memory. Implement validate_buffer() so that it ensures that the
memory between ptr and ptr + size - 1 points to valid user memory.

Assume you have access to the following:

 size_t PGSIZE; // the size of a page

 /* returns the byte offset of ptr within its page */
 size_t pg_ofs(void *ptr);

 /* returns true if the pointer is on a mapped, userspace page */
 int validate_pointer(void *ptr);

Finish the implementation of validate_buffer() by adding code to the missing lines, below. Your
code should be as efficient as possible and there should be no more than one semicolon per line.
You will not be given full credit for solutions that check one byte at a time. Also, you cannot write
any control flow statements that we have not laid out for you (e.g. if, while, for).

 // Ensure memory between ptr and ptr+size-1 is valid user memory
 void validate_buffer(void *ptr, size_t size)
 {
 while (size > 0) {

 if (!validate_pointer(ptr)))
 thread_exit(); // Invalid buffer

 size_t bytes_validated;

 size_t page_remaining = PGSIZE – pg_ofs(ptr);

 if (page_remaining > size)
 bytes_validated = size;
 else

 bytes_validated = page_remaining;

 ptr += bytes_validated;

 size -= bytes_validated;
 }
 }

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 11/22

Problem 3e[6pts]:
Here is a table of processes and their associated arrival and running times.

Process ID Arrival Time
CPU Running

Time
Process A 0 2
Process B 1 6
Process C 4 1
Process D 7 4
Process E 8 3

Show the scheduling order for these processes under 3 policies: First Come First Serve (FCFS),
Shortest-Remaining-Time-First (SRTF), Round-Robin (RR) with timeslice quantum = 1. Assume that
context switch overhead is 0, that new processes are available for scheduling as soon as they arrive,
and that new processes are added to the head of the queue except for FCFS, where they are added
to the tail.

Time Slot FCFS SRTF RR

0 A A A

1 A A B

2 B B A

3 B B B

4 B C C

5 B B B

6 B B B

7 B B D

8 C B E

9 D E B

10 D E D

11 D E E

12 D D B

13 E D D

14 E D E

15 E D D

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 12/22

[This page intentionally left blank!]

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 13/22

Problem 4: Deadlock and the Alien Nosh [18pts]
Consider a large table with multi-armed aliens. They are bilaterally symmetric, with the same
number of left and right appendages. In the center of the table is a pile of Foons and Sporks. In
order to eat, they must have a “Foon” in each left hand and a “Spork” in each right hand. The
aliens are so busy talking that they can only grab one Foon or Spork at a time. In this problem, we
are going to use monitor-style programming in combination with the Banker’s Algorithm to design
a deadlock-free API that allows an alien to grab utensils one at a time and to return all utensils after
eating. The prototypes for our API calls are as follows:

 // Allocate and initialize a new table (numarms is number on each side!)
 alien_table_t *InitTable(int numAliens, int numArms,
 int numFoons, int numSporks);

 // Allow alien to grab utensil. Sleep if insufficient resources.
 // utype = 0 for a Foon and 1 for a Spork
 int GrabOne(alien_table_t *table, int alien, int utype);

 // Return all of the given alien’s utensils to center table.
 // Wake sleeping aliens.
 void ReturnAll(alien_table_t *table, int alien);

 // Return true(1) if alien can be granted another utype utensil.
 // Return false(0) otherwise
 int BankerCheck(alien_table_t *table, int alien, int utype);

In the following problems, assume that you have LockAcquire(lock_t *somelock), and
LockRelease(lock_t *somelock)to manipulate locks. Also assume that condition variables
are Mesa scheduled and that you can utilize condition variables via CVWait(CV_t *someCV),
CVSignal(CV_t *someCV), and CVbroadcast(CV_t *comeCV). You may also find
calloc() useful:

 // Return zeroed array of nmemb structures of given size. This combines
 // malloc() with a block zeroing process.
 void *calloc(size_t nmemb, size_t size);

Problem 4a(2pts): Fill in missing lines of code at position (9), for data structure definitions. No
blank line should have more than one semicolon (you do not need to fill all lines):

 1. typedef struct alien {
 2. int utensils[2];
 3. } alien_t;

 4. typedef struct alien_table {
 5. lock_t *mylock;
 6. CV_t *myCV;
 7. int numaliens, numarms;
 8. int utensils[2];

 9. alien_t *aliens;

 __

 10. } alien_table_t;

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 14/22

Problem 4b(2pts): Fill in missing lines of code for the InitTable() code at positions (13) and
(20). No blank line should have more than one semicolon (you do not need to fill all lines).

 11. alien_table_t *InitTable(int numAliens, int numArms,
 int numFoons, in numSporks)
 12. {

 13. alien_table_t *myTable = malloc(sizeof(alien_table_t));
 14. myTable->mylock = get_new_lock(); // Alloc lock
 15. myTable->myCV = get_new_CV(myTable->mylock); // Alloc CV
 16. myTable->numaliens = numAliens;
 17. myTable->numarms = numArms; // number of arms on one side
 18. myTable->utensils[0] = numFoons;
 19. myTable->utensils[1] = numSporks;

 20. myTable->aliens = (alien_t*)calloc(numAliens,sizeof(alien_t));

 __

 __

 21. return (myTable);
 22. }

Problem 4c(4pts): Fill in missing code for the GrabOne() routine at position (25). No blank line
should have more than one semicolon (you do not need to fill all lines). Do not forget to sleep if
you have insufficient resources. Solutions that do not use the BankerCheck() routine will
receive no credit (you will design BankerCheck() in problem 4e).

 23. void GrabOne(alien_table_t *table, int alien, int utype) {
 24. LockAcquire(table->mylock);

 25. while (!BankerCheck(table, alien, utype))

 CVWait(table->myCV);

 table->aliens[alien].utensils[utype]++;

 table->utensils[utype]--;

 __

 26. LockRelease(table->mylock);
 27. }

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 15/22

Problem 4d(4pts): Fill in missing code for the ReturnAll() routine at position (30). No blank
line should have more than one semicolon (you do not need to fill all lines).

 28. void ReturnAll(alien_table_t *table, int alien) {
 29. LockAcquire(table->mylock);

 30. for (int j = 0; j < 2; j++) {

 table->utensils[j] += table->aliens[alien].utensils[j];

 table->aliens[alien].utensils[j] = 0;

 }

 CVbroadcast(table->myCV);

 __

 31. LockRelease(table->mylock);
 32. }

Problem 4e[6pts]: Finally, implement BankerCheck() by filling out missing code at positions
(37), (39), and (41). No blank line should have more than one semicolon (you do not need to fill all
lines). This routine should return true (1) if the given Alien can be granted an additional resource of
type utype. Return false(0) otherwise. Do not blindly implement the Banker’s algorithm: this
method only needs to have the same external behavior as the Banker’s algorithm for this application
and can be implemented with a single pass through the Aliens (since all aliens are identical). This
method can be written with as few as 5 semicolons.

 33. int BankerCheck(alien_table_t *table, int alien, int utype) {
 34. int result = 0;
 35. if (table->utensils[utype] <= 0)
 36. return result;

 37. table->aliens[alien].utensils[utype]++;

 table->utensils[utype]--;

 38. for (int i = 0; i < table->numaliens; i++) {

 39. if ((table->aliens[i].utensils[0]+table->utensils[0]>=table->numarms)&&

 (table->aliens[i].utensils[1]+table->utensils[1]>=table->numarms))

 result = 1;
 40. }

 41. table->utensils[utype]++;

 table->aliens[alien].utensils[utype]--;

 42. return (result);
 43. }

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 16/22

[This page intentionally left blank!]

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 17/22

Problem 5: Virtual Memory [22 pts]
Consider a multi-level memory management scheme with the following format for virtual addresses:

Virtual Page #1
(10 bits)

Virtual Page #2
(10 bits)

Offset
(12 bits)

Virtual addresses are translated into physical addresses of the following form:

Physical Page #
(20 bits)

Offset
(12 bits)

Page table entries (PTE) are 32 bits in the following format, stored in big-endian form in memory
(i.e. the MSB is first byte in memory):

Physical Page #
(20 bits)

OS
Defined
(3 bits)

0 0

D
irty

A
ccessed

N
ocache

W
rite T

hrough

U
ser

W
riteable

V
alid

Here, “Valid” means that a translation is valid, “Writeable” means that the page is writeable, “User”
means that the page is accessible by the User (rather than only by the Kernel).

Problem 5a[2pts]: What is the total maximum size of a page table (in bytes) for this scheme?
Explain. Note: the phrase “page table” in this question means the multi-level data structure that
maps virtual addresses to physical addresses.

Since each Virtual Page # is 10 bits and the PTE is 4 bytes, this means that each level of the page
table consists of 210x4 bytes = 4096 bytes = 1 page. Thus, the top-level will have one page, and
there will be 210=1024 next level pages for a total of (1 + 1024) * 4096 = 4096+222 = 4,198,400
bytes.

Problem 5b[3pts]: Suppose that you were interested in supporting more than 4GB (i.e. 232 bytes) of
physical memory, while still supporting a 32-bit virtual address space. Also suppose that you wanted
to stick with 4-byte PTEs with the same hardware-defined page control and status bits as defined
above. What is the maximum amount of physical memory you could easily support? Explain.

Looking at the PTE, there are 3 OS defined bits and 2 bits that are stuck at zero, leaving 5 bits
for expansion. Thus, if we made the Physical Page number consist of 25 bits instead of 20 bits,
we could get 32 times as much physical memory => 128GB of physical memory.

Problem 5c[2pts]: When a modern x86 processor translates a virtual address, where does the
segment identifier come from?

The segment identifier comes from the instruction opcode bits. Thus, for instance, a “push”
instruction implicitly references the stack segment, SS.

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 18/22

Problem 5d[5pts]: Assume the memory translation scheme given above (5a). Suppose that the base
table pointer for the current user level process is 0x00200000. Translate the following virtual
addresses to physical addresses, using the memory contents given on the next page (page 19). We
have filled in some of the boxes for you. Please fill in the empty/missing information. Table
entries are in Hexadecimal (Hint: don’t forget that hexadecimal digits contain 4 bits!)

Problem 5e[10pts]: Using same assumptions and memory contents as in (5d), predict results for the
following instructions. Addresses are virtual. The return value for a load is an 8-bit data value or an
error, while the return value for a store is either “ok” or an error. Possible errors are: invalid, read-
only, kernel-only.

Starting
Virtual
Address

Virtual
Page #1

Virtual
Page #2

First-Level
PTE

Next-Level
Page-Table

Address

Second-
Level
PTE

Final
Physical
Address

0x00001047 0x0 0x1 0x001FF007 0x001FF000 0x00001065 0x00001047

0x00C07665 0x3 0x7 0x00103007 0x00103000 0xEEFF0067 0xEEFF0665

0xFFFFF555 0x3FF 0x3FF 0x001FF007 0x001FF000 0x00004065 0x00004555

Instruction Result Instruction Result

Load
[0x00001047] 0x04 Test-And-Set

[0x02006047] 0x50

Store
[0x00C07665] ok Load

[0xFF80078F]
ERROR:
invalid

Store
[0x00C005FF]

ERROR:
read-only Load

[0xFFFFF005] 0x01

Load
[0x00003042]

0x03 Store
[0xFFFFF006]

ERROR:
read-only

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 19/22

Physical Memory in Bytes [All Values are in Hexidecimal]
Address +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

00000000 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D
00000010 1E 1F 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D

….
00001010 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F
00001020 40 03 41 01 30 01 31 03 00 03 00 00 00 00 00 00
00001030 00 11 22 33 44 55 66 77 88 99 AA BB CC DD EE FF
00001040 10 01 11 02 31 03 13 04 14 01 15 03 16 01 17 00

….
00002030 10 01 11 00 12 03 67 03 11 03 00 00 00 00 00 00
00002040 02 20 03 30 04 40 05 50 01 60 03 70 08 80 09 90
00002050 10 00 31 01 10 03 31 01 12 03 30 00 10 00 10 01

….
00004000 00 00 11 01 11 01 33 03 34 01 35 00 43 38 32 79
00004010 50 28 84 19 71 69 39 93 75 10 58 20 97 49 44 59
00004020 23 03 20 03 00 01 62 08 99 86 28 03 48 25 34 21

….
00100000 00 00 10 65 00 00 20 67 00 00 30 00 00 00 40 07
00100010 00 00 50 03 00 00 00 00 00 00 20 67 00 00 00 00

…
00102000 00 00 20 01 00 00 00 00 00 00 30 03 00 00 40 07

…
00103000 11 22 00 05 55 66 77 88 99 AA BB CC DD EE FF 00
00103010 22 33 44 55 66 77 88 99 AA BB CC DD EE FF 00 67

…
001FE000 04 15 00 00 48 59 70 7B 8C 9D AE BF D0 E1 F2 03
001FE010 10 15 00 67 10 15 10 67 10 15 20 67 10 15 30 67

…
001FF000 00 00 20 00 00 00 10 65 00 00 10 67 00 00 20 65
001FF010 00 00 20 67 00 00 30 67 00 00 40 65 00 00 50 07

…
001FFFF0 00 00 00 00 00 00 00 00 10 00 00 67 00 00 40 65

…
00200000 00 1F F0 07 00 10 10 07 00 10 20 07 00 10 30 07
00200010 00 10 20 07 00 10 50 07 00 10 60 07 00 10 70 07
00200020 00 10 00 07 00 00 00 00 00 00 00 00 00 00 00 00

…
00200FF0 00 00 00 00 00 00 00 00 00 1F E0 07 00 1F F0 07

…

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 20/22

 [Draw a Logo for CS162 Here!]

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 21/22

[Scratch Page: Do not put answers here!]

CS 162 Spring 2019 Midterm II April 4th, 2019

 Page 22/22

[Scratch Page: Do not put answers here!]

