University of California, Berkeley
 College of Engineering
 Computer Science Division - EECS

Midterm Exam \#2

March 22, 2018
CS162 Operating Systems

Your Name:	
SID AND 162 Login:	
TA Name:	
Discussion Section Time:	

General Information:
This is a closed book and one $\mathbf{2}$-sided handwritten note examination. You have 110 minutes to answer as many questions as possible. The number in parentheses at the beginning of each question indicates the number of points for that question. You should read all of the questions before starting the exam, as some of the questions are substantially more time consuming. Make your answers as concise as possible. If there is something in a question that you believe is open to interpretation, then please ask us about it!

Write all your answers on the attached answer sheet on the last page of the exam (only the answer sheet will be graded), and put your name \& SID on both the answer sheet $\&$ the exam. Before turning in the exam, tear off the answer sheet.

Good Luck!!

QUESTION	POINTS ASSIGNED	POINTS OBTAINED
1	20	
2	15	
3	26	
4	16	
5	23	
TOTAL	100	

DO NOT WRITE ANSWERS ON THIS PAGE

1. (20 points total) Short Answer.
a. (12 points) True/False and Why? CIRCLE ANSWER ON ANSWER SHEET.
i) A page fault can cause an unrecoverable error for a process.
ii) Consider a system where multiple threads are using locks to protect shared data. If deadlock occurs, we can resolve the deadlock by killing a thread without impacting the correctness of the program.
iii) Clock algorithm, as an approximation of LRU, will always result in fewer page faults when more physical memory is added for the same access pattern.
iv) Using lottery scheduling, each job receives lottery tickets proportional to runtime to ensure better response times.
v) A system that is running slowly on compute tasks, but has low CPU utilization can greatly improve its performance by adding more memory.
vi) Conflict misses cannot occur in a fully associative cache.
b. (4 points) Copy-on-Write.
i) Briefly, in one to two sentences, describe how to implement copy-on-write using virtual memory.
ii) In a multiprocessor system with per-core TLBs, you run a program that creates several forked processes, each with multiple threads, and notice disappointingly slow performance. Briefly, in one to two sentences, provide a possible explanation for why copy-on-write could be responsible for the poor performance.
c. (2 points) In the start_process() function for Pintos, why is the kernel is able to directly modify the esp variable returned by the load() function without performing an explicit translation? Briefly, in one sentence, provide an explanation.
d. (2 points) Suppose we want to avoid invalidating TLB entries between context switches between different processes. Briefly, in one sentence, explain how we could avoid flushing the TLB.

DO NOT WRITE ANSWERS ON THIS PAGE

DO NOT WRITE ANSWERS ON THIS PAGE

2. (15 points total) Distributed Computing with Banker's Algorithm. Suppose different TA teams write 3 distributed jobs (A162, B189, and C186) to run in a datacenter. Each job requires 3 resources (CPUs, network bandwidth, and disks) to run, initially available in the quantities indicated in the table below. Before submitting a job to the datacenter, the responsible TA team has to declare their job's maximum possible usage for each resource as specified in the table below. The datacenter always runs banker's algorithm before granting each request.

	CPUs	Network Bandwidth	Disks
Initial Quantity	10	15	17
A162	3	6	10
B189	5	13	3
C186	9	4	14

a. (5 points) Consider the following allocation:

	CPUs	Network Bandwidth	Disks
A162	1	3	8
B189	2	6	1
C186	5	2	5

Is this state safe? If so, give an example guaranteed safe execution. If not, give an example of requests that could deadlock the system. Show your work.
b. (5 points) Consider the following known safe allocation:

	CPUs	Network Bandwidth	Disks
A162	2	3	8
B189	4	5	2
C186	3	2	4

The CS186 TA's request an additional unit of bandwidth for their job, C186. Is it safe to grant this request? If so, give an example guaranteed safe execution. If not, give an example of additional requests that could deadlock the system. Show your work.
c. (5 points) The CS162 TA's want to guarantee their job, A162, is the first to be granted CPUs. Suppose they declare their CPU usage limit to be all 10 CPUs before submitting and then immediately request 10 CPUs. Briefly, in one sentence, explain whether they will succeed in being first and why or why not. Assume the CS162 TA's cannot directly influence or coerce the other TA teams or the datacenter operators.

DO NOT WRITE ANSWERS ON THIS PAGE

3. (26 points) Caching.

Suppose we have a four way set associative physically addressed cache of size 256 KB and 16B blocks, on a machine that uses 32 -bit physical addresses. We advance the clock hand before inspecting the use bit for clock algorithm.

Consider the following ordered memory accesses

1.	$0 x B 3 D A 5 C 25$
2.	$0 x E 2$ DA5C21
3.	$0 x E A 445 \mathrm{C} 2 \mathrm{~B}$
4.	$0 x F 4205 \mathrm{C} 25$
5.	$0 x D 0035 \mathrm{C} 71$
6.	$0 x B 3$ DA5C2B
7.	$0 x 01115 \mathrm{C} 25$
8.	$0 x E A 445 \mathrm{C} 21$
9.	$0 x E 2$ DA5C2B
10.	$0 x F 4205 \mathrm{C} 25$
11.	$0 x B 3 D A 5 C 21$

a. (6 points) What is the format of the physical address as used by the cache (i.e., how many bits are allocated to the tag, index, offset):

Tag	Index	Offset

b. (6 points) If the cache uses an LRU replacement policy:
i) How many compulsory misses will occur (list the line numbers, if any, where misses happen):
ii) How many capacity misses will occur (list the line numbers, if any, where misses happen):
iii) How many conflict misses will occur (list the line numbers, if any, where misses happen):
c. (6 points) If the cache uses a Clock algorithm replacement policy:
i) How many compulsory misses will occur (list the line numbers, if any, where misses happen):
ii) How many capacity misses will occur (list the line numbers, if any, where misses happen):
iii) How many conflict misses will occur (list the line numbers, if any, where misses happen):

DO NOT WRITE ANSWERS ON THIS PAGE

d. (6 points) If the cache uses a MIN algorithm replacement policy:
i) How many compulsory misses will occur (list the line numbers, if any, where misses happen):
ii) How many capacity misses will occur (list the line numbers, if any, where misses happen):
iii) How many conflict misses will occur (list the line numbers, if any, where misses happen):
e. (2 points) For this sequence of pages accesses, is using the Clock algorithm optimal? Why or why not?

DO NOT WRITE ANSWERS ON THIS PAGE

4. (16 points) Address Translation for RAM \& Rem.

Consider a multi-level memory management scheme using the following format for virtual addresses (18 bits total):

Virtual Page \# (4 bits)	Virtual Page \# (5 bits)	Offset (9 bits)

a. (4 points) If the physical address space is 16 bits, what will X and Y be in the following format?

b. (4 points) How many PTE's are in the first level page table? The second level?

First Level:
Second Level:

c. (8 points) Page table entries (PTE) are 16 bits in the following format, stored in big-endian form in memory (i.e. the MSB is first byte in memory):

Using the scheme above, and the physical memory table on the next page, translate the following addresses. Assume that the Page Table Pointer points to $\mathbf{0 x 3 0 0 0}$. Intermediate page table entries should have the directory bit set. If you encounter an error, write "Error" in the Translated Physical address box instead of an address.

DO NOT WRITE ANSWERS ON THIS PAGE

Page Table Pointer: 0x3000
Physical Memory

Address	+0	+1	+2	+3	+4	+5	+6	+7	+8	+9	+A	+B	+C	+D	+E	+F
0x0000	00	2A	A3	32	4A	BC	CD	DE	A1	A4	A3	AB	BC	A1	A3	3A
0x0010	AA	BB	CC	DD	EE	FF	11	22	33	44	55	66	77	88	99	00
...																
0x2000	A1	00	A3	00	A5	00	A7	00	A9	00	AB	00	AD	00	AF	00
0x2010	00	B1	00	B3	00	B5	00	B7	00	B9	00	BB	00	BD	00	BF
...																
0x3000	20	00	42	03	F0	03	60	00	20	03	F0	00	00	08	42	10
0x3010	00	12	00	14	00	16	00	18	42	12	42	16	42	18	42	04
...																
0x4200	12	32	00	54	56	01	78	02	9A	AB	03	CD	DE	04	32	00
0x4210	12	32	A3	A2	A1	DA	DD	1E	75	12	91	23	37	12	81	7C
...																
0x6000	DE	00	32	00	9A	AB	03	CD	56	01	78	02	12	32	00	54
0x6010	37	12	81	7 C	75	12	91	23	A1	DA	DD	1E	12	32	A3	A2
...																
0xF000	A2	A1	FD	EF	98	01	CD	2A	56	14	32	12	65	54	42	32
0xF010	23	12	82	32	12	33	01	23	45	54	AB	CD	EA	12	32	12
...																

Virtual Address	Translated Physical Address
0x1024F (example)	"Error"
0x0442F	
0x0842D	
0x0CF1A	

DO NOT WRITE ANSWERS ON THIS PAGE

Page 7/14

DO NOT WRITE ANSWERS ON THIS PAGE

5. (23 points) Advanced Bikeshare Scheduling.

In this problem, we want you to apply what you have learned about scheduling algorithms to scheduling resources in a new domain - bikeshare scheduling. Ford GoBikes are now in Berkeley and they need your help in figuring out how to schedule the resources in their system.

In a bikeshare system, the bikes are parked in stations each with some number of docks for bikes. A potential rider walks up to a station, checks out a bike from a dock, rides to a destination station, returns the bike to an empty dock, and walks off. In order to avoid blocking riders, the bikeshare operator periodically rebalances bikes by driving around in a van and adding or removing bikes from stations depending on demand.

Important Rebalancer Assumptions:

- Van has infinite capacity and infinite bikes and starts at s0 at 7:05
- Once the van arrives at a station, it stays there for 5 minutes to perform the rebalancing
- Multi-level priority uses the demand - (context switch time/10) to determine dynamic priority
- Pre-emptive algorithms pick up or drop off one bike on every visit; otherwise full rebalance to optimal state on every visit
- the optimal state is 50% full, every station starts in optimal state
- the demand can be represented by abs(n_bikes - n_empty_slots)/docks, and
- the context switch time is the drive time between stations + unloading/reloading time

Trips by riders

Start station	Start time	End station	End time
s1	$7: 00$	s2	$7: 20$
s3	$7: 05$	s0	$7: 25$
s3	$7: 10$	s3	$7: 30$
s3	$7: 20$	s2	$7: 30$

a. (18 points) Fill out the table in the answer sheet with the location of the van in each time slot, assuming each of the classic scheduling algorithms applied to this new context. Use \mathbf{T} if the van is in transit. We have filled in Round-Robin for you.

DO NOT WRITE ANSWERS ON THIS PAGE

Time	FCFS	Round-robin	Most imbalanced first	Multi-level priority
$7: 06$		T		
$7: 11$		s 1		
$7: 16$		T		
$7: 21$		T		
$7: 26$		T 3		
$7: 31$		T 2		
$7: 36$		T		
$7: 41$		T		
$7: 46$		T		
$7: 51$		T		
$7: 56$		T		
$8: 01$		s 3		
$8: 06$		T 2		
$8: 11$				
$8: 16$				
$8: 21$				
$8: 26$				
$8: 31$				

b. (3 points) Briefly, in two to three sentences, explain what is common among the algorithms that work well in this scenario.
c. (2 points) Briefly, in two to three sentences, explain what are the characteristics of the problem that makes these algorithms particularly suitable.

DO NOT WRITE ANSWERS ON THIS PAGE

6. (0 points) Just For Fun.
a. What does the " d " in "adj" stand for?
b. Who is your favorite anime character?

[No exam material on this page]
[Scratch paper]
[No exam material on this page]
[Scratch paper]

ANSWER FORM

Name		SID	

P1 (20 points): Short Answer
a.i) TRUE / FALSE
a.ii) TRUE / FALSE
a.iii) TRUE / FALSE
a.iv) TRUE / FALSE
a.v) TRUE / FALSE
a.vi) TRUE / FALSE
b.i) \qquad
b.ii) \qquad
c) \qquad
d) \qquad
P2 (15 points): Distributed Computing with Banker's Algorithm

a) b)	

c) $\mathrm{YES} / \mathrm{NO}$

P3 (26 points): Caching
a) Tag: \qquad Index: \qquad Offset: \qquad
b.i) Misses: \qquad Lines: \qquad b.ii) Misses: \qquad Lines: \qquad
b.iii) Misses: \qquad Lines: \qquad
c.i) Misses: \qquad Lines: \qquad c.ii) Misses: \qquad Lines: \qquad
c.iii) Misses: \qquad Lines: \qquad
d.i) Misses: \qquad Lines: \qquad d.ii) Misses: \qquad Lines: \qquad
d.iii) Misses: \qquad Lines: \qquad
e)

ANSWER FORM

P4 (16 points): Address Translation for RAM \& Rem
a) Physical Page \#: \qquad Offset: \qquad
b) First Level: \qquad Second Level: \qquad

c) | 0x0442F | | 0x0CF1A | |
| :--- | :--- | :--- | :--- |
| 0x0842D | | | |
| | | | |

P5 (23 points): Advanced Bikeshare Scheduling

a) Time	FCFS	Most imbalanced 1st	Multilevel priority
7:06			
7:11			
7:16			
7:21			
7:26			
7:31			
7:36			
7:41			
7:46			
7:51			
7:56			
8:01			
8:06			
8:11			
8:16			
8:21			
8:26			
8:31			
8:36			

b) \qquad
\qquad
\qquad
\qquad
c) \qquad
\qquad
\qquad
\qquad
P6 (0 points): Just For Fun
a) \qquad
b) \qquad

