
 Page 1/14

University of California, Berkeley
College of Engineering

Computer Science Division – EECS

Spring 2018 Anthony D. Joseph and Jonathan Ragan-Kelley

Midterm Exam #1 Solutions
February 28, 2018

CS162 Operating Systems

Your Name:

Mitsuha Miyamizu

SID AND 162 Login:

162162162, s162

TA Name:

Taki Tachibana

Discussion Section
Time:

4-5PM, Funday

General Information:
This is a closed book and one 2-sided handwritten note examination. You have 110 minutes to
answer as many questions as possible. The number in parentheses at the beginning of each
question indicates the number of points for that question. You should read all of the questions
before starting the exam, as some of the questions are substantially more time consuming.

Write all of your answers directly on this paper. Make your answers as concise as possible. If there
is something in a question that you believe is open to interpretation, then please ask us about it!
 Good Luck!!

QUESTION POINTS ASSIGNED POINTS OBTAINED

1 18

2 24

3 14

4 21

5 23

TOTAL 100

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 2/14

1. (18 points total) Short Answer.
a. (10 points) True/False and Why? CIRCLE YOUR ANSWER.

i) One can always replace signal() with broadcast() for Hoare-style
monitors.

TRUE FALSE
Why?
FALSE. Hoare-style monitors can function correctly with if rather than
while, so broadcast() for Hoare may incorrectly wake up threads. The
correct answer was worth 1 point and the justification was worth an
additional 1 point.

ii) One can disable interrupts on any computer system that supports it to guarantee

atomicity.

TRUE FALSE
Why?
FALSE. Doesn’t work on multiprocessor systems. The correct answer was
worth 1 point and the justification was worth an additional 1 point.

iii) In Pintos, the scheduler code runs in the idle thread and facilitates the context

switch between any two threads.

TRUE FALSE
Why?
FALSE. The idle thread only runs when there are no other threads. The
scheduler is run on the two threads’ kernel stacks. The correct answer was
worth 1 point and the justification was worth an additional 1 point.

iv) The kernel first validates syscall arguments on the user stack before

copying them to its corresponding kernel stack, in order to protect kernel
memory.

TRUE FALSE
Why?
FALSE. The arguments are checked after copying to prevent malicious
user code from evading checks (TOCTOU attack). However, we also
accepted TRUE provided the justification mentioned checks both before
and after the copy, due to the admittedly ambiguous wording. The
important thing was the justification mentioning the check after to protect
against TOCTOU attacks. The correct answer was worth 1 point and the
justification was worth an additional 1 point.

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 3/14

v) A context switch between any two threads requires saving all the old thread’s
registers and replacing them all with the new thread’s, including the stack
pointer, the segment registers, and the page table base register.

TRUE FALSE
Why?
FALSE.Threads within the same process would share the same address
space and thus would not need to change the segment/PTBR. The correct
answer was worth 1 point and the justification was worth an additional 1
point.

b. (4 points) Briefly, in one to two sentences each, give two reasons why a typical

web server creates new threads to service new connections instead of creating
new processes to service new connections.
i) Reason #1:

(1) Lots of requests means threads are lower overhead to create.
(2) Many requests will be for the same popular files means threads will share

a cache.
(3) Lots of requests means switching between threads is less overhead

ii) Reason #2:

c. (2 points) Much of the software code used in the Therac-25 was taken from earlier

models, which had functioned without the failures seen in the Therac-25. Why did
this reused code suddenly fail in the Therac-25? Briefly, in one to two sentences,
explain your answer.

The previous code had the same failings, but was masked by safety interlocks
in hardware. Engineers reused the code on faith (“cargo cult programming”)
without understanding or retesting it.

d. (2 points) Suppose you are writing a multithreaded test in Pintos for project 1, and

one of your test’s threads dereferences a NULL pointer. Briefly, in one sentence,
explain what happens to the system and why.

The entire kernel panics because we have not implemented user programs yet,
so all threads are using their kernel stacks in shared kernel memory and there
is no protection. A Segmentation Fault is user space and only implies a single
(user) process crashing (since it is a protection fault), and is NOT equivalent
to a kernel panic.

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 4/14

2. (24 points total) Scheduling. Consider the following processes with their remaining
instructions, arrival times, and priorities (A process with a higher priority number has
priority over one with a lower priority number):

Process Remaining instructions Arrival time Priority

A 3 2 4

B 4 1 1

C 1 3 3

D 2 1 2

There is a lock L:
● Process A acquires L in its first unit of time, and releases L in its last unit of time.
● Process D acquires L in its first unit of time, and releases L in its last unit of time.

● Processes busy wait when trying to acquire a lock.
● Priority donation is implemented J .

Please note:
● The priority scheduler is preemptive.
● All processes arriving at the same time step arrive in alphabetical order.
● The quanta for RR is 1 unit of time and newly arrived processes are scheduled last

for RR. When the RR quantum expires, the currently running thread is added at
the end of to the ready list before any newly arriving threads.

● Break ties via priority in Shortest Remaining Time First (SRTF).
● If a process arrives at time x, they are ready to run at the beginning of time x.
● Ignore context switching overhead and only 1 instruction runs at each time step.
● Total turnaround time is the time a process takes to complete after it arrives.

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 5/14

Given the above information, fill in the following table:

Time Round Robin SRTF Priority

1 B D D

2 D D A

3 B C D

4 A A A

5 D A A

6 C A A

7 B B C

8 A B B

9 B B B

10 A B B

11 A B

Total Turnaround Time 28 18 24

Each column was graded separately with the same breakdown of 8 points. The sequence
was 6 of the 8 points and the turnaround time was 2 of the 8 points.

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 6/14

(14 points total) C Programming.
In the following program, we want to print out, “Process	162	says	42” once.
Assume that the process ID of the child process is 162, the fork() is successful, and
we want the behavior to be predictable. Do not add extra lines or try to compact your
code onto the lines.

No hard-coding/assignment of values is allowed for your blanks inside of main().

1	void	helper(void)	{	
2				exit(42);	
3	}	
	
4	int	main(void)	{	
5			int	kirito	=	0;	
6			pid_t	pid	=	fork();	
7	 	if	(pid)	{																//	or	waitpid()	
8	 				wait(&kirito);	
9	 	}	else	{	
10					helper	();	
11		}	
12		printf(“Process	%d	says	%d\n”,	pid,	
13			WEXITSTATUS(kirito));	
14	}		//	or	just	kirito	

a) (8 points) Fill in the above blanks, to output “Process	162	says	42”.

b) (4 points) If the fork() failed, what would be printed out, if anything?

If fork() fails, pid gets set to -1, which is evaluated as a TRUE value, so the
first conditional block runs. wait() will return immediately because fork()
failed and we will just print out “Process	-1	says	0”

c) (2 points) In Linux, is the entire address space copied when fork() executes
successfully? If not, what happens instead?

No. It is implemented with copy-on-write, which does not copy the entire address
space. Copies are made when modifications are made.

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 7/14

3. (21 points total) Pintos Priority Donation.
Suppose you have successfully completed project 1 task 2 (priority scheduling), with
all tests passing (including recursive and multiple donations). You made the
following changes in your thread and lock structs, as indicated in your design doc:
/*	thread.h	*/	
struct	thread	
		{	
				/*	Preexisting	members,	some	omitted	for	brevity.	*/	
				...	
				int	priority;																	/*	Priority.	*/	
				...	
				/*	Your	new	members.	*/	
				int	base_priority;												/*	Base	priority	without	donations.	*/	
				struct	lock	*wanted_lock;					/*	Lock	thread	is	waiting	for,	if	any.	*/	
				struct	list	acquired_locks;			/*	List	of	acquired	locks.	*/	
		
				unsigned	magic;															/*	Detects	stack	overflow.	*/	
		};	
	
/*	synch.h	*/	
struct	lock	
		{	
				/*	Preexisting	members.	*/	
				struct	thread	*holder;						/*	Thread	holding	lock.	*/	
				struct	semaphore	semaphore;	/*	Binary	semaphore	controlling	access.	*/	
				/*	Your	new	members.	*/	
				struct	list_elem	lock_elem;	/*	For	storage	in	`acquired_locks`	list.	*/	
		};	
In lock_release(), a thread currently handles multiple donations by looping over
acquired_locks and looping over each lock's waiters to find the maximum priority
among all waiters of all locks it holds. It then applies that donation if applicable,
otherwise it reverts to the base priority.

One of your project partners thinks this is inefficient and suggests adding an “int	
lock_priority” member to struct	lock, which would represent the highest
priority among all of that lock's waiters so you don’t have to loop over the waiters.
Your friend also mentions updating lock_priority as needed upon any thread
calling lock_acquire() on that lock, or calling thread_set_priority() on
itself. However, your friend forgets that priority donations can change priorities and
thus lock_priority is not updated upon each donation.

a. (3 points) Briefly, in two to three sentences, describe a test case that could identify

this bug. Hint: think about recursive priority donation
Assuming A<B<C<D, have a thread (A) with 2 locks, one thread waiting on each
(B & D). B should have earlier acquired a different lock and then a thread with
priority between them (C) waits on B. Then A releases the lock for D and is
incorrectly set to B’s priority rather than C’s.

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 8/14

b. (16 points) Your project partner still is not convinced, so you decide to write a new
Pintos test. Complete the following Pintos test code so it passes without your
partner’s modification, but fails with it. You must use at least 1 ASSERT()
statement in test_priority_exam(), and underline the ASSERT() that would
fail with your friend’s suggestion. You may assume for the purposes of this
problem that PRI_DEFAULT is 0. The following functions may be helpful:
/*	thread.h	*/	
typedef	void	thread_func(void	*aux);	
tid_t	thread_create(const	char	*name,int	priority,thread_func	*,void	*);	
int	thread_get_priority(void);	
/*	synch.h	*/	
void	lock_acquire(struct	lock	*);	
void	lock_release(struct	lock	*);	
	
struct	lock	a,b,c,d,e;	//	May	not	need	all	locks.	
	
/*	May	not	need	all	thread	functions	*/	
static	void	thread_func_madoka(void	*)	
{	
		lock_acquire(&c);	
		lock_acquire(&a);	
		lock_release(&a);	
		lock_release(&c);	
}	
static	void	thread_func_sayaka(void	*)	
{	
		lock_acquire(&c);	
		lock_release(&c);	
	
	

	
}	
static	void	thread_func_homura(void	*)	
{	
		lock_acquire(&b);	
		lock_release(&b);	
	
	

	
}	
	
	

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 9/14

static	void	thread_func_mami(void	*)	
{	
	
	
	
	

	
}	
	
void	test_priority_exam(void	*)	
{	
		ASSERT	(thread_get_priority()	==	PRI_DEFAULT);	
		/*	Assume	locks	are	already	initialized	*/	
		
		/*	WRITE	YOUR	CODE	BELOW	*/	
		lock_acquire(&a);	
		lock_acquire(&b);	
		
		thread_create("1",	PRI_DEFAULT	+	1,		
																thread_func_madoka,	NULL);	
		ASSERT	(thread_get_priority	()	==	PRI_DEFAULT+1);	
		thread_create("2",	PRI_DEFAULT	+	2,		
																thread_func_sayaka,	NULL);	
		ASSERT	(thread_get_priority	()	==	PRI_DEFAULT+2);	
		thread_create("3",	PRI_DEFAULT	+	3,		
																thread_func_homura,	NULL);	
		ASSERT	(thread_get_priority	()	==	PRI_DEFAULT+3);	
		lock_release(&b);	
		ASSERT	(thread_get_priority	()	==	PRI_DEFAULT+2);		
																											/*	!!!	*/	
		lock_release(&a);	
		ASSERT	(thread_get_priority	()	==	PRI_DEFAULT);	
}	

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 10/14

c. (2 points) Your project group rejects your friend’s suggestion and you now pass all
Task 2 tests, including your new one. However, what is one potential issue with
your current design, specifically with keeping track of locks themselves in
struct	thread to implement recursive and multiple donations? Briefly,
explain your answer in 1 sentence.
This design imposes the additional requirement that locks cannot be deallocated
before release, which is counterintuitive but could result in a kernel panic if not
properly handled.

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 11/14

4. (23 points total) Office Hours Synchronization.
Suppose we want to use condition variables to control access to a CS162 office hours
room for three types of people: students, TA’s, and professors. A person can attempt
to enter the room (or will wait outside until their condition is met), and after entering
the room they can then exit the room. The following are each type’s conditions:

• Suppose professors get easily distracted and so they need solitude, with no
other students, TA’s, or professors in the room, in order to enter the room.

• TA’s don't care about students inside and will wait if there is a professor
inside, but there can only be up to 7 TA’s inside (any more would clearly be
imposters from CS161 or CS186).

• Students don't care about other students or TA’s in the room, but will wait if
there is a professor inside. (An aside, maybe this is why more students don’t
come to the professors’ office hours…)

a. (5 points) Specify the correctness constraints. Be succinct and explicit in your

answer.
1 point for each correct constraint.
-Professor must wait if anyone else is in the room
- TA must wait if there are already 7 TA's in the room
-TA must wait if there is a professor in the room
-student must wait if there is a professor in the room
-only person can access the room synchronization at a time (one thread accesses
the condition and state variables at a time).

b. (4 points) Complete the following incomplete struct definition for room_lock.

Assume you have the following synchronization primitives:
typedef	struct	lock	{…}	lock	//	lock.acquire(),	lock.release()	
typedef	struct	cv	{…}	cv					//	cv.wait(&lock),	cv.signal(),		
																													//	cv.broadcast()	
#define	TA_LIMIT	7	
	
typedef	struct	{	
	 lock	lock;	
	 cv	student_cv;	
	 int	waitingStudents,	activeStudents;	
	 cv	ta_cv,	prof_cv;	
	 int	waitingTas,	waitingProfs;	
	 int	activeTas,	activeProfs;	
		
}	room_lock;	
	
	
	

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 12/14

c. (14 points) Complete the following functions. We have partially filled in the
student code to get you started. Please fill in the blanks of the student portions and
fill in the entireties of the TA and professor portions. If there are multiple kinds of
people waiting, prefer to wake up professors > TA’s > students.

/*	mode	=	0	for	student,	1	for	TA,	2	for	professor	*/	
enter_room(room_lock*	rlock,	int	mode)	{	
		rlock->lock.acquire();	
		if	(mode	==	0)	{	
				while((rlock->activeProfs+rlock->waitingProfs)	>	0){	
						rlock->waitingStudents++;	
						rlock->student_cv.wait(&rlock->lock);	
						rlock->waitingStudents--;	
				}	
				rlock->activeStudents++;	
		}	else	if	(mode	==	1)	{	
				while((rlock->activeProfs+rlock->waitingProfs)	>	0		
										||	rlock->activeTas	>=	TA_LIMIT)	{	
						rlock->waitingTas++;	
						rlock->ta_cv.wait(&rlock->lock);	
						rlock->waitingTas--;	
				}	
				rlock->activeTas++;	
	
		}	else	{	
					while((rlock->activeProfs	+	rlock->activeTas	+	
										rlock->activeStudents)	>	0){	
						rlock->waitingProfs++;	
						rlock->prof_cv.wait(&rlock->lock);	
						rlock->waitingProfs--;	
				}	
				rlock->activeProfs++;	
	
		}	
		rlock->lock.release();	
}	
exit_room(room_lock*	rlock,	int	mode)	{	
		rlock->lock.acquire();	
		if	(mode	==	0)	{	
				rlock->activeStudents--;	
				if	((rlock->activeStudents	+	rlock->activeTas)	==	0		

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 13/14

										&&	rlock->waitingProfs)	
						rlock->prof_cv.signal();	
		}	else	if(mode	==	1)	{	
				rlock->activeTas--;	
				if	((rlock->activeStudents	+	rlock->activeTas)	==	0		
								&&	rlock->waitingProfs)	
						rlock->prof_cv.signal();	
				else	if	(rlock->activeTas	<	TA_LIMIT	&&		
													rlock->waitingTas)	
						rlock->ta_cv.signal();	
	
	
		}	else	{	
				rlock->activeProfs--;	
				if	(rlock->waitingProfs)	
						rlock->prof_cv.signal();	
				else	{	
						if	(rlock->waitingTas)	
								rlock->ta_cv.broadcast();	
						if	(rlock->waitingStudents)	
								rlock->student_cv.broadcast();	
				}	
	
		}		
		rlock->lock.release();	
}	 	

CS 162 Spring 2018 Midterm Exam #1 February 28, 2018
NAME: _______________________________________

 Page 14/14

Congratulations on reaching the end of the exam!

There is no exam material on this page.

Remember that no matter how you do, someone cares for you.

We hope you enjoy operating systems so far.

