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P6 18  

Total 100  



 
 

True/False and Why? (12 points) 
MARK THE CHECKBOX NEXT TO YOUR ANSWER. For each question: 1 point for true/false 
correct, 1 point for explanation. An explanation cannot exceed 2 sentences. 
 

a) When comparing physical and virtual addresses, the number of offset bits in both 
addresses must always be the same. 

 
▢ TRUE ▢ FALSE 
Why? 
This allows us to translate from virtual to physical addresses and vice versa. 

 
b) When repeatedly looping through an amount of data larger than the cache size, LRU will 

yield less page faults than FIFO. 
 

▢▢ TRUE ▢▢ FALSE 
Why? 
Given this access pattern, LRU will essentially become FIFO. 

 
c) Having a page table fit in a single memory page (frame) reduces external fragmentation. 

 
▢ TRUE ▢▢ FALSE 
Why? 
With paging there is no external fragmentation, as all pages have the same size. 

 
d) A multi-level page table is a better solution for a sparse address space than a single 

level page table approach. 
 

▢ TRUE ▢▢ FALSE 
Why? 
With a single level page table you need to keep entries for every gaps in the virtual 
address space. 

 
e) Deadlock will not occur if resources are allowed to be shared up to three times. That is, 

three threads can acquire the resource before the fourth one tries and blocks. 
 

▢ TRUE ▢▢ FALSE 
Why? 
Although threads are allowed to share a resources up to three times, consider the 
counter example of 6 threads and 2 semaphores with an initial value of 3. 3 of the 
threads, down the first semaphore and the other 3 threads down the second semaphore. 
Then they try to down the other semaphore and deadlock. 

 
f) Banker's algorithm guarantees that all threads eventually receive their requested 

resources. 



 
 

 
▢ TRUE ▢▢ FALSE 
Why? 
Consider a program that receives its resources but has an infinite while loop. Banker's 
algorithm is a deadlock avoidance/resource allocation algo to prevent deadlock under 
the assumption that all threads will eventually terminate and release their resources after 
receiving their resources. 
 
Mentions of starvation were equivalent to the above scenario and were awarded points 
as well. However, any solutions related to unsafe states were not considered to be valid 
solutions because the banker’s algorithm does guarantee that your system is in a safe 
state if you were to run at all time steps throughout the execution of your system. 

 

P2. Demand Paging (16 points)  
Recall that in on-demand paging, a page replacement algorithm is used to manage system 
resources. Suppose that a newly-created process has 4 page frames allocated to it, and then 
generates the page references indicated below.  
 
A B C D B A C E A B C D A E A C B D 
 
(a) (4 points) How many page faults would occur with FIFO page replacement? Put your answer 
under Total. Additionally, place an ‘X’ in each box that corresponds to a page fault. 
 

A B C D B A C E A B C D A E A C B D Total 

x x x x    x x x x x  x x  x  12 

 
(b) (4 points) How many page faults would occur with LRU page replacement? Put your answer 
ungder Total. Additionally, place an ‘X’ in each box that corresponds to a page fault. 
 

A B C D B A C E A B C D A E A C B D Total 

x x x x    x    x  x   x x 9 

 
(c) (4 points) How many page faults would occur with clock replacement? Put your answer 
under Total. Additionally, place an ‘X’ in each box that corresponds to a page fault. 
 

A B C D B A C E A B C D A E A C B D Total 

x x x x    x x x x x  x   x x 12 

 
(d) (4 points) Suppose we have a new form of eviction that evicts in order of frequency such that 
pages accessed less frequently than others are evicted first, where the frequency is measured 



 
 

by the number of accesses since the page was paged in. This method of page replacement is 
called Least Frequently Used (LFU). How many page faults would occur with LFU page 
replacement? Put your answer under Total. 
(You may assume ties are broken with FIFO order) 
Additionally, place an ‘X’ in each box that corresponds to a page fault. 
 

A B C D B A C E A B C D A E A C B D Total 

x x x x    x    x  x    x 8 

 
 
P3. The Kitchen Sync (18 points)  
We are given the following implementations for a lock in Pintos, with two threads, A and B, that 
each run acquire()  then release() . For each implementation, answer the following 
questions: 

● Does the implementation enforce mutual exclusion (Can we ensure one thread starts 
release  before the other thread finishes acquire )? 

● If not, give an interleaving that breaks mutual exclusion. You only need to fill in as many 
line executions as it takes to break mutual exclusion. 

● Is it possible for either A or B to be permanently block? 
● If yes, which threads can be blocked and on which lines they can be stuck on?  

Please make the following assumptions: 
● wait_list has been initialized already 
● move_thread is an atomic operation that moves a thread from its current list to the 

specified list 
● Line numbers are specified to the left of each line 
● Thread A finishes line 2 before any context switching occurs 
● Being “stuck” on a line means that line has started or finished executing, but the next line 

has not started executing yet 
● thread_block ()  will still work if called with interrupts enabled 
● The scheduler skips threads with status THREAD_BLOCKED 

 
(Question continues on next page) 
 
  



 
 

(a) (6 points) 
 

bool held = false; 
struct list wait_list; 

1. acquire() { 

2.   if (held) { 
3.    move_thread (thread_current (), 

                   wait_list); 

4.    thread_block (); 

5.  } else { 
6.    held = true; 
7.   } 

8.} 

9.  release() { 

10.  if (!list_empty (wait_list)) { 
11.    thread_unblock (list_front  

           (wait_list)); 

12.    move_thread (list_front  

           (wait_list), ready_list); 

13.  } else { 
14.    held = false; 
15.  } 

16. } 

 
Does this enforce mutual exclusion? If not, please indicate an order of line execution that proves 
this. If needed, we have filled out the first line of execution for you. 
 

Yes  No X 
 

Step 1 2 3 4 5 6 7 

Running Thread A B A B    

Line 2 2 6 6    

 
Is it possible for a thread to be blocked forever? If so, which thread(s) and on what lines(s)? 
 

Yes X No  
 

Thread Blocked B B   

Line Blocked On 3 4   

Thread A can never block since we specify that it executes line (2) before context switching, so 
it can never enter the `true` branch of the `if` block in `acquire`. If thread B context switches after 
executing line 3 and after thread A calls `release`, it will never be scheduled again since it will 
not be on the ready list. It’s also possible that thread B will move itself to the wait list, be moved 
back, then call thread_block. In this case it is also blocked forever. 
  



 
 

(b) (6 points) 
 

int guard = 0; 
bool held = false; 
struct list wait_list; 

1. acquire() { 

2.  while (test&set (&guard)); 
3.  if (held) { 
4.    move_thread (thread_current (), 

                   wait_list); 

5.    guard = 0; 
6.    thread_block (); 

7.  } else { 
8.    held = true; 
9.    guard = 0; 
10. } 

11.} 

12.release() { 

13.  while (test&set (&guard)); 
14.  if (!list_empty (wait_list)) { 
15.    thread_unblock (list_front  

           (wait_list)); 

16.    move_thread (list_front  

           (wait_list), ready_list); 

17.  } else { 
18.    held = false; 
19.  } 

20.  guard = 0; 
21. } 

 

 
Does this enforce mutual exclusion? If not, please indicate an order of line execution that proves 
this. If needed, we have filled out the first line of execution for you. 
 

Yes X No  
 

Step 1 2 3 4 5 6 7 

Running Thread A       

Line 2       

 
Is it possible for a thread to be blocked forever? 
 

Yes X No  
 

Thread Blocked B B   

Line Blocked On 5 6   

Same reasoning as above. 
 
 
  



 
 

(c) (6 points) 
 

bool held = false; 
struct list wait_list; 

1. acquire() { 

2.  intr_disable (); 

3.  if (held) { 
4.    move_thread (thread_current (), 

                   wait_list); 

5.    thread_block (); 

6.  } else { 
7.    held = true; 
8.  } 

9.  intr_enable (); 

10.} 

11.release() { 

12.  intr_disable (); 

13.  if (!list_empty (wait_list)) { 
14.    thread_unblock (list_front  

           (wait_list)); 

15.    move_thread (list_front  

           (wait_list), ready_list); 

16.  } else { 
17.    held = false; 
18.  } 

19.  intr_enable (); 

20.} 

 

 
Does this enforce mutual exclusion? If not, please indicate an order of line execution that proves 
this. If needed, we have filled out the first line of execution for you. 
 

Yes X No  
 

Step 1 2 3 4 5 6 7 

Running Thread A       

Line 2       

 
Is it possible for a thread to be blocked forever? If so, which thread(s) and on what lines(s)? 
 

Yes  No X 
 

Thread Blocked     

Line Blocked On     

 
  



 
 

P4. Deadlock, Deadlock, Deadlock (19 points)  
Suppose we have the following total resources and threads T1, T2, T3, and T4 with current 
allocations and maximum required allocations. 
 

Total Resources 

A B C 

5 12 7 

 

 Current Allocation Maximum Allocation 

A B C A B C 

T1 1 5 1 3 10 3 

T2 0 2 1 2 4 2 

T3 2 1 0 2 3 3 

T4 1 2 2 2 8 5 

 
 

(a) (5 points) Is the system in a safe state? If so, provide a sequence of resource allocations 
that would allow all threads to terminate. If not, explain why in two sentences or less. 

 
Yes, the system is in a safe state. We see that T3 is able to request up to its max allocation of 
both B and C and finish and release its resources. From there, we have 2 of A, 3 of B, and 3 of 
C. We can use this to run T2 and finish it, which results in 2 of A, 5 of B, and 4 of C being free. 
We then run T1 and then T4. So the sequence is T3, T2, T1, T4 request needed resources. 
  



 
 

(b) (4 points) Oh no! We allow threads to acquire resources as they request them and as a 
result we have gotten ourselves into the deadlocked state, as shown below. We can 
force a SINGLE thread to release all of its current resources. Choose a SINGLE thread 
to forcefully release all of its resources in order to ensure that all programs finish or if this 
is not possible state "No thread". Write the answer in the box. In both cases, provide a 
short explanation outside of the box (no more than two sentences). 

 

 Current  Maximum  

A B C A B C 

T1 2 7 2 3 10 3 

T2 0 3 1 2 4 2 

T3 1 0 1 2 3 3 

T4 1 2 3 2 8 5 

 
 

Thread: 

 
"No thread" because since we stated that threads acquire resources as they request them. For 
example, it is possible that the thread we just force released now runs without being context 
switched and acquires the same set of resources resulting in deadlock (since the problem states 
that this is a deadlocked state). This shows that it is important to use algorithms and checks 
such as Banker's algorithm to deny or grant requests. 
 
  



 
 

Now let's consider another problem also dealing with deadlock. 
 

 
 
Suppose philosophers A, B, C, D, E, and F are sitting at a rectangular table. 

● Philosophers need "n" chopsticks to eat and once done eating will place its chopsticks 
back to where they belong. Then they try to eat again. 

● Each philosopher has one chopstick in front of them. 
● Philosophers can use chopsticks that are in front of themselves, their neighbors, or the 

philosopher across from them. For example in the provided seating, philosopher B can 
grab A, B, C, or E's chopstick if it is free.  

● Philosophers have a preferred set of chopsticks they use. They will try to grab their first 
preferred chopstick and wait if it is taken and so on. 

 
(c) (5 points) Consider the problem where philosophers need THREE chopsticks to eat 

(n=3). Provide a preference of three chopsticks for each philosopher in order to prevent 
deadlock or state that it is not possible in the table below. If the "not possible" box is 
checked, we will NOT grade the answers in the table. 

 
Not possible 

 

 
 

 Philosopher 

A B C D E F 

Chopstick 1st A B B A B C 

2nd B C C E E F 

3rd D E F D D E 

Answers can vary. The straightforward method is to enforce an ordering (for example in the 
table above, philosophers should grab A, then B, then C, then F, then E, and then D if they are 
able to). We can recall this from the lecture on how to prevent deadlocks (enforce an ordering 



 
 

on how we acquire resources). There exists deadlock if there exists a cycle of resource requests 
that result in cyclic waiting. By enforcing an ordering, deadlock is not possible in this case since 
it eliminates cyclic waiting. For example, if philosopher B preferred chopsticks B and then C and 
philosopher C preferred chopsticks C and then B, then that would be a deadlock. 
 

(d) (5 points) Suppose philosophers can now reach diagonally across the table in both 
directions to grab a free chopstick. For example, philosopher B can try to grab D and F in 
addition to the previous chopsticks it could grab. Suppose that philosophers now need 
FOUR chopsticks to eat (n=4). Provide a preference of FOUR chopsticks for each 
philosopher in order to prevent deadlock or state that it is not possible in the table below. 

 
Not possible 

 

 

 Philosopher 

A B C D E F 

Chopstick 1st A B B A A B 

2nd B C C B B C 

3rd E F F E E F 

4th D E E D D E 

Answers can vary (Same reasoning as above). Ordering used for this table is ABCFED. 

  



 
 

P5. Just ‘Bout That Translation, Boss (17 points)  
Suppose we have a 42 bit virtual address space, a page size of 1KB and a single level page 
table with a page table entry size of 4 bytes 
 
(a) (3 points) How many bits is the virtual page number? The offset? Place your answer in the 
box provided 
 

           VPN: 
  
 

                     Offset: 
 
(b) (3 points) Given that we need at least 9 control bits per PTE, what is 
the maximum size of our physical address space? Place your answer in the box provided.  

 
 
c) (8 points) Assume the following PTE format (with 9 control bits) stored in big-endian form in 
the following page table. 
 
PTE: 

PPN Other (6 bits) Read/Write Dirty Valid 

 
Page Table: 

Address +0 +1 +2 +3 +4 +5 +6 +7 

0x8000 6C 65 67 69 6F 6E 20 6F 

0x8008 66 20 62 6F 6F 6D 43 08 

0x8010 25 29 31 41 54 72 50  56 

0x8018 67 6F 20 68 61 77 6B 73 

  
 
 
 



 
 

Using the information above, translate each of the following virtual addresses to physical 
addresses. Assume that the page table pointer is at 0x8000. Place your final answer in the box 
provided. If you encounter and error, write ERROR in the box. 
 

● 0x00000000B03  

● 0x00000001F59  
 

● 0x0000000051B  

● 0x000000014B2  

d) (3 points) Now suppose we want to transform our single level page table into a multi-leveled 
page table. Assuming that every page table is required to fit into a single page, how many total 
levels of page tables do we need to address the entire virtual address space? Place your 
answer in the box provided. 

 



 
 

 

P6. ML Homework (18 Points)  
 
As part of a machine learning homework, Natalie wrote a dense matrix-vector multiplication 
kernel (y=Ax). Natalie’s computer has a single-core processor with 1 level of L1 cache. The 
cache is 4-way associative, with 8-byte cache blocks, an LRU eviction policy, and an overall 
cache size is 512 bytes. Write operations allocate the relevant block into the cache.  
 
Assumptions: 

● The variable i,j are stored in registers and do not consume memory/cache space. 
● We define “hit rate” as the percentage of memory accesses (both read accesses and 

write accesses) that have a cache hit. 
● A is saved as a 2d array starting at the address 0x10 
● X is saved as an array starting at address 0x500000010 
● Y is saved as an array starting at address 0x1000000010  
● Z is saved as an array starting at address 0x1500000010  
● The matrix A is stored as a row-major matrix (i.e., rows are stored contiguously in 

memory) 
● Assume each value in the vector or matrix is represented as a 1-byte “integer” (i.e. has 

integer values between 0 and 255). 
 
You may leave answers in the form of a fraction 
 
Natalie’s implementation of her dense matrix-vector multiplication kernel is: 
 
for (int j=0; j < N; j++) { 
     for (int i=0; i < M; i++) { 
         y[i] += A[i][j] * x[i]; 
         z[i] = i; 
     } 
} 
 
Natalie started by testing her code on a small matrix. 
Assume  
N = 8 
M = 8 
 
 
 
 
 
 
 
 



 
 

(a) (5 points) Compute the hit-rate of the L1 cache at the end of the program. (you can leave 
you answer in the form of a fraction). Place your answer in the box provided. 

There are overall 5*8*8 memory accesses (8*8 matrix, 5 access in each iteration of the loop: 1 
to x, 1 to A, 1 to read y, 1 to write y, 1 to write z) 
The entire matrix and vector fit in the cache, and we have 4 way set-associative, so we will have 
a miss only every 8 accesses for each of the data-structures. 
I.e. 1 miss for x, 1 miss for y, 1 miss for z and 8 misses for A. The write operations to y will 
never miss, since they were all brought into the cache during the read operation of y. 
Hence the miss rate will be (1 + 1 + 1 + 8) / (5*8*8), and the hit rate will be: 
1 -  (1 + 1 + 1 + 8) / (5*8*8) = 309/320 = 96.6% 
 
 
 
Natalie was happy with her results, so she ran her code on a bigger matrix she got from her 
friends in the machine learning lab. 
 
The dimensions of the new matrix are: 
N = 128 
M = 128 
 

(b) (8 points) For each of the arrays in the problem, state whether its cache hit rate will 
increase, remain the same, or decrease compared to the rate of the previous part. What 
miss types (compulsory, capacity, conflict) do each of the array experience? 
 

Array  Increase/Decrease/Same Miss Types 

x Increase Compulsory 

y Increase Compulsory 

z Increase Compulsory 

A Decrease Compulsory, Capacity, Conflict 

 
For the grading of this problem, we gave partial credit for identifying that the first three 
rows (x, y, z) should be different from the last. The way points were added are as 
follows: The first column’s x, y, z must be different from A. If the first column’s x, y, z are 
different from A, then you get at least 0.5 points. We call this a “consistent” column. If the 
hit rate of x, y, and z is higher than the hit rate of A, then you get at least 1 point. Then, 
only if the first column was consistent, if you marked that the miss type of x, y, and z are 
all the same and different from A, you get awarded 1 point, up to a maximum of 2 
additional points. 
 



 
 

For x, y, and z - they still fit in the cache (each in one of the ways), so they will suffer 
only compulsory misses. Each of them will have 128 initial compulsory misses, and then 
remain in the cache for the rest of the program. There are overall (5*128*128) memory 
accesses, and therefore the hit rate of x and z will be 1 - (128/(128*128)) = 127/128 
(which is bigger than 7/8- the hit rate for these arrays in the previous part), while the hit 
rate for y will be 1 - (128/(2*128*128)) = 255/256 (which is bigger than 15/16, the hit rate 
for this array in the previous part).  
For A, we will have initial compulsory misses. The first A address that we read in is 0x10 
which is 0b00010000. The second A address that we read in is 0x10 + 128 which is 
0b10010000. The address split is 3 bits for offset in the cache block, and 4 bits for the 
index. Hence, the index is always going to be 0010. The array does not fit in the cache 
(since 128x128 = 16KB > 512B) so we're going to have both conflict misses and 
capacity misses. 
 

(c) (5 points) In one sentence, how would you optimize Natalie’s code to run faster by 
obtaining a better cache hit-rate for large matrices? 
Switch the order of the loops, so looping over `i` in the external loop, and looping over `j` 
in the internal loop 

 
 
 

  



 
 

P7. Potpurri (0 points)  
a. Illustrate your favorite dogspotting post below 

 
 
 
 
 
 
 
 
 

b. How are we doing so far?  
  

 
 


