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Recall: Paging

Virtual Address: Offset

Physical Address
Check Perm ]

PageTablePtr

[ PageTableSize

éccess [page#5 [VRW Access
rror
Error

. Pa%e Table (One per process)
- Resides in physical memor
- Contains physical page an Eermission for each virtual page
. » Permissions include: Valid bits, Read, Write, etc
* Virtual address mapping
- Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
- Virtual page # is all remaining bits
» Example for 32-bits: 32-107= 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address
- Check Page Table bounds and permissions
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Recall: Simple Page Table Discussion

* What needs to be switched on a context switch?
- Page table pointer and limit
* Analysis
- Pros
» Simple memory allocation
» Easy to Share
- Con: What if address space is sparse?
» E.g. on UNIX, code starts at O, stack starts at (23!-1).
» With 1K pages, need 2 million page table entries!
- Con: What if table really big?
» Not all pages used all the time = would be nice to have
working set of page table in memory
* How about combining paging and segmentation?
- Segments with pages inside them?

- Need some sort of multi-level translation
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Memory Layout for Linux 32-bit

J Kernel space
168 < | User code CANNOT read from nor write to these addresses,
| doing so results in a Segmentation Fault 0xC080BED == TASK SIZE

} Random stack offset

Stack (grows down)
7~ RLIMIT_STACK {e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

368 program break

T:]* brk

Heap start_brk
i Random brk offset

BSS segment

Uninitialized static var:

iables, filled with zeros.

.

Example: static char *userName;

Data segment
Static variables initialized by the programmer
Example: static char *gonzo = “God’s own prototype”

end_data

start_data

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_code

]

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelayout.png
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10 bits 10 bits 12 bits
Virtual

Address:

PageTablePtr

— 4 bytes &«—

Tree of Page Tables
Tables fixed size (1024 entries)
- On context-switch: save single
PageTablePtr register
Valid bits on Page Table Entries
- Don't need every 2"d-level table
- Even when exist, 2"d-level tables

can reside on disk if not in use
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What is in a Page Table Entry?

* What is in a Page Table Entry (or PTE)?
- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only
- Example: Intel x86 architecture PTE:
- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”

Page Frame Number Free 3|2 |“|
(Physical Page Number) Ok e 5 yWP

(0S) =

W:

31-12 11-9 876543210
P: Present (same as “valid” bit in other architectures)
Writeable
User accessible

U:
PWT:
PCD:
A:

D:

L:
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Page write transparent: external cache write-through
Page cache disabled (page cannot be cached)
Accessed: page has been accessed recently

Dirty (PTE only): page has been modified recently
L=1=4MB page (directory only).

Bottom 22 bits of virtual address serve as offset
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Examples of how to use a PTE

How do we use the PTE?
- Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory
- Validity checked first
» OS can use other (say) 31 bits for location info
Usage Example: Demand Paging
- Keep only active J:a es in memory
- Place others on disk and mark their PTEs invalid
Usage Example: Copy on Write
- UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created
- How to do this cheaply?
» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
Usage quample: Zero Fill On Demand
- New data pages must carry no information (say be zeroed)
- Mark PTEs as invalid: page fault on use gets zeroed page
- Often, OS creates zeroed pages in background

Kubiatowicz €5162 ®UCB Spring 2015 Lec 13.7

Summary: Two-Level Paging

Virtual memory view

Page Tables Physical memory view

1111 1111

(level 2)

+ ]
StAalR 11] 11101

1110 0000

1111 0000 I 10| 11100
3 01| 10111
00| 10110
1100 0000 Page Tabl
(level 1)
1| o 11| null
T 110| null 10| 10000
| 101| null 01] 01111
hean F_.lOO 00| 01110
1000 0000 b 81% null REAR
001| i T——, - 0111 000
000 & 11| 01101
A 10| 01100
01| 01011 0101 000
0100 0000 00[220%0
11 00101
04 10| 00100 [ code
page 01| 00011
code 0ol 00010 ——"1 0001 0000
0006‘3000 _ 0000 0000

pagel # offset
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Summary: Two-Level Paging

Virtual memory view Page Tables
(level 2)
anl
tack 11| 11101
10( 11100
1 01| 10111
00| 10110
Page Table
(level 1)
11| @ 11{ null
T 110| null o[ 10000
1001 0000 101) nul ol
eap
(0x90) i 0LL [ nul
010 @
001| null
ooo| @ 11| 01101
10{ 01100
01| 01011
00| 01010
11| 00101
10| 00100
01| 00011
code 00| 00010

Physical memory view

1110 0000

1000 0000
(0x80)

A
LUUC

0001 0000

T 0000 0000

Recall: Segments + Pages

* What about a tree of tables?
- Lowest level page table=>memory still allocated with bitmap
- Higher levels often segmented

+ Could have any number of levels. Example (top segment):

Virtual

Address: l
page #0 |V.R
page #1 |V,R

BaseO| Limi
Basel | L#futl |V

Physical Address

Base3| Limit3{ N

Base4| Limit4

Base5| Limit5 page #5 |V.R.\ Check Pe

Base6| Limité6 | N

Base7| Limit7 |V JAccess Access
Er

ror Error
* What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)
- Pointer to top-level table (page table)
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Recall Sharing (Complete Segment) Multi-level Translation Analysis
P .
page #1 |V.R - Only need to allocate as many page table entries as we
page #2 |V.R.M need for application
page #3 |V.R.V » In other wards, sparse address spaces are easy
[page #4 [N - Easy memory allocation
Limit3| N page #5 |V.R.V - Easy Sharing
Limit4 |V Shared Segment » Share at segment or page level (need additional reference
Base5| Limit5 [N Cimito counting)
Base6| Limit6 | N T . Cons:
Base7] Limit7[ V Lt

Process
B

3/9/15

Limit3

Base4| Limit4

Base5| Limith

Base6| Limité

Base7| Limit7

<IZIZI<|Z
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- One pointer per page (typically 4K - 16K pages today)
- Page tables need to be contiguous
» However, previous example keeps tables to exactly one
page in size
- Two (or more, if >2 levels) lookups per reference
» Seems very expensivel
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X86_64: Four-level page table!

o 9 bits 9bits 9 bits 9 bits 12 bits
48-bit Virtual

Address:

PageTablePtr

—> 8 bytes «—

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Physical
Address:
(40-50 bits)

3/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 13.13

IA64: 64bit addresses: Six-level page table?!?

64bit Virtual 7 bits 9bits 9bits 9bits 9bits 9bits 12 bits
Address:

No!

Too slow
Too many almost-empty tables
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Inverted Page Table

* With all previous examples ("Forward Page Tables™)
- Size of page table is at least as large as amount of
virtual memory allocated to processes
- Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

* Answer: use a hash table

- Called an "Inverted Page Table”

- Size is independent of virtual address space

- Directly related to amount of physical memory

- Very attractive option for 64-bit address spaces
* Cons: Complexity of managing hash changes

- Often in hardware!
3/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 13.15

IA64: Inverse Page Table (IPT)
Idea: index page table by physical pages instead of VM

0x0000

VMpageO
VMpagel AN 0x1000
VMpage2 0x2000

pid 0] \VMpageO | 0x0

VMpage3 0x3000
pid 1| \ ox1

Process id O
Virtual memory pid 0 ) VMpage2 | 0x2 Ox4000

pid 0 | VMpagel |Ox3 0x5000

XX free Ox4 0x6000
pid2].. 0x5 0x7000
pid1]. 0x6

pid 0 | VMpage3 | Ox7

Physical memory
in 4kB pages
Page numbers in red

Inverse Page Table
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IPT address translation

* Need an associative map from VM page to IPT address:

Summary: Inverted Table

Virtual memory view Physical memory view

1111 1111
- Use a hash map S Hash(prlgglelgtgdv;?b;ge #) 1110 0000
. . 1110 0000 )
Process 0 virtual address / Physical address \ 3 phys. page #
1100 0000
1011 0000
h(11111) =[11101
ra0]wpaged o0 | 1 i o
. 0x1000 A -
pid 1 Ox1 1000 0000 2P \:8&%: 10000
pid 0 | VMpage1 | 0x2 0x2000 oo =30 ] 01110000
p|d 0 VMpagez 0x3 0x3000 h(OlOll)i 01101
Hash VM page # [ Tree | oxe é:gg;ggg; oo 0101 0000
0x4000 h(01000)=(01010
pid 2 05 o
pid 1 0x6 0x5000 hgooomg; ooou\
h(00000)= 00010\ code
pid 0 | VMpage3 | Ox7 0x6000 d / 3 0001 0000
LUUC
0000 0000 _ 0000 0000
Inverse Page Table 0x7000
page # offset
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Address Translation Comparison Administrivia
Advantages Disadvantages - Midterm I coming up on Wednesday!
Segmentation | Fast context External fragmentation - March 11th. 7:00-10:00PM
switching: Segment - Rooms: 1 PIMENTEL: 2060 VALLEY LSB
Azl ol el » Will be dividing up in advance - watch for Piazza post
maintained by CPU - All topics up to and including next Monday
Paging No external Large table size ~ virtual - Closed book
(single-level fragmentathn, fast | memory _ - 1 page hand-written notes both sides
page) easy allocation Internal fragmentation
Paged Table size ~ # of Multiple memory
segmentation |pages in virtual references per page
Two-level memory, fast easy |access
pages allocation
Inverted Table | Table size ~ # of Hash function more
pages in physical complex
memory
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Making it real:
X86 Memory model with segmentation (16/32-bit)

Logical Address
(or Far Pointer)

Ve Y
Segment
Selector Offset Linear Address
Space

Linear Address

[ Dir [ Table | Offset ]

Global Descriptor

Table (GDT) Physical

Address
Space

Segment
Segment _Page Table Page
| g | Descriptor [ T e
e Page Directory »| Phy. Addr.
Lin. Addr.
=  Entry »- 1
» * - Entry | >
Segment ‘
Base Address N\ E—
Page
Segmentation I Paging I
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X86 Segment Descriptors (32-bit Protected Mode)

+ Segments are either implicit in the instruction (say for code
segments) or actually part of the instruction
- There are 6 registers: SS, CS, DS, ES, FS, 65
* What is in a segment register?

- A pointer to the actual segment description:

=

Segment selector [13 bits] 3 RPL

G/L selects between GDT and LDT tables (global vs local
descriptor tables)
+ Two registers: GDTR and LDTR hold pointers to the global and
local déscriptor tables in memory
- Includes length of table (for < 2!3) entries

’ Descr'P*gr fOf‘me 94 bz'ntg)l' SEE N Tt
Base addiess (24-31) | €fos| | A | Limi (16-19) P|DF‘L|5 Type Base address (16-23)

T T T T T T T LT T T T T [l e e T e T T T e
Base address (Bit 0-15) Segment Limit (Bit 0-15)

G: Granularity of segment (0: 16bit, 1: 4KiB unit

D8 Bedmit o e Cieber s Lioby U
A: Freely available for use by software
P: Segment present

DPL: Descriptor Privilege Level
S: System Segment {0: System, 1: code or data)

Type: Code, Datd, Segment
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Recall: How are segments used?
* One set of global segments (6DT) for everyone, different
set of local segments (LDT) for every process
+ In legacy applications (16-bit mode):
- Segments provide protection for different components of user
programs
- Separate segments for chunks of code, data, stacks
- Limited to 64K segments
* Modern use in 32-bit Mode:
- Segments “flattened”, i.e. every segment is 4GB in size

- One exception: Use of 65 (or FS) as a pointer to "Thread Local
Storage”

» A thread can make accesses to TLS like this:
mov eax, gs(0x0)

* Modern use in 64-bit ("long”) mode
- lMo.s.rf segments (SS, €S, DS, ES) have zero base and no length
imits
- Only FS and GS retain their functionality (for use in TLS)
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How is the translation accomplished?

Virtual Physical
Addresses Addresses
—

MMU

* What, exactly happens inside MMU?
* One possibility: Hardware Tree Traversal

- For each virtual address, takes gage table base pointer
and traverses the page table in hardware

- Generates a "Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture
- Pros: Relatively fast (but still many memory accesses!)
- Cons: Inflexible, Complex hardware
* Another possibility: Software
- Each traversal done in software
- Pros: Very flexible
- Cons: Every translation must invoke Fault!
* In fact, need way to cache translations for either case!
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Recall: Dual-Mode Operation

*+ Can a process modify its own translation tables?
- NO!
- If it could, could get access to all of physical memory
- Has to be restricted somehow
+ To Assist with Protection, Hardware provides at least
two modes (Dual-Mode Operation):
- "Kernel” mode (or “supervisor” or “protected")
- "User” mode (Normal program mode)

- Mode set with bits in special control register only
accessible in kernel-mode

+ Intel processor actually has four “rings” of protection:

- PL (Priviledge Level) from O - 3
» PLO has full access, PL3 has least
- Privilege Level set in code segment descriptor (CS)
- Mirrored "TOPL" bits in condition register gives
permission to programs to use the I?O instructions

- Kpical OS kernels on Intel processors only use PLO
("kernel”) and PL3 (‘user”
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How to get from Kernel->User
* What does the kernel do to create a new user
process?
- Allocate and initialize address-space control block
- Read program off disk and store in memory
- Allocate and initialize translation table

» Point at code in memory so program can execute
» Possibly point at statically initialized data

- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

* How does kernel switch between processes?
- Same saving/restoring of registers as before
- Save/restore PSL (hardware pointer to translation table)
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Recall: User—Kernel (System Call)

* Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

USEr process
user mode
{mode bit=1

| user process executing H calls system call | | return from system call |

\

i L

LY Fd
K | trap returm
L] mode bit=0 mode bit = 1
kernel mode

execute system call (mode bit = 0)

- System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition
- Can any kernel routine be called?
» No! Only specific ones.
- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel
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User—Kernel (Exceptions: Traps and Interrupts)
+ A Sysfem call instruction causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
* Other sources of Synchronous Exceptions (“Trap”):

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
* Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
* On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel
- For some processors (x86), processor also saves
registers, changes stack, etc.
* Actual handler typically saves registers, other CPU
state, and swifczes to kernel stack
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Closing thought: Protection without Hardware

* Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but any'rhingf you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict rogr‘amming language so that you can't express
program that would trash another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can't step out of bounds

» Compiler puts in checks for every “dangerous” operation
(loads, stores, efc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)

- Or: use virtual machine to guaran'ree safe behavior
(loads and stores recompiled on fly to check bounds)
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Caching Concept

. —= |
L 00g ?15);@%53\
* Cache: a repository for copies that can be accessed
more quickly than the original
- Make frequent case fast and infrequent case less dominant
+ Caching underlies many of the techniques that are used
today Yo make computers fast

- Can cache: memory locations, address translations, pages,
file blocks, file names, network routes, etc...

* Only good if:
- Frequent case frequent enough and
- Infrequent case not too expensive

* Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Why Bother with Caching?

Processor-DRAM Memory Gap (latency)

1000, RN S L ~ WProc
Moore's Law 60%/yr.
9 (really Joy's Law) (2X/1.5yr)
§100| e Processor-Memory
£ Performance Gap:
L0l T (grows 50% / year)
S “Less’ Law?" ~— DRAM
Q. DRAM 9%/yr|.
1 e (2X/10
Ov M < 10 o'r\'co'm'o"—-'N'm'v'm'o'r\'w'm'g
00 00 000 WV VWD OANANANANANANANANNONNOON O yl"S)
QT ATQTTZAZATTZAZRTRAR
Time
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Another Major Reason to Deal with Caching

Virtual Offset
Address:
Basel | L#fitl |V page #2 TV.R, Physical Add
== BaseZ| Limi page #3 |V.RW ysica ress
gaseB LimitA N page #4 |N
ase4| Limit4
Base5| Limit5 page #5 |[V.R.W  (Check Pegn
Base6| Limité6 | N
Base7| Limit7 |V —Access Access
Error Error

+ Cannot afford to translate on every access
- At least three DRAM accesses per actual DRAM access
- Or: perhaps I/0 if page table partially on disk!

- Even worse: What if we are using caching to make
memory access faster than DRAM access???

+ Solution? Cache translations!
- Translation Cache: TLB ("Translation Lookaside Buffer”)
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Why Does Caching Help? Locality!

Probability
of reference

0 Address Space 2n-1

 Temporal Locality (Locality in Time):

- Keep recently accessed data items closer to processor
* Spatial Locality (Locality in Space):

- Move contiguous blocks to the upper levels

Lower Level
To Processor | Upper Level Memory
Memory
Blk X

From Processor Dj:'] BIKY
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Memory Hierarchy of a Modern Computer System

* Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

Processor
Control .
Secondary 1 ET7
S Storage
Second Main torage (Tape)
P s Level Memo (Oisk)
@ > ry
Datapath & S6 Cache (DRAM)
g * 2 (SRAM)
w
Speed (ns): 1s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks-Ms Ms Gs Ts
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A Summary on Sources of Cache Misses

Compulsory (cold start or process migration, first
reference): first access to a block

- "Cold” fact of life: not a whole lot you can do about it
- Note: If you are going to run "billions” of instruction,
Compulsory Misses are insignificant
* Capacity:
- Cache cannot contain all blocks access by the program
- Solution: increase cache size
Conflict (collision):

- Multiple memory locations mapped
to the same cache location

- Solution 1: increase cache size
- Solution 2: increase associativity

* Coherence (Invalidation): other process (e.g., I/0)

updates memory
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How is a Block found in a Cache?

Block Address Block
Tag [ Index offset

)

Set Select

Data Select
*+ Index Used to Lookup Candidates in Cache
- Index identifies the set
* Tag used to identify actual copy
- If no candidates match, then declare cache miss
* Block is minimum quantum of caching
- Data select field used to select data within block
- Many caching applications don't have data select field
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Review: Direct Mapped Cache

+ Direct Mapped 2N byte cache:
- The uppermost (32 - N) bits are always the Cache Tazg
- The lowest M bits are the Byte Select (Block Size = 2M)
. Exam!Ie: 1 KB Direct Mapped Cache with 32 B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

31 9 4 0
| Cache Tag | Cache Index | Byte Select |
Ex: 0x50 Ex: i)xOl Ex: 0x00
Valid Bit Cache Tag Cache Data
I PP ... Byte31).... . [.Byte 1.1.BytdQ.1.0
|| 0x50 Byte 63| * * | Byte 33| Byte 32| 1+
T T )
] Byte 1023 -+  Byte 99231
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Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
- N direct mapped caches operates in parallel

+ Example: Two-way set associative cache
- Cache Index selects a "set” from the cache
- Two tags in the set are compared to input in parallel
- Data is selected based on the tag result

31 8 4 0
| Cache Tag | Cachelndex | Byte Select |
— ]
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0

h
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Review: Fully Associative Cache

* Fully Associative: Every block can hold any line

- Address does not include a cache index

- Compare Cache Tags of all Cache Entries in Parallel
+ Example: Block Size=32B blocks

- We need N 27-bit comparators

- Still have byte select to choose from within block

31 4 0
| Cache Tag (27 bits long) | Byte Select |
Ex: 0x01
Cache Tag Valid Bit ~ Cache Data
——()—] Byte 31| - - |Bytel | Byte 0
® Byte 63| -+ | Byte 33| Byte 32
)
2/
)
ZJ
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Where does a Block Get Placed in a Cache?
* Example: Block 12 placed in 8 block cache

32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative: Fully associative:

block 12 can go block 12 can go block 12 can go

only into block 4 anywhere in set 0 anywhere

(12 mod 8) (12 mod 4)

Block 01234567 Block 01234567 Block 01234567
no. no. no.
Set Set Set Set
01 2 3
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Review: Which block should be replaced on a miss?

* Easy for Direct Mapped: Only one possibility
+ Set Associative or Fully Associative:

- Random

- LRU (Least Recently Used)

2-way 4-way 8-way
Size  LRU Random LRU Random LRU Random
16 KB 52% 5.7% 4.7% 5.3% 4.4% 5.0%
64KB 19% 20% 15% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%
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Review: What happens on a write?

* Write through: The information is written to both the
block in the cache and to the block in the lower-level
memory

* Write back: The information is written only to the
block in the cache.

- Modified cache block is written to main memory only
when it is replaced
- Question is block clean or dirty?
* Pros and Cons of each?

- WT:

» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered
- WB:

» PRO: repeated writes not sent to DRAM

processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data
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Caching Applied to Address Translation
N

Physical

Physical
Memory

Data Read or Write
(untranslated)
* Question is one of page locality: does it exist?

- Instruction accesses spend a lot of time on the same
page (since accesses sequential)

- Stack accesses have definite locality of reference
- Data accesses have less page locality, but still some...
+ Can we have a TLB hierarchy?
- Sure: multiple levels at different sizes/speeds
3/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 13.43

What Actually Happens on a TLB Miss?

* Hardware traversed page tables:

- On TLB miss, hardware in MMU looks at current page
table to fill TLB (may walk multiple levels)
» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which
kernel decides what to do afterwards

+ Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault
- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal
- Modern operating systems tend to have more TLB faults
since they use translation for many things
- Examples:
» shared segments
» user-level portions of an operating system

3/9/15 Kubiatowicz 5162 ©®UCB Spring 2015 Lec 13.44




What happens on a Context Switch?

* Need to do something, since TLBs map virtual
addresses to physical addresses

- Address Space just changed, so TLB entries no
longer valid!

+ Options?
- Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
- Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What if translation tables change?

- For example, to move page from memory to disk or
vice versa...

- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
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What TLB organization makes sense?

» TLB »| Cache » Memory

* Needs to be really fast
- Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)
- Seems to argue for Direct Mapped or Low Associativity
* However, needs to have very few conflicts!
- With TLB, the Miss Time extremely high!

- This arqgues that cost of Conflict (Miss Time) is much
higher than slightly increased cost of access (Hit Time)

* Thrashing: continuous conflicts between accesses
- What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
- What if use high order bits as index?
» TLB mostly unused for small programs
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TLB organization: include protection

* How big does TLB actually have to be?
- Usually small: 128-512 entries
- Not very big, can support higher associativity
* TLB usually organized as fully-associative cache
- Lookup is by Virtual Address
- Returns Physical Address + other info
* What happens when fully-associative is too slow?
- Put a small (4-16 entry) direct-mapped cache in front
- Called a "TLB Slice”
* Example for MIPS R3000:

Virtual Address | Physical Address | Dirty | Ref | Valid |AccessASID

OxFAOQ0 0x0003 Y N Y R/W | 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0
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Example: R3000 pipeline includes TLB “stages”

MIPS R3000 Pipeline
Ilnst Fetch | Dcd/ Reg IALU | EA | Memory I Write Reg |
|TLB | I-Cache | RF | Operation | | WB |
| EA.| TLB | D-Cache |

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

|ASID || | | | V. Page Number | Offset |

A_rl 20 12

Oxx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush
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Reducing translation time further

* As described, TLB lookup is in serial with cache lookup:
Virtual Address

[Vpageno. | offset |
|

TLB Lookup

RCTESS
V  Rights | _PA

[Ppageno. | offset |

* Machines with TLBs go one tep-further: they overla
TLB lookup with cachge access. Y P

- Works because offset available early
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Overlapping TLB & Cache Access (1/2)

* Main idea:

- Offset in virtual address exactly covers the
“cache index” and "byte select”

- Thus can select the cached byte(s) in parallel to
perform address translation

virtual address

physical address [tag / page 7] |
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Overlapping TLB & Cache Access
+ Here is how this might work with a 4K cache:
[ assoc l
lookup index

32 |TLB ‘—‘ ’—' 4K Cache 1K
| . |

10 2 ~——4 bytes—
|page # | disp [og

Hit/
Miss

FN @ FN Data Hit/
Miss
* What if cache size is increased to 8KB?
- Overlap not complete
- Need to do something else. See €S152/252
* Another option: Virtual Caches
- Tags in cache are virtual addresses
- Translation only happens on cache misses
3/9/15 Kubiatowicz €5162 ®UCB Spring 2015 Lec 13.51

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

PageTablePir > Ph¥sica re\s:

Page Table [—
(15t level)

Page Table
(2nd |evel)
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Putting Everything Together: TLB

Physical
Virtual Address: Memory:
L J =
7777777777777 Physica refs:
Page #
5 A
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Putting Everything Together: Cache

Physical

Memory:
 PhysicalAddreys:

Page #
j.i ache: !
tag: Block:
|
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Next Up: What happens when ...

Process virtual address physical address
- - page#
instiyCtion MMU > frame#
nsthGin| N
retr exception A"« fault) 1~ offses
rame#t
ing System offse
3>y -~ update PT entry
Page Fault Handler

oad page from disk

scheduler
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Summary (1/3)

* Page Tables
- Memory divided into fixed-sized chunks of memory

- Virtual page number from virtual address mapped
through page table to physical page number

- Offset of virtual address same as physical address

- Large page tables can be placed into virtual memory
* Multi-Level Tables

- Virtual address mapped to series of tables

- Permit sparse population of address space
* Inverted page table

- Size of page table related to physical memory size
* PTE: Page Table Entries

- Includes physical page number

- Control info (valid bit, writeable, dirty, user, etc)
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Summary (2/3)

* The Principle of Locality:

- Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
* Three (+1) Major Categories of Cache Misses:
- Compulsory Misses: sad facts of life. Example: cold start
misses.
- Conflict Misses: increase cache size and/or associativity
- Capacity Misses: increase cache size

- Coherence Misses: Caused by external processors or I/0
devices

* Cache Organizations:
- Direct Mapped: single block per set
- Set associative: more than one block per set
- Fully associative: all entries equivalent
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Summary (3/3): Translation Caching (TLB)

« A cache of translations called a "Translation Lookaside
Buffer” (TLB)

- Relatively small number of entries (< 512)
- Fully Associative (Since conflict misses expensive)
- TLB entries contain PTE and optional process ID
+ On TLB miss, page table must be traversed
- If located PTE is invalid, cause Page Fault
+ On context switch/change in page table
- TLB entries must be invalidated somehow
* TLB is logically in front of cache

- Thus, needs to be overlapped with cache access to be
really fast
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