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Physical Address
Offset

Recall: Paging

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset  1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W
N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #
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Recall: Simple Page Table Discussion

• What needs to be switched on a context switch? 
– Page table pointer and limit

• Analysis
– Pros

» Simple memory allocation
» Easy to Share

– Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0, stack starts at (231-1).
» With 1K pages, need 2 million page table entries!

– Con: What if table really big?
» Not all pages used all the time  would be nice to have 

working set of page table in memory
• How about combining paging and segmentation?

– Segments with pages inside them?
– Need some sort of multi-level translation
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Memory Layout for Linux 32-bit

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png
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Physical
Address:

OffsetPhysical
Page #

4KB

Fix for sparse address space: The two-level page table

10 bits 10 bits 12 bits
Virtual 
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single 
PageTablePtr register

• Valid bits on Page Table Entries 
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables 
can reside on disk if not in use 4 bytes
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What is in a Page Table Entry?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures) 
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=14MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U WP

01234567811-931-12
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Examples of how to use a PTE
• How do we use the PTE?

– Invalid PTE can imply different things:
» Region of address space is actually invalid or 
» Page/directory is just somewhere else than memory

– Validity checked first
» OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory
– Place others on disk and mark their PTEs invalid

• Usage Example: Copy on Write
– UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
– How to do this cheaply?  

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies 

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background
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stack

Summary: Two-Level Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111
110 null
101 null
100
011 null
010
001 null
000

11 11101    
10 11100
01 10111
00 10110

11 01101    
10 01100
01 01011
00 01010

11 00101    
10 00100
01 00011
00 00010

11 null  
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000
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stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111
110 null
101 null
100
011 null
010
001 null
000

11 11101    
10 11100
01 10111
00 10110

11 01101    
10 01100
01 01011
00 01010

11 00101    
10 00100
01 00011
00 00010

11 null  
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)
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• What about a tree of tables?
– Lowest level page tablememory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Recall: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual 
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W

Physical
Page #

Check Perm

Access
Error
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Recall Sharing (Complete Segment)
Process
A

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R
V,R
V,R,W
V,R,W
N
V,R,W

Shared Segment

Process
B

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V
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Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we 
need for application

» In other wards, sparse address spaces are easy
– Easy memory allocation
– Easy Sharing

» Share at segment or page level (need additional reference 
counting)

• Cons:
– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, previous example keeps tables to exactly one 
page in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!
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Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86_64: Four-level page table!

9 bits 9 bits 12 bits
48-bit Virtual 

Address: OffsetVirtual
P2 index

Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)
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7 bits 9 bits 12 bits64bit Virtual 
Address: OffsetVirtual

P2 index
Virtual
P1 index

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits
Virtual
P5 index

Virtual
P6 index

9 bits 9 bits

No!

Too slow
Too many almost-empty tables

IA64: 64bit addresses: Six-level page table?!?
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• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of 
virtual memory allocated to processes

– Physical memory may be much less
» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes
– Often in hardware!

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #
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Idea: index page table by physical pages instead of VM
IA64: Inverse Page Table (IPT)

VMpage0, pid 0

VMpage2, pid 0

VMpage1, pid 0

VMpage3, pid 0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical memory
in 4kB pages

Page numbers in red

pid 0 VMpage0
pid 1 …
pid 0 VMpage2
pid 0 VMpage1
xx free
pid 2 …
pid 1 …
pid 0 VMpage3

Inverse Page Table

VMpage0
VMpage1
VMpage2
VMpage3 0x0

0x1
0x2
0x3
0x4
0x5
0x6
0x7

Process id 0
Virtual memory
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IPT address translation

• Need an associative map from VM page to IPT address:
– Use a hash map

pid 0 VMpage0
pid 1
pid 0 VMpage1
pid 0 VMpage2
xx free
pid 2
pid 1
pid 0 VMpage3

Inverse Page Table

VMpage2 (52b) Offset (12b)

0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7

Process 0 virtual address
0x3 Offset (12b)

Hash VM page #

VMpage0, pid 0

VMpage2, pid 0

VMpage1, pid 0

VMpage3, pid 0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical address
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Summary: Inverted Table

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Inverted Table
Hash(procID & virt. page #) = 

phys. page #1110 0000

h(11111) =
h(11110) =
h(11101) =    
h(11100) = 
h(10010)=   
h(10001)=  
h(10000)=
h(01011)= 
h(01010)=  
h(01001)=  
h(01000)=    
h(00011)=    
h(00010)=   
h(00001)=    
h(00000)=    

stack

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 0000

0111 0000

1110 0000

11101
11100
10111   
10110
10000
01111
01110
01101   
01100
01011
01010   
00101   
00100   
00011  
00010

1011 0000
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Address Translation Comparison

Advantages Disadvantages
Segmentation Fast context 

switching: Segment 
mapping 
maintained by CPU 

External fragmentation

Paging 
(single-level 
page)

No external 
fragmentation, fast 
easy allocation

Large table size ~ virtual 
memory
Internal fragmentation

Paged 
segmentation

Table size ~ # of 
pages in virtual 
memory, fast easy 
allocation

Multiple memory 
references per page 
access Two-level 

pages
Inverted Table Table size ~ # of 

pages in physical 
memory

Hash function more 
complex
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Administrivia

• Midterm I coming up on Wednesday!
– March 11th, 7:00-10:00PM
– Rooms: 1 PIMENTEL; 2060 VALLEY LSB 

» Will be dividing up in advance – watch for Piazza post
– All topics up to and including next Monday
– Closed book
– 1 page hand-written notes both sides
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Making it real: 
X86 Memory model with segmentation (16/32-bit)
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X86 Segment Descriptors (32-bit Protected Mode)
• Segments are either implicit in the instruction (say for code 

segments) or actually part of the instruction
– There are 6 registers: SS, CS, DS, ES, FS, GS

• What is in a segment register?  
– A pointer to the actual segment description:

G/L selects between GDT and LDT tables (global vs local 
descriptor tables)

• Two registers: GDTR and LDTR hold pointers to the global and 
local descriptor tables in memory

– Includes length of table (for < 213) entries
• Descriptor format (64 bits):

G: Granularity of segment (0: 16bit, 1: 4KiB unit)
DB: Default operand size (0; 16bit, 1: 32bit)
A: Freely available for use by software
P: Segment present

DPL: Descriptor Privilege Level
S: System Segment (0: System, 1: code or data)

Type: Code, Data, Segment

Segment selector [13 bits] G/
L RPL
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Recall: How are segments used?
• One set of global segments (GDT) for everyone, different 

set of local segments (LDT) for every process 
• In legacy applications (16-bit mode):

– Segments provide protection for different components of user 
programs

– Separate segments for chunks of code, data, stacks
– Limited to 64K segments

• Modern use in 32-bit Mode:
– Segments “flattened”, i.e. every segment is 4GB in size
– One exception: Use of GS (or FS) as a pointer to “Thread Local 

Storage”
» A thread can make accesses to TLS like this:

mov eax, gs(0x0)
• Modern use in 64-bit (“long”) mode

– Most segments (SS, CS, DS, ES) have zero base and no length 
limits

– Only FS and GS retain their functionality (for use in TLS)
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How is the translation accomplished?

• What, exactly happens inside MMU?
• One possibility: Hardware Tree Traversal

– For each virtual address, takes page table base pointer 
and traverses the page table in hardware

– Generates a “Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture

– Pros: Relatively fast (but still many memory accesses!)
– Cons: Inflexible, Complex hardware

• Another possibility: Software
– Each traversal done in software
– Pros: Very flexible
– Cons: Every translation must invoke Fault!

• In fact, need way to cache translations for either case!

CPU MMU
Virtual
Addresses

Physical
Addresses
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Recall: Dual-Mode Operation
• Can a process modify its own translation tables?

– NO!
– If it could, could get access to all of physical memory
– Has to be restricted somehow

• To Assist with Protection, Hardware provides at least 
two modes (Dual-Mode Operation):

– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bits in special control register only 
accessible in kernel-mode

• Intel processor actually has four “rings” of protection:
– PL (Priviledge Level) from 0 – 3

» PL0 has full access, PL3 has least
– Privilege Level set in code segment descriptor (CS)
– Mirrored “IOPL” bits in condition register gives 
permission to programs to use the I/O instructions

– Typical OS kernels on Intel processors only use PL0 
(“kernel”) and PL3 (“user”)
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How to get from KernelUser
• What does the kernel do to create a new user 

process?
– Allocate and initialize address-space control block
– Read program off disk and store in memory
– Allocate and initialize translation table 

» Point at code in memory so program can execute
» Possibly point at statically initialized data

– Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

• How does kernel switch between processes?
– Same saving/restoring of registers as before
– Save/restore PSL (hardware pointer to translation table)
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Recall: UserKernel (System Call)
• Can’t let inmate (user) get out of padded cell on own

– Would defeat purpose of protection!
– So, how does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled UserKernel transition
– Can any kernel routine be called?

» No!  Only specific ones.
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel
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UserKernel (Exceptions: Traps and Interrupts)
• A system call instruction causes a synchronous 

exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions (“Trap”):
– Divide by zero, Illegal instruction, Bus error (bad 
address, e.g. unaligned access)

– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves 
registers, changes stack, etc.

• Actual handler typically saves registers, other CPU 
state, and switches to kernel stack
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Closing thought: Protection without Hardware
• Does protection require hardware support for 

translation and dual-mode behavior?
– No: Normally use hardware, but anything you can do in 
hardware can also do in software (possibly expensive)

• Protection via Strong Typing
– Restrict programming language so that you can’t express 
program that would trash another program

– Loader needs to make sure that program produced by 
valid compiler or all bets are off

– Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:

– Language independent approach: have compiler generate 
object code that provably can’t step out of bounds

» Compiler puts in checks for every “dangerous” operation 
(loads, stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot 
do certain things (Proof Carrying Code)

– Or: use virtual machine to guarantee safe behavior 
(loads and stores recompiled on fly to check bounds)
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Caching Concept

• Cache: a repository for copies that can be accessed 
more quickly than the original

– Make frequent case fast and infrequent case less dominant
• Caching underlies many of the techniques that are used 

today to make computers fast
– Can cache: memory locations, address translations, pages, 
file blocks, file names, network routes, etc…

• Only good if:
– Frequent case frequent enough and
– Infrequent case not too expensive

• Important measure: Average Access time = 
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Lec 13.313/9/15 Kubiatowicz CS162 ©UCB Spring 2015

CPU
µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 
yrs)

DRAM
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Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Moore’s Law”
(really Joy’s Law)

Processor-DRAM Memory Gap (latency)

Why Bother with Caching?

“Less’ Law?”
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• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make 
memory access faster than DRAM access???

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual 
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error
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Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels 

Address Space0 2n - 1

Probability
of reference

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y
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Memory Hierarchy of a Modern Computer System
• Take advantage of the principle of locality to:

– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

1s 10,000,000s  
(10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary
Storage
(Tape)

10,000,000,000s  
(10s sec)

Ts
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• Compulsory (cold start or process migration, first 
reference): first access to a block

– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction, 
Compulsory Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple  memory locations  mapped
to the same cache location

– Solution 1: increase  cache size
– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O) 
updates memory 

A Summary on Sources of Cache Misses
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• Index Used to Lookup Candidates in Cache
– Index identifies the set 

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select
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:

0x50

Valid Bit

:

Cache Tag

Byte 32
0
1
2
3

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache
• Direct Mapped 2N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01
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Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache
• N-way set associative: N entries per Cache Index

– N direct mapped caches operates in parallel
• Example: Two-way set associative cache

– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block
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Review: Fully Associative Cache
• Fully Associative: Every block can hold any line

– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01
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• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go 
only into block 4 
(12 mod 8)

Set associative:
block 12 can go 
anywhere in set 0 
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Where does a Block Get Placed in a Cache?
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• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

2-way        4-way          8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Review: Which block should be replaced on a miss?
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• Write through: The information is written to both the 
block in the cache and to the block in the lower-level 
memory

• Write back: The information is written only to the 
block in the cache. 

– Modified cache block is written to main memory only 
when it is replaced

– Question is block clean or dirty?
• Pros and Cons of each?

– WT: 
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB: 
» PRO: repeated writes not sent to DRAM

processor not held up on writes
» CON: More complex

Read miss may require writeback of dirty data

Review: What happens on a write?
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Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same 
page (since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?
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What Actually Happens on a TLB Miss?
• Hardware traversed page tables:

– On TLB miss, hardware in MMU looks at current page 
table to fill TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which 

kernel decides what to do afterwards
• Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults 
since they use translation for many things

– Examples: 
» shared segments
» user-level portions of an operating system
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What happens on a Context Switch?

• Need to do something, since TLBs map virtual 
addresses to physical addresses

– Address Space just changed, so TLB entries no 
longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or 
vice versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!
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What TLB organization makes sense?

• Needs to be really fast
– Critical path of memory access 

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Time) is much 
higher than slightly increased cost of access (Hit Time)

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory
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TLB organization: include protection
• How big does TLB actually have to be?

– Usually small: 128-512 entries
– Not very big, can support higher associativity

• TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

0xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

Virtual Address   Physical Address   Dirty   Ref   Valid   Access ASID
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Example: R3000 pipeline includes TLB “stages”

Inst Fetch Dcd/ Reg ALU  /  E.A Memory Write Reg
TLB I-Cache          RF        Operation                                WB

E.A.    TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset
12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip,  fully associative, software TLB fault handler
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• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap 
TLB lookup with cache access.

– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address
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Overlapping TLB & Cache Access (1/2)

• Main idea: 
– Offset in virtual address exactly covers the 
“cache index” and “byte select”

– Thus can select the cached byte(s) in parallel to 
perform address translation  

OffsetVirtual Page #

indextag / page # byte

virtual address 

physical address 
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• Here is how this might work with a 4K cache: 

• What if cache size is increased to 8KB?
– Overlap not complete
– Need to do something else.  See CS152/252 

• Another option: Virtual Caches
– Tags in cache are virtual addresses
– Translation only happens on cache misses

TLB 4K Cache

10 2
00

4 bytes

index 1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

Overlapping TLB & Cache Access
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Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical 
Memory:

Physical Address:

…

TLB:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag
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Next Up: What happens when …

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset
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Summary (1/3)
• Page Tables

– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped 
through page table to physical page number

– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted page table
– Size of page table related to physical memory size

• PTE: Page Table Entries
– Includes physical page number
– Control info (valid bit, writeable, dirty, user, etc)
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Summary (2/3)
• The Principle of Locality:

– Program likely to access a relatively small portion of the 
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start 
misses.

– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O 
devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent
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Summary (3/3): Translation Caching (TLB)
• A cache of translations called a “Translation Lookaside 

Buffer” (TLB)
– Relatively small number of entries (< 512)
– Fully Associative (Since conflict misses expensive)
– TLB entries contain PTE and optional process ID

• On TLB miss, page table must be traversed
– If located PTE is invalid, cause Page Fault 

• On context switch/change in page table
– TLB entries must be invalidated somehow 

• TLB is logically in front of cache
– Thus, needs to be overlapped with cache access to be 
really fast


