
CS 162 Project 2: User Programs

Initial Design Document Due:
Friday, October 23 2015

Code Due:
Friday, November 6, 2015
Final Report Due:

Monday, November 9, 2015

Contents

1 Overview 2

2 Background 2
2.1 Source Files . 2
2.2 Using the File System . 3
2.3 How User Programs Work . 4
2.4 Virtual Memory Layout . 4
2.5 Accessing User Memory . 5

3 Schedule and Grading 7
3.1 Initial Design Document (10 points) . 7
3.2 Design Review (10 points) . 7
3.3 Final Code (60 points) . 7
3.4 Code Style (10 points) . 7
3.5 Final Report (10 points) . 8

4 Suggested Order of Implementation 8

5 Project Requirements 10
5.1 Process Termination Messages . 10
5.2 Argument Passing . 10
5.3 System Calls . 10
5.4 Denying Writes to Executables . 13

6 References 14
6.1 80x86 Calling Convention . 14
6.2 Program Startup Details . 14
6.3 System Call Details . 15

7 FAQ 16
7.1 Argument Passing FAQ . 17
7.2 System Calls FAQ . 18

1

CS 162 Fall 2015 Project 2: User Programs

1 Overview

In this project, you’ll be implementing parts of Pintos that allow user programs like wc to run. Along
the way, you’ll encounter familiar concepts, including:

• System Calls

• Processes/Threads

• File descriptors

• Userspace vs. Kernel

• Address Spaces

The skeleton code already supports loading and running user programs, but no I/O or interactivity is
possible. You will enable programs to interact with the OS via system calls. In completing this project,
we hope you’ll have a more concrete understanding of these concepts and some hands-on experience with
some actual code involved in running userspace programs.

Feel free to either start over from the skeleton code (somewhat recommended so that uncaught
Project 1 bugs don’t manifest themselves here) or if you are feeling adventurous, continue off of your
Project 1 implementation.

Keep in mind that Project 3 will be expand upon your Project 2 implementation (and will require
all Project 2 tests to pass).

2 Background

User programs are written under the illusion that they have the entire machine, which means that the
operating system must manage/protect machine resources correctly to maintain this illusion for multiple
processes. In Pintos, more than one process can run at a time, but each process is single-threaded
(multithreaded processes are not supported).

2.1 Source Files

In this project, you’ll be working with a large number of files, primarily in the userprog directory. To
help you parse through all the code, we’ve selected some key files and described them below:

process.c

process.h Loads ELF binaries and starts processes.

pagedir.c

pagedir.h A simple manager for 80x86 hardware page tables. Although you probably won’t want to
modify this code for this project, you may want to call some of its functions.

userprog/syscall.c

userprog/syscall.h Whenever a user process wants to access some kernel functionality, it invokes a
system call. This is a skeleton system call handler. Currently, it terminates the user process in the
case of exit and does nothing else for the other system calls.

lib/user/syscall.c

2

CS 162 Fall 2015 Project 2: User Programs

lib/user/syscall.h These functions provide a way for user processes to invoke each system call from
a C program. Each uses a little inline assembly code to invoke the system call. We don’t expect
you to understand this assembly code, but we do expect you to understand the calling conventions
described by your TA in section (also in Reference).

lib/syscall-nr.h This file defines the system call numbers for each system call.

exception.c

exception.h When a user process performs a privileged or prohibited operation, it traps into the kernel
as an “exception” or “fault.”(3) These files handle exceptions. Currently all exceptions simply print
a message and terminate the process. Some, but not all, solutions to project 2 require modifying
page fault() in this file.

gdt.c

gdt.h The 80x86 is a segmented architecture. The Global Descriptor Table (GDT) is a table that
describes the segments in use. These files set up the GDT. You should not need to modify these
files for any of the projects. You can read the code if you’re interested in how the GDT works.

tss.c

tss.h The Task-State Segment (TSS) is used for 80x86 architectural task switching. Pintos uses the
TSS only for switching stacks when a user process enters an interrupt handler, as does Linux. You
should not need to modify these files for any of the projects. You can read the code if you’re
interested in how the TSS works.

2.2 Using the File System

You will need to interface to the file system code for this project, because user programs are loaded from
the file system and many of the system calls you must implement deal with the file system. However,
the focus of this project is not the file system, so we have provided a simple but complete file system
implementation in the filesys directory. There is no need to modify the file system code for this project,
and we recommend that you do not. You will, however, want to look over the filesys.h and file.h interfaces
to understand how to use the file system, and especially its many limitations:

• No internal synchronization. Concurrent accesses will interfere with one another. You should use
synchronization to ensure that only one process at a time is executing file system code.

• File size is fixed at creation time. The root directory is represented as a file, so the number of files
that may be created is also limited.

• File data is allocated as a single extent, that is, data in a single file must occupy a contiguous
range of sectors on disk. External fragmentation can therefore become a serious problem as a file
system is used over time.

• No subdirectories.

• File names are limited to 14 characters.

• A system crash mid-operation may corrupt the disk in a way that cannot be repaired automatically.
There is no file system repair tool anyway.

• Unix-like semantics for filesys remove() are implemented. That is, if a file is open when it is
removed, its blocks are not deallocated and it may still be accessed by any threads that have it
open, until the last one closes it.

3

CS 162 Fall 2015 Project 2: User Programs

You need to be able to create a simulated disk with a file system partition. The pintos-mkdisk program
provides this functionality. From the userprog/build directory, execute pintos-mkdisk filesys.dsk

--filesys-size=2. This command creates a simulated disk named filesys.dsk that contains a 2 MB
Pintos file system partition. Then format the file system partition by passing -f -q on the kernel’s
command line: pintos -f -q. The -f option causes the file system to be formatted, and -q causes
Pintos to exit as soon as the format is done.

You’ll need a way to copy files in and out of the simulated file system. The pintos -p (“put”) and -g

(“get”) options do this. To copy file into the Pintos file system, use the command pintos -p file -- -q.
(The -- is needed because -p is for the pintos script, not for the simulated kernel.) To copy it to the
Pintos file system under the name newname, add -a newname: pintos -p file -a newname -- -q.
The commands for copying files out of a VM are similar, but substitute -g for -p.

Here’s a summary of how to create a disk with a file system partition, format the file system, copy
the echo program into the new disk, and then run echo, passing argument x. (Argument passing won’t
work until you implemented it.) It assumes that you’ve already built the examples in examples and that
the current directory is userprog/build:

pintos-mkdisk filesys.dsk --filesys-size=2

pintos -f -q

pintos -p ../../examples/echo -a echo -- -q

pintos -q run ’echo x’

The three final steps can actually be combined into a single command:

pintos-mkdisk filesys.dsk --filesys-size=2

pintos -p ../../examples/echo -a echo -- -f -q run ’echo x’

If you don’t want to keep the file system disk around for later use or inspection, you can even combine
all four steps into a single command. The --filesys-size=n option creates a temporary file system
partition approximately n megabytes in size just for the duration of the pintos run. The Pintos automatic
test suite makes extensive use of this syntax:

pintos --filesys-size=2 -p ../../examples/echo -a echo -- -f -q run ’echo x’

You can delete a file from the Pintos file system using the rm file kernel action, e.g. pintos -q rm file.
Also, ls lists the files in the file system and cat file prints a file’s contents to the display.

2.3 How User Programs Work

Pintos can run normal C programs, as long as they fit into memory and use only the system calls you
implement. Notably, malloc() cannot be implemented because none of the system calls required for this
project allow for memory allocation. Pintos also can’t run programs that use floating point operations,
since the kernel doesn’t save and restore the processor’s floating-point unit when switching threads.

The src/examples directory contains a few sample user programs. The Makefile in this directory
compiles the provided examples, and you can edit it to compile your own programs as well. Pintos can
load ELF executables with the loader provided for you in userprog/process.c.

Until you copy a test program to the simulated file system (see Using the File System), Pintos
will be unable to do useful work. You should create a clean reference file system disk and copy that
over whenever you trash your filesys.dsk beyond a useful state, which may happen occasionally while
debugging.

2.4 Virtual Memory Layout

Virtual memory in Pintos is divided into two regions: user virtual memory and kernel virtual mem-
ory. User virtual memory ranges from virtual address 0 up to PHYS BASE, which is defined in

4

CS 162 Fall 2015 Project 2: User Programs

threads/vaddr.h and defaults to 0xC0000000 (3 GB). Kernel virtual memory occupies the rest of the
virtual address space, from PHYS BASE up to 4 GB.

User virtual memory is per-process. When the kernel switches from one process to another, it
also switches user virtual address spaces by changing the processor’s page directory base register (see
pagedir_activate() in userprog/pagedir.c). struct thread contains a pointer to a process’s page table.

Kernel virtual memory is global. It is always mapped the same way, regardless of what user process
or kernel thread is running. In Pintos, kernel virtual memory is mapped one-to-one to physical memory,
starting at PHYS BASE. That is, virtual address PHYS BASE accesses physical address 0, virtual
address PHYS BASE + 0x1234 accesses physical address 0x1234, and so on up to the size of the machine’s
physical memory.

A user program can only access its own user virtual memory. An attempt to access kernel virtual
memory causes a page fault, handled by page_fault() in userprog/exception.c, and the process will be
terminated. Kernel threads can access both kernel virtual memory and, if a user process is running, the
user virtual memory of the running process. However, even in the kernel, an attempt to access memory
at an unmapped user virtual address will cause a page fault.

Typical Memory Layout Conceptually, each process is free to lay out its own user virtual memory
however it chooses. In practice, user virtual memory is laid out like this:

PHYS_BASE +----------------------------------+

| user stack |

| | |

| | |

| V |

| grows downward |

| |

| |

| |

| |

| grows upward |

| ^ |

| | |

| | |

+----------------------------------+

| uninitialized data segment (BSS) |

+----------------------------------+

| initialized data segment |

+----------------------------------+

| code segment |

0x08048000 +----------------------------------+

| |

| |

| |

| |

| |

0 +----------------------------------+

2.5 Accessing User Memory

As part of a system call, the kernel must often access memory through pointers provided by a user
program. The kernel must be very careful about doing so, because the user can pass a null pointer, a

5

CS 162 Fall 2015 Project 2: User Programs

pointer to unmapped virtual memory, or a pointer to kernel virtual address space (above PHYS BASE).
All of these types of invalid pointers must be rejected without harm to the kernel or other running
processes, by terminating the offending process and freeing its resources.

There are at least two reasonable ways to do this correctly:

• verify the validity of a user-provided pointer, then dereference it. If you choose this route, you’ll
want to look at the functions in userprog/pagedir.c and in threads/vaddr.h. This is the simplest
way to handle user memory access.

• check only that a user pointer points below PHYS BASE, then dereference it. An invalid user
pointer will cause a “page fault” that you can handle by modifying the code for page_fault() in
userprog/exception.c. This technique is normally faster because it takes advantage of the proces-
sor’s MMU, so it tends to be used in real kernels (including Linux).

In either case, you need to make sure not to “leak” resources. For example, suppose that your system
call has acquired a lock or allocated memory with malloc(). If you encounter an invalid user pointer
afterward, you must still be sure to release the lock or free the page of memory. If you choose to verify
user pointers before dereferencing them, this should be straightforward. It’s more difficult to handle if
an invalid pointer causes a page fault, because there’s no way to return an error code from a memory
access. Therefore, for those who want to try the latter technique, we’ll provide a little bit of helpful
code:

/* Reads a byte at user virtual address UADDR.

UADDR must be below PHYS_BASE.

Returns the byte value if successful, -1 if a segfault

occurred. */

static int

get_user (const uint8_t *uaddr)

{

int result;

asm ("movl $1f, %0; movzbl %1, %0; 1:"

: "=&a" (result) : "m" (*uaddr));

return result;

}

/* Writes BYTE to user address UDST.

UDST must be below PHYS_BASE.

Returns true if successful, false if a segfault occurred. */

static bool

put_user (uint8_t *udst, uint8_t byte)

{

int error_code;

asm ("movl $1f, %0; movb %b2, %1; 1:"

: "=&a" (error_code), "=m" (*udst) : "q" (byte));

return error_code != -1;

}

Each of these functions assumes that the user address has already been verified to be below PHYS BASE.
They also assume that you’ve modified page_fault() so that a page fault in the kernel merely sets eax
to 0xffffffff and copies its former value into eip.

6

CS 162 Fall 2015 Project 2: User Programs

3 Schedule and Grading

The design you provide during your first week is considered to be a work-in-progress. We’re expecting
that you’ll make some changes to your design during implementation and that you’ll need to change your
tests to accommodate interesting cases you discover while trying to make things work. That said, your
design document needs to be a good-faith effort and reasonably resemble what you build, otherwise you
haven’t really done a design document. You’ll notice that this design doc asks you to think about how
to test your code. We’re trying to get you into the habit of test-driven development, which means your
tests should be good enough to describe how your system should work before you start implementation.

3.1 Initial Design Document (10 points)

Due: October 23 2015 at 11:59 pm A template will be posted on Piazza. Submit your initial design
document by adding a text document in the pintos/src folder to your group Github repo on the master
branch. Schedule a design review with your group’s TA. This document will be graded on correctness.

3.2 Design Review (10 points)

The sign-up sheet will be posted on Piazza. 5 points will be based entirely on whether or not you know
what is in your own design document, and can have an intelligent conversation on why you made the
design decisions you did. We will NOT be double docking on inefficient or bad design. Another 5 points
will be attributed to your ability to answer questions about how you might test certain syscalls and
cover any edge cases not covered by the current set of tests. This will be based on correctness. If the
explanation is dissatisfactory, we will be taking points away.

3.3 Final Code (60 points)

Due: November 6 2015 at 11:59 pm

• (60 points) All of the 78 Pintos userprog tests should pass. Each test is weighted equally in
determining your final score.

3.4 Code Style (10 points)

The floor of this section is 0 points. The following rubric will be used

• (-2 points) Inconsistent or bad coding style: no indentation, cramming many statements into one
line, other issues at TA’s discretion

• (-2 points) Function(s) should be decomposed for clarity. Please don’t exceed 75 lines for a single
function.

• (-2 points) Commented-out code makes real code hard to read

• (-2 points) Cut-and-pasted code should be made into functions.

• (-2 points) Git - committing binaries

• (-1 points) Many missing comments on critical structs, struct members, global or static variables,
or function definitions

• (-1 points) Numerous very long source code lines (> 100 characters)

• (-1 points) Using nested loops instead of provided list functions.

• (-1 points) Git - committing useless stuff

7

CS 162 Fall 2015 Project 2: User Programs

3.5 Final Report (10 points)

Due: November 9 2015 at 11:59 pm
The final report is NOT a rehash of the initial design doc. You must include the following in your

final report:

• the changes you made since your initial design doc and why you made them (feel free to re-iterate
what you discussed with your TA in the design review)

• a reflection on the project - what went well, what could be improved?

Please do note that we are no longer requiring you to tell us who did what. That is what the
anonymous, post-project, peer evaluations will be for.

This section will follow a ternary grading rubric:

• (10 points) - accurately documented the changes made since the initial design doc, provided rea-
soning behind design changes, and put effort into the reflection (i.e. answered the above questions).

• (5 points) - any of the sections are missing, didn’t answer crucial questions, overall minimal effort.

• (0 points) - no submission.

In total, the final report should be around 1-2 pages.

4 Suggested Order of Implementation

We suggest the following order of implementation for the code portion of the project:

• Argument passing (see section Argument Passing). Every user program will page fault immediately
until argument passing is implemented. For now, you may simply wish to change

*esp = PHYS_BASE;

to

*esp = PHYS_BASE - 12;

in setup_stack(). That will work for any test program that doesn’t examine its arguments,
although its name will be printed as (null). Until you implement argument passing, you should
only run programs without passing command-line arguments. Attempting to pass arguments to a
program will include those arguments in the name of the program, which will probably fail.

• User memory access (see section Accessing User Memory). All system calls need to read user
memory. Few system calls need to write to user memory.

• System call infrastructure (see section System Calls). Implement enough code to read the system
call number from the user stack and dispatch to a handler based on it.

• The exit system call. Every user program that finishes in the normal way calls exit. Even a
program that returns from main() calls exit indirectly (see _start() in “lib/user/entry.c”).

• The write system call for writing to fd 1, the system console. All of our test programs write to the
console (the user process version of printf() is implemented this way), so they will all malfunction
until write is available.

8

CS 162 Fall 2015 Project 2: User Programs

• For now, change process_wait() to an infinite loop (one that waits forever). The provided
implementation returns immediately, so Pintos will power off before any processes actually get to
run. You will eventually need to provide a correct implementation.

• After the above are implemented, user processes should work minimally. At the very least, they
can write to the console and exit correctly. You can then refine your implementation so that some
of the tests start to pass.

9

CS 162 Fall 2015 Project 2: User Programs

5 Project Requirements

5.1 Process Termination Messages

Whenever a user process terminates, because it called exit or for any other reason, print the process’s
name and exit code, formatted as if printed by printf ("%s: exit(%d)\n", ...);. The name printed
should be the full name passed to process_execute(), omitting command-line arguments. Do not print
these messages when a kernel thread that is not a user process terminates, or when the halt system call
is invoked. The message is optional when a process fails to load.

Aside from this, don’t print any other messages that Pintos as provided doesn’t already print. You
may find extra messages useful during debugging, but they will confuse the grading scripts and thus
lower your score.

5.2 Argument Passing

Currently, process_execute() does not support passing arguments to new processes. Every user pro-
gram will page fault immediately until argument passing is implemented. Implement argument passing
by extending process_execute() so that instead of simply taking a program file name as its argument,
it divides it into words at spaces. The first word is the program name, the second word is the first argu-
ment, and so on. That is, process_execute("grep foo bar") should run grep passing two arguments
foo and bar.

Within a command line, multiple spaces are equivalent to a single space, so that process_execute("grep
foo bar") is equivalent to our original example. You can impose a reasonable limit on the length of
the command line arguments. For example, you could limit the arguments to those that will fit in a
single page (4 kB). (Do not base your limit on the maximum 128 byte command-line arguments that
the pintos utility can pass to the kernel.)

You can parse argument strings any way you like. If you’re lost, look at strtok_r(), prototyped in
lib/string.h and implemented with thorough comments in lib/string.c. You can find more about it by
looking at the man page (run man strtok_r at the prompt).

See section Program Startup Details, for information on exactly how you need to set up the stack.

5.3 System Calls

To support user programs, the operating system must be able to provide requested resources/functionality
via syscalls, which are handled by the system call handler in userprog/syscall.c. The skeleton implemen-
tation provided “handles” system calls by terminating the process if the exit syscalls was passed in. You
will need to add functionality to the syscall handler to do the following:

1. Retrieve the system call number

2. Retrieve system call arguments

3. Carry out the appropriate actions described below for each syscall:

Implement the following system calls. The prototypes listed are those seen by a user program that
includes “lib/user/syscall.h”. (This header, and all others in “lib/user”, are for use by user programs
only.) System call numbers for each system call are defined in “lib/syscall-nr.h”:

System Call: int practice (int i) A ”fake” system call that doesn’t exist in any modern operating
system. You will implement this to get familiar with the system call interface. This system call
increments the passed in integer argument by 1 and returns it to the user.

10

CS 162 Fall 2015 Project 2: User Programs

System Call: void halt (void) Terminates Pintos by calling shutdown_power_off() (declared in
threads/init.h). This should be seldom used, because you lose some information about possible
deadlock situations, etc.

System Call: void exit (int status) Terminates the current user program, returning status to the
kernel. If the process’s parent waits for it (see below), this is the status that will be returned.
Conventionally, a status of 0 indicates success and nonzero values indicate errors. Every user
program that finishes in the normal way calls exit - even a program that returns from main() calls
exit indirectly (see start() in lib/user/entry.c).

System Call: pid t exec (const char *cmd line) Runs the executable whose name is given in
cmd_line, passing any given arguments, and returns the new process’s program id (pid). Must
return pid -1, which otherwise should not be a valid pid, if the program cannot load or run for
any reason. Thus, the parent process cannot return from the exec until it knows whether the child
process successfully loaded its executable. You must use appropriate synchronization to ensure
this.

System Call: int wait (pid t pid) Waits for a child process pid and retrieves the child’s exit status.

If pid is still alive, waits until it terminates. Then, returns the status that pid passed to exit.
If pid did not call exit(), but was terminated by the kernel (e.g. killed due to an exception),
wait(pid) must return -1. It is perfectly legal for a parent process to wait for child processes
that have already terminated by the time the parent calls wait, but the kernel must still allow the
parent to retrieve its child’s exit status, or learn that the child was terminated by the kernel.

wait must fail and return -1 immediately if any of the following conditions is true:

• pid does not refer to a direct child of the calling process. pid is a direct child of the calling
process if and only if the calling process received pid as a return value from a successful call
to exec.

Note that children are not inherited: if A spawns child B and B spawns child process C, then
A cannot wait for C, even if B is dead. A call to wait(C) by process A must fail. Similarly,
orphaned processes are not assigned to a new parent if their parent process exits before they
do.

• The process that calls wait has already called wait on pid. That is, a process may wait for
any given child at most once.

Processes may spawn any number of children, wait for them in any order, and may even exit
without having waited for some or all of their children. Your design should consider all the ways
in which waits can occur. All of a process’s resources, including its struct thread, must be freed
whether its parent ever waits for it or not, and regardless of whether the child exits before or after
its parent.

You must ensure that Pintos does not terminate until the initial process exits. The supplied
Pintos code tries to do this by calling process_wait() (in userprog/process.c) from main() (in
threads/init.c). We suggest that you implement process_wait() according to the comment at
the top of the function and then implement the wait system call in terms of process_wait().

Warning: Implementing this system call requires considerably more work than any
of the rest.

System Call: bool create (const char *file, unsigned initial size) Creates a new file called file
initially initial size bytes in size. Returns true if successful, false otherwise. Creating a new file
does not open it: opening the new file is a separate operation which would require a open system
call.

11

CS 162 Fall 2015 Project 2: User Programs

System Call: bool remove (const char *file) Deletes the file called file. Returns true if successful,
false otherwise. A file may be removed regardless of whether it is open or closed, and removing an
open file does not close it. See Removing an Open File, for details.

System Call: int open (const char *file) Opens the file called file. Returns a nonnegative integer
handle called a “file descriptor” (fd), or -1 if the file could not be opened.

File descriptors numbered 0 and 1 are reserved for the console: fd 0 (STDIN_FILENO) is standard
input, fd 1 (STDOUT_FILENO) is standard output. The open system call will never return either of
these file descriptors, which are valid as system call arguments only as explicitly described below.

Each process has an independent set of file descriptors. File descriptors are not inherited by child
processes.

When a single file is opened more than once, whether by a single process or different processes, each
open returns a new file descriptor. Different file descriptors for a single file are closed independently
in separate calls to close and they do not share a file position.

System Call: int filesize (int fd) Returns the size, in bytes, of the file open as fd.

System Call: int read (int fd, void *buffer, unsigned size) Reads size bytes from the file open
as fd into buffer. Returns the number of bytes actually read (0 at end of file), or -1 if the file
could not be read (due to a condition other than end of file). Fd 0 reads from the keyboard using
input_getc().

System Call: int write (int fd, const void *buffer, unsigned size) Writes size bytes from buffer
to the open file fd. Returns the number of bytes actually written, which may be less than size if
some bytes could not be written.

Writing past end-of-file would normally extend the file, but file growth is not implemented by the
basic file system. The expected behavior is to write as many bytes as possible up to end-of-file and
return the actual number written, or 0 if no bytes could be written at all.

Fd 1 writes to the console. Your code to write to the console should write all of buffer in one call to
putbuf(), at least as long as size is not bigger than a few hundred bytes. (It is reasonable to break
up larger buffers.) Otherwise, lines of text output by different processes may end up interleaved
on the console, confusing both human readers and our grading scripts.

System Call: void seek (int fd, unsigned position) Changes the next byte to be read or written
in open file fd to position, expressed in bytes from the beginning of the file. (Thus, a position of 0
is the file’s start.)

A seek past the current end of a file is not an error. A later read obtains 0 bytes, indicating end
of file. A later write extends the file, filling any unwritten gap with zeros. (However, in Pintos
files have a fixed length until project 4 is complete, so writes past end of file will return an error.)
These semantics are implemented in the file system and do not require any special effort in system
call implementation.

System Call: unsigned tell (int fd) Returns the position of the next byte to be read or written in
open file fd, expressed in bytes from the beginning of the file.

System Call: void close (int fd) Closes file descriptor fd. Exiting or terminating a process implic-
itly closes all its open file descriptors, as if by calling this function for each one.

To implement syscalls, you need to provide ways to read and write data in user virtual address
space. You need this ability before you can even obtain the system call number, because the system call
number is on the user’s stack in the user’s virtual address space. This can be a bit tricky: what if the user

12

CS 162 Fall 2015 Project 2: User Programs

provides an invalid pointer, a pointer into kernel memory, or a block partially in one of those regions?
You should handle these cases by terminating the user process. We recommend writing and testing this
code before implementing any other system call functionality. See the Accessing User Memory for more
information.

You must synchronize system calls so that any number of user processes can make them at once. In
particular, it is not safe to call into the file system code provided in the filesys directory from multiple
threads at once. Your system call implementation must treat the file system code as a critical section.
Don’t forget that process_execute() also accesses files. For now, we recommend against modifying
code in the filesys directory.

If a system call is passed an invalid argument, acceptable options include returning an error value
(for those calls that return a value), returning an undefined value, or terminating the process.

When you’re done with this part, Pintos should forevermore be bulletproof. Nothing that a user
program can do should ever cause the OS to crash, panic, fail an assertion, or otherwise malfunction.

5.4 Denying Writes to Executables

Add code to deny writes to files in use as executables. Many OSes do this because of the unpredictable
results if a process tried to run code that was in the midst of being changed on disk.

You can use file_deny_write() to prevent writes to an open file. Calling file_allow_write() on
the file will re-enable them (unless the file is denied writes by another opener). Closing a file will also
re-enable writes. Thus, to deny writes to a process’s executable, you must keep it open as long as the
process is still running.

13

CS 162 Fall 2015 Project 2: User Programs

6 References

This section contains a lot of information, some of which is required for understanding the project, and
some of which is optional to read.

6.1 80x86 Calling Convention

This section summarizes important points of the convention used for normal function calls on 32-bit
80x86 implementations of Unix. Some details are omitted for brevity. If you do want all the details,
refer to [SysV-i386].

The calling convention works like this:

1. The caller pushes each of the function’s arguments on the stack one by one, normally using the
PUSH assembly language instruction. Arguments are pushed in right-to-left order.

The stack grows downward: each push decrements the stack pointer, then stores into the location
it now points to, like the C expression *--sp = value.

2. The caller pushes the address of its next instruction (the return address) on the stack and jumps
to the first instruction of the callee. A single 80x86 instruction, CALL, does both.

3. The callee executes. When it takes control, the stack pointer points to the return address, the first
argument is just above it, the second argument is just above the first argument, and so on.

4. If the callee has a return value, it stores it into register EAX.

5. The callee returns by popping the return address from the stack and jumping to the location it
specifies, using the 80x86 RET instruction.

6. The caller pops the arguments off the stack.

Consider a function f() that takes three int arguments. This diagram shows a sample stack frame
as seen by the callee at the beginning of step 3 above, supposing that f() is invoked as f(1, 2, 3). The
initial stack address is arbitrary:

+----------------+

0xbffffe7c | 3 |

0xbffffe78 | 2 |

0xbffffe74 | 1 |

stack pointer --> 0xbffffe70 | return address |

+----------------+

6.2 Program Startup Details

The Pintos C library for user programs designates _start(), in lib/user/entry.c, as the entry point for
user programs. This function is a wrapper around main() that calls exit() if main() returns:

void

_start (int argc, char *argv[])

{

exit (main (argc, argv));

}

14

http://cs162.eecs.berkeley.edu/pintos_13.html

CS 162 Fall 2015 Project 2: User Programs

The kernel must put the arguments for the initial function on the stack before it allows the user
program to begin executing. The arguments are passed in the same way as the normal calling convention
(see section 80x86 Calling Convention).

Consider how to handle arguments for the following example command: /bin/ls -l foo bar. First,
break the command into words: /bin/ls, -l, foo, bar. Place the words at the top of the stack. Order
doesn’t matter, because they will be referenced through pointers.

Then, push the address of each string plus a null pointer sentinel, on the stack, in right-to-left order.
These are the elements of argv. The null pointer sentinel ensures that argv[argc] is a null pointer, as
required by the C standard. The order ensures that argv[0] is at the lowest virtual address. Word-
aligned accesses are faster than unaligned accesses, so for best performance round the stack pointer down
to a multiple of 4 before the first push.

Then, push argv (the address of argv[0]) and argc, in that order. Finally, push a fake “return
address”: although the entry function will never return, its stack frame must have the same structure
as any other.

The table below shows the state of the stack and the relevant registers right before the beginning of
the user program, assuming PHYS BASE is 0xc0000000:

Address Name Data Type
0xbffffffc argv[3][...] bar\0 char[4]

0xbffffff8 argv[2][...] foo\0 char[4]

0xbffffff5 argv[1][...] -l\0 char[3]

0xbfffffed argv[0][...] /bin/ls\0 char[8]

0xbfffffec word-align 0 uint8_t

0xbfffffe8 argv[4] 0 char *

0xbfffffe4 argv[3] 0xbffffffc char *

0xbfffffe0 argv[2] 0xbffffff8 char *

0xbfffffdc argv[1] 0xbffffff5 char *

0xbfffffd8 argv[0] 0xbfffffed char *

0xbfffffd4 argv 0xbfffffd8 char **

0xbfffffd0 argc 4 int

0xbfffffcc return address 0 void (*) ()

In this example, the stack pointer would be initialized to 0xbfffffcc.
As shown above, your code should start the stack at the very top of the user virtual address space,

in the page just below virtual address PHYS_BASE (defined in threads/vaddr.h).
You may find the non-standard hex_dump() function, declared in <stdio.h>, useful for debugging

your argument passing code. Here’s what it would show in the above example:

bfffffc0 00 00 00 00 ||

bfffffd0 04 00 00 00 d8 ff ff bf-ed ff ff bf f5 ff ff bf |................|

bfffffe0 f8 ff ff bf fc ff ff bf-00 00 00 00 00 2f 62 69 |............./bi|

bffffff0 6e 2f 6c 73 00 2d 6c 00-66 6f 6f 00 62 61 72 00 |n/ls.-l.foo.bar.|

6.3 System Call Details

The first project already dealt with one way that the operating system can regain control from a user
program: interrupts from timers and I/O devices. These are “external” interrupts, because they are
caused by entities outside the CPU. The operating system also deals with software exceptions, which
are events that occur in program code. These can be errors such as a page fault or division by zero.
Exceptions are also the means by which a user program can request services (“system calls”) from the
operating system.

15

CS 162 Fall 2015 Project 2: User Programs

In the 80x86 architecture, the int instruction is the most commonly used means for invoking system
calls. This instruction is handled in the same way as other software exceptions. In Pintos, user programs
invoke int $0x30 to make a system call. The system call number and any additional arguments are
expected to be pushed on the stack in the normal fashion before invoking the interrupt (see section
80x86 Calling Convention).

Thus, when the system call handler syscall_handler() gets control, the system call number is in
the 32-bit word at the caller’s stack pointer, the first argument is in the 32-bit word at the next higher
address, and so on. The caller’s stack pointer is accessible to syscall_handler() as the esp member of
the struct intr_frame passed to it. (struct intr_frame is on the kernel stack.)

The 80x86 convention for function return values is to place them in the EAX register. System calls
that return a value can do so by modifying the eax member of struct intr_frame.

You should try to avoid writing large amounts of repetitive code for implementing system calls. Each
system call argument, whether an integer or a pointer, takes up 4 bytes on the stack. You should be
able to take advantage of this to avoid writing much near-identical code for retrieving each system call’s
arguments from the stack.

7 FAQ

The following questions have been frequently asked by Stanfurd students in their operating systems
class, and even though we know you’re 1000 times more intelligent, we’ve included them here as reference.

How much code will I need to write? Here’s a summary of our reference solution, produced by
the diffstat program. The final row gives total lines inserted and deleted; a changed line counts as
both an insertion and a deletion.

The reference solution represents just one possible solution. Many other solutions are also possible
and many of those differ greatly from the reference solution. Some excellent solutions may not
modify all the files modified by the reference solution, and some may modify files not modified by
the reference solution.

threads/thread.c | 13

threads/thread.h | 26 +

userprog/exception.c | 8

userprog/process.c | 247 ++++++++++++++--

userprog/syscall.c | 468 ++++++++++++++++++++++++++++++-

userprog/syscall.h | 1

6 files changed, 725 insertions(+), 38 deletions(-)

The kernel always panics when I run pintos -p file -- -q. Did you format the file system
(with pintos -f)?

Is your file name too long? The file system limits file names to 14 characters. A command like
pintos -p ../../examples/echo -- -q will exceed the limit. Use
pintos -p ../../examples/echo -a echo -- -q to put the file under the name echo instead.

Is the file system full?

Does the file system already contain 16 files? The base Pintos file system has a 16-file limit.

The file system may be so fragmented that there’s not enough contiguous space for your file.

When I run pintos -p ../file --, file isn’t copied. Files are written under the name you refer
to them, by default, so in this case the file copied in would be named ../file. You probably want
to run pintos -p ../file -a file -- instead.

16

CS 162 Fall 2015 Project 2: User Programs

You can list the files in your file system with pintos -q ls.

All my user programs die with page faults. This will happen if you haven’t implemented argu-
ment passing (or haven’t done so correctly). The basic C library for user programs tries to read
argc and argv off the stack. If the stack isn’t properly set up, this causes a page fault.

All my user programs die with system call! You’ll have to implement system calls before you see
anything else. Every reasonable program tries to make at least one system call (exit()) and most
programs make more than that. Notably, printf() invokes the write system call. The default
system call handler just prints system call! and terminates the program. Until then, you can
use hex_dump() to convince yourself that argument passing is implemented correctly (see section
Program Startup Details).

How can I disassemble user programs? The objdump (80x86) or i386-elf-objdump (SPARC) util-
ity can disassemble entire user programs or object files. Invoke it as objdump -d file. You can use
GDB’s disassemble command to disassemble individual functions (see section E.5 GDB).

Why do many C include files not work in Pintos programs?

Can I use libfoo in my Pintos programs? The C library we provide is very limited. It does not
include many of the features that are expected of a real operating system’s C library. The C library
must be built specifically for the operating system (and architecture), since it must make system
calls for I/O and memory allocation. (Not all functions do, of course, but usually the library is
compiled as a unit.)

The chances are good that the library you want uses parts of the C library that Pintos doesn’t
implement. It will probably take at least some porting effort to make it work under Pintos.
Notably, the Pintos user program C library does not have a malloc() implementation.

How do I compile new user programs? Modify src/examples/Makefile, then run make.

Can I run user programs under a debugger? Yes, with some limitations. See section E.5 GDB.

What’s the difference between tid t and pid t? A tid_t identifies a kernel thread, which may
have a user process running in it (if created with process_execute()) or not (if created with
thread_create()). It is a data type used only in the kernel.

A pid_t identifies a user process. It is used by user processes and the kernel in the exec and wait
system calls.

You can choose whatever suitable types you like for tid_t and pid_t. By default, they’re both
int. You can make them a one-to-one mapping, so that the same values in both identify the same
process, or you can use a more complex mapping. It’s up to you.

7.1 Argument Passing FAQ

Isn’t the top of stack in kernel virtual memory? The top of stack is at PHYS_BASE, typically
0xc0000000, which is also where kernel virtual memory starts. But before the processor pushes
data on the stack, it decrements the stack pointer. Thus, the first (4-byte) value pushed on the
stack will be at address 0xbffffffc.

Is PHYS BASE fixed? No. You should be able to support PHYS_BASE values that are any multiple
of 0x10000000 from 0x80000000 to 0xf0000000, simply via recompilation.

17

http://cs162.eecs.berkeley.edu/pintos_10.html
http://cs162.eecs.berkeley.edu/pintos_10.html

CS 162 Fall 2015 Project 2: User Programs

7.2 System Calls FAQ

Can I just cast a struct file * to get a file descriptor?

Can I just cast a struct thread * to a pid t? You will have to make these design decisions your-
self. Most operating systems do distinguish between file descriptors (or pids) and the addresses of
their kernel data structures. You might want to give some thought as to why they do so before
committing yourself.

Can I set a maximum number of open files per process? It is better not to set an arbitrary
limit. You may impose a limit of 128 open files per process, if necessary.

What happens when an open file is removed? You should implement the standard Unix seman-
tics for files. That is, when a file is removed any process which has a file descriptor for that file
may continue to use that descriptor. This means that they can read and write from the file. The
file will not have a name, and no other processes will be able to open it, but it will continue to
exist until all file descriptors referring to the file are closed or the machine shuts down.

How can I run user programs that need more than 4 kB stack space? You may modify the
stack setup code to allocate more than one page of stack space for each process. This is not required
in this project.

What should happen if an exec fails midway through loading? exec should return -1 if the
child process fails to load for any reason. This includes the case where the load fails part of
the way through the process (e.g. where it runs out of memory in the multi-oom test). Therefore,
the parent process cannot return from the exec system call until it is established whether the load
was successful or not. The child must communicate this information to its parent using appropriate
synchronization, such as a semaphore, to ensure that the information is communicated without
race conditions.

18

	Overview
	Background
	Source Files
	Using the File System
	How User Programs Work
	Virtual Memory Layout
	Accessing User Memory

	Schedule and Grading
	Initial Design Document (10 points)
	Design Review (10 points)
	Final Code (60 points)
	Code Style (10 points)
	Final Report (10 points)

	Suggested Order of Implementation
	Project Requirements
	Process Termination Messages
	Argument Passing
	System Calls
	Denying Writes to Executables

	References
	80x86 Calling Convention
	Program Startup Details
	System Call Details

	FAQ
	Argument Passing FAQ
	System Calls FAQ

