
CS162
Operating Systems and
Systems Programming

Lecture 6

Concurrency (Continued),
Synchronization (Start)

September 16th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 6.29/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Lifecycle of a Process

• As a process executes, it changes state:
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

Lec 6.39/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Use of Threads
• Version of program with Threads (loose syntax):

main() {
ThreadFork(ComputePI(“pi.txt”));
ThreadFork(PrintClassList(“clist.text”));

}

• What does “ThreadFork()” do?
– Start independent thread running given procedure

• What is the behavior here?
– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time
CPU1 CPU2

Lec 6.49/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Multithreaded stack switching

• Consider the following
code blocks:

proc A() {
B();

}
proc B() {

while(TRUE) {
yield();

}
}

• Suppose we have 2
threads:
– Threads S and T

Thread S

St
ac

k
gr

ow
th

A

B(while)
yield

run_new_thread
switch

Thread T

A

B(while)
yield

run_new_thread
switch

Lec 6.59/16/15 Kubiatowicz CS162 ©UCB Fall 2015

What happens when thread blocks on I/O?

• What happens when a thread requests a block of
data from the file system?
– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

run_new_thread

kernel_read
Trap to OS

switch

Stack growth

Lec 6.69/16/15 Kubiatowicz CS162 ©UCB Fall 2015

External Events

• What happens if thread never does any I/O,
never waits, and never yields control?
– Could the ComputePI program grab all resources
and never release the processor?
» What if it didn’t print to console?

– Must find way that dispatcher can regain control!
• Answer: Utilize External Events

– Interrupts: signals from hardware or software
that stop the running code and jump to kernel

– Timer: like an alarm clock that goes off every
some many milliseconds

• If we make sure that external events occur
frequently enough, can ensure dispatcher runs

Lec 6.79/16/15 Kubiatowicz CS162 ©UCB Fall 2015

add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

Raise priority
Reenable All Ints
Save registers
Dispatch to Handler

Transfer Network
Packet from hardware
to Kernel Buffers

Restore registers
Clear current Int
Disable All Ints
Restore priority
RTI

“I
nt

er
ru

pt
 H

an
dl
er

”
Example: Network Interrupt

• An interrupt is a hardware-invoked context switch
– No separate step to choose what to run next
– Always run the interrupt handler immediately

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

Ex
te

rn
al
 I

nt
er

ru
pt

Pipeline Flush

Lec 6.89/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Use of Timer Interrupt to Return Control

• Solution to our dispatcher problem
– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
TimerInterrupt() {

DoPeriodicHouseKeeping();
run_new_thread();

}
• I/O interrupt: same as timer interrupt except that
DoHousekeeping() replaced by ServiceIO().

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch

Stack growth

Lec 6.99/16/15 Kubiatowicz CS162 ©UCB Fall 2015

ThreadFork(): Create a New Thread

• ThreadFork() is a user-level procedure that
creates a new thread and places it on ready queue
– We called this CreateThread() earlier

• Arguments to ThreadFork()
– Pointer to application routine (fcnPtr)
– Pointer to array of arguments (fcnArgPtr)
– Size of stack to allocate

• Implementation
– Sanity Check arguments
– Enter Kernel-mode and Sanity Check arguments again
– Allocate new Stack and TCB
– Initialize TCB and place on ready list (Runnable).

Lec 6.109/16/15 Kubiatowicz CS162 ©UCB Fall 2015

How do we initialize TCB and Stack?
• Initialize Register fields of TCB

– Stack pointer made to point at stack
– PC return address OS (asm) routine ThreadRoot()
– Two arg registers (a0 and a1) initialized to fcnPtr and
fcnArgPtr, respectively

• Initialize stack data?
– No. Important part of stack frame is in registers (ra)
– Think of stack frame as just before body of
ThreadRoot() really gets started

ThreadRoot stub

Initial Stack

Stack growth

Lec 6.119/16/15 Kubiatowicz CS162 ©UCB Fall 2015

How does Thread get started?

• Eventually, run_new_thread() will select this TCB
and return into beginning of ThreadRoot()
– This really starts the new thread

St
ac

k
gr

ow
th

A

B(while)
yield
run_new_thread
switch

ThreadRoot

Other Thread

ThreadRoot stub

New Thread

Lec 6.129/16/15 Kubiatowicz CS162 ©UCB Fall 2015

What does ThreadRoot() look like?
• ThreadRoot() is the root for the thread routine:

ThreadRoot() {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

}
• Startup Housekeeping

– Includes things like recording
start time of thread

– Other Statistics
• Stack will grow and shrink

with execution of thread
• Final return from thread returns into ThreadRoot()

which calls ThreadFinish()
– ThreadFinish() wake up sleeping threads

ThreadRoot

Running Stack

Stack growth

Thread Code

Lec 6.139/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Administrivia

• Group formation: should be completed by tonight!
– Will handle stragglers tonight

• Section assignment
– Form due tonight by midnight!
– We will try to do final section assignment tomorrow

• Your section is your home for CS162
– The TA needs to get to know you to judge participation
– All design reviews will be conducted by your TA
– You can attend alternate section by same TA, but try to keep

the amount of such cross-section movement to a minimum
• Project #1: Released!

– Technically starts today
– Autograder should be up by tomorrow.

• HW1 due next Monday
– Must be submitted via the recommended “push” mechanism

through git

Lec 6.149/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Famous Quote WRT Scheduling: Dennis Richie
Dennis Richie,
Unix V6, slp.c:

“If the new process paused because it was swapped out, set
the stack level to the last call to savu(u_ssav). This means
that the return which is executed immediately after the call
to aretu actually returns from the last routine which did the
savu.”

“You are not expected to understand this.”

Source: Dennis Ritchie, Unix V6 slp.c (context-switching
code) as per The Unix Heritage Society(tuhs.org); gif by
Eddie Koehler.

Included by Ali R. Butt in CS3204 from Virginia Tech

Lec 6.159/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Multithreaded Processes

• Process Control Block (PCBs) points to multiple
Thread Control Blocks (TCBs):

• Switching threads within a block is a simple
thread switch

• Switching threads across blocks requires changes
to memory and I/O address tables.

Lec 6.169/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Examples multithreaded programs

• Embedded systems
– Elevators, Planes, Medical systems, Wristwatches
– Single Program, concurrent operations

• Most modern OS kernels
– Internally concurrent because have to deal with
concurrent requests by multiple users

– But no protection needed within kernel

• Database Servers
– Access to shared data by many concurrent users
– Also background utility processing must be done

Lec 6.179/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Example multithreaded programs (con’t)

• Network Servers
– Concurrent requests from network
– Again, single program, multiple concurrent
operations

– File server, Web server, and airline reservation
systems

• Parallel Programming (More than one physical CPU)
– Split program into multiple threads for parallelism
– This is called Multiprocessing

• Some multiprocessors are actually uniprogrammed:
– Multiple threads in one address space but one
program at a time

Lec 6.189/16/15 Kubiatowicz CS162 ©UCB Fall 2015

A typical use case

Client Browser
- process for each tab
- thread to render page
- GET in separate thread
- multiple outstanding GETs
- as they complete, render
portion

Web Server
- fork process for each client

connection
- thread to get request and issue

response
- fork threads to read data, access

DB, etc
- join and respond

Lec 6.199/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Some Numbers

• Frequency of performing context switches: 10-100ms
• Context switch time in Linux: 3-4 secs (Current

Intel i7 & E5).
– Thread switching faster than process switching (100 ns).
– But switching across cores about 2x more expensive than
within-core switching.

• Context switch time increases sharply with the size of
the working set*, and can increase 100x or more.

* The working set is the subset of memory used by the
process in a time window.

• Moral: Context switching depends mostly on cache
limits and the process or thread’s hunger for memory.

Lec 6.209/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Some Numbers

• Many process are multi-threaded, so thread context
switches may be either within-process or across-
processes.

Lec 6.219/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Kernel Use Cases

• Thread for each user process
• Thread for sequence of steps in processing I/O
• Threads for device drivers
• …

Lec 6.229/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Putting it together: Process

Memory

I/O State
(e.g., file,
socket
contexts)

CPU state
(PC, SP,
registers..)

Sequential
stream of
instructions

A(int tmp) {
if (tmp<2)

B();
printf(tmp);

}
B() {

C();
}
C() {
A(2);

}
A(1);
…

(Unix) Process

Resources
Stack

Stored in OS

Lec 6.239/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Putting it together: Processes

…

Process 1 Process 2 Process N

CPU
sched.

OS

CPU
(1 core)

1 process
at a time

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

• Switch overhead: high
– Kernel entry: low (ish)
– CPU state: low
– Memory/IO state: high

• Process creation: high
• Protection

– CPU: yes
– Memory/IO: yes

• Sharing overhead: high
(involves at least a
context switch)

Lec 6.249/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Putting it together: Threads

Process 1

CPU
sched.

OS

CPU
(1 core)

1 thread
at a time

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead: medium
– Kernel entry: low(ish)
– CPU state: low

• Thread creation: medium
• Protection

– CPU: yes
– Memory/IO: No

• Sharing overhead:
low(ish) (thread switch
overhead low)

CPU
state

CPU
state

CPU
state

CPU
state

Lec 6.259/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Kernel versus User-Mode threads
• We have been talking about Kernel threads

– Native threads supported directly by the kernel
– Every thread can run or block independently
– One process may have several threads waiting on different

things
• Downside of kernel threads: a bit expensive

– Need to make a crossing into kernel mode to schedule
• Lighter weight option: User Threads

– User program provides scheduler and thread package
– May have several user threads per kernel thread
– User threads may be scheduled non-premptively relative to

each other (only switch on yield())
– Cheap

• Downside of user threads:
– When one thread blocks on I/O, all threads block
– Kernel cannot adjust scheduling among all threads
– Option: Scheduler Activations

» Have kernel inform user level when thread blocks…

Lec 6.269/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Some Threading Models

Simple One-to-One
Threading Model

Many-to-One Many-to-Many

Lec 6.279/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Threads in a Process

• Threads are useful at user-level
– Parallelism, hide I/O latency, interactivity

• Option A (early Java): user-level library, within a single-
threaded process
– Library does thread context switch
– Kernel time slices between processes, e.g., on system call

I/O
• Option B (SunOS, Linux/Unix variants): green Threads

– User-level library does thread multiplexing
• Option C (Windows): scheduler activations

– Kernel allocates processors to user-level library
– Thread library implements context switch
– System call I/O that blocks triggers upcall

• Option D (Linux, MacOS, Windows): use kernel threads
– System calls for thread fork, join, exit (and lock, unlock,…)
– Kernel does context switching
– Simple, but a lot of transitions between user and kernel

mode

Lec 6.289/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Putting it together: Multi-Cores
Process 1

CPU
sched.

OS

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead: low
(only CPU state)

• Thread creation: low
• Protection

– CPU: yes
– Memory/IO: No

• Sharing overhead:
low (thread switch
overhead low, may
not need to switch
at all!)

core 1 Core 2 Core 3 Core 4 CPU

4 threads at
a time

CPU
state

CPU
state

CPU
state

CPU
state

Lec 6.299/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Putting it together: Hyper-Threading
Process 1

CPU
sched.

OS

IO
state

Mem
.

…

threads
Process N

IO
state

Mem
.

…

threads

…

• Switch overhead
between hardware-
threads: very-low
(done in hardware)

• Contention for
ALUs/FPUs may
hurt performance

core 1

CPU

core 2 core 3 core 4

8 threads at
a time

hardware-threads
(hyperthreading)

CPU
state

CPU
state

CPU
state

CPU
state

Lec 6.309/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Supporting 1T and MT Processes

U
se

r
Sy

st
em ***

Lec 6.319/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Supporting 1T and MT Processes

U
se

r
Sy

st
em *** ***

Lec 6.329/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Classification

• Real operating systems have either
– One or many address spaces
– One or many threads per address space

• Did Windows 95/98/ME have real memory protection?
– No: Users could overwrite process tables/System DLLs

Mach, OS/2, Linux
Windows 9x???
Win NT to XP,

Solaris, HP-UX, OS X

Embedded systems
(Geoworks, VxWorks,

JavaOS,etc)
JavaOS, Pilot(PC)

Traditional UNIXMS/DOS, early
Macintosh

Many

One

threads
Per AS:

ManyOne

#
 o

f
ad

dr

sp
ac

es
:

Lec 6.339/16/15 Kubiatowicz CS162 ©UCB Fall 2015

You are here… why?
• Processes

– Thread(s) + address space
• Address Space
• Protection
• Dual Mode
• Interrupt handlers

– Interrupts, exceptions, syscall
• File System

– Integrates processes, users, cwd, protection
• Key Layers: OS Lib, Syscall, Subsystem, Driver

– User handler on OS descriptors
• Process control

– fork, wait, signal, exec
• Communication through sockets

– Integrates processes, protection, file ops,
concurrency

• Client-Server Protocol
• Concurrent Execution: Threads
• Scheduling

Lec 6.349/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Perspective on ‘groking’ 162

• Historically, OS was the most complex software
– Concurrency, synchronization, processes, devices,

communication, …
– Core systems concepts developed there

• Today, many “applications” are complex software systems too
– These concepts appear there
– But they are realized out of the capabilities provided by the

operating system
• Seek to understand how these capabilities are implemented

upon the basic hardware.
• See concepts multiple times from multiple perspectives

– Lecture provides conceptual framework, integration, examples,
…

– Book provides a reference with some additional detail
– Lots of other resources that you need to learn to use

» man pages, google, reference manuals, includes (.h)
• Section, Homework and Project provides detail down to the

actual code AND direct hands-on experience

Lec 6.359/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Operating System as Design

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (10/100/1000)
802.11 a/b/g/n

SCSI IDE
Graphics
PCI

Hardware

Software

System
User

OS

Application / Service

Lec 6.369/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Starting today: Pintos Projects

• Groups almost all
formed

• Work as one!
• 10x homework
• P1: threads &

scheduler
• P2: user process
• P3: file system

…

Process 1 Process 2 Process N

CPU
sched.

PintOS

CPU
(emulated)

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

CPU
state

IO
state

Mem
.

Lec 6.379/16/15 Kubiatowicz CS162 ©UCB Fall 2015

MT Kernel 1T Process ala Pintos/x86

• Each user process/thread associated with a kernel thread, described by
a 4kb Page object containing TCB and kernel stack for the kernel thread

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

magic #

tid
status
stack

priority
list

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Lec 6.389/16/15 Kubiatowicz CS162 ©UCB Fall 2015

In User thread, w/ k-thread waiting

• x86 proc holds interrupt SP high system level
• During user thread exec, associate kernel thread is “standing by”

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

SP
K SP

IP

PL: 3

Lec 6.399/16/15 Kubiatowicz CS162 ©UCB Fall 2015

d
status
stack
priority
list

magic #

In Kernel thread

• Kernel threads execute with small stack in thread struct
• Scheduler selects among ready kernel and user threads

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

Lec 6.409/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Thread Switch (switch.S)

• switch_threads: save regs on current small stack, change SP,
return from destination threads call to switch_threads

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

Lec 6.419/16/15 Kubiatowicz CS162 ©UCB Fall 2015

d
status
stack
priority
list

magic #

Switch to Kernel Thread for Process

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

Lec 6.429/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Kernel->User

• iret restores user stack and PL

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 3

Lec 6.439/16/15 Kubiatowicz CS162 ©UCB Fall 2015

d
status
stack
priority
list

magic #

User->Kernel

• Mechanism to resume k-thread goes through interrupt
vector

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

tid
status
stack

priority
list

magic #

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 0

Lec 6.449/16/15 Kubiatowicz CS162 ©UCB Fall 2015

User->Kernel via interrupt vector

• Interrupt transfers control through the IV (IDT in x86)
• iret restores user stack and PL

Kernel

User

User
stack

code

data

heap

User
stack

code

data

heap ***

code

data

d
status
stack
priority
list

magic #

d
status
stack
priority
list

magic #

Proc Regs

d
status
stack
priority
list

magic #

SP
K SP

IP

PL: 3

0

255
intr vector

Lec 6.459/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Pintos Interrupt Processing

0

255
Hardware
interrupt
vector

stubs

push 0x20 (int #)
jmp intr_entry
push 0x20 (int #)
jmp intr_entry

intr_entry:
save regs as frame
set up kernel env.
call intr_handler

intr_exit:
restore regs
iret

Wrapper for
generic handler

0x20

stubs.S

Lec 6.469/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: cs61C THE STACK FRAME

CS61C L10 Introduction to MIPS : Procedures I (18) Garcia, Spring 2014 © UCB

Basic Structure of a Function

entry_label:
addi $sp,$sp, -framesize
sw $ra, framesize-4($sp) # save $ra
save other regs if need be

...

restore other regs if need be
lw $ra, framesize-4($sp) # restore $ra
addi $sp,$sp, framesize
jr $ra

Epilogue

Prologue

Body (call other functions…)

ra

memory

CS61C L11 Introduction to MIPS : Procedures II & Logical Ops (3) Garcia, Spring 2014 © UCB

The Stack (review)
 Stack frame includes:
 Return “instruction” address
 Parameters
 Space for other local variables
 Stack frames contiguous

blocks of memory; stack pointer tells
where bottom of stack frame is

 When procedure ends, stack frame
is tossed off the stack; frees
memory for future stack frames frame

frame

frame

frame

$sp

0xFFFFFFFF

Lec 6.479/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Pintos Interrupt Processing

0

255

Hardware
interrupt
vector

stubs

push 0x20 (int #)
jmp intr_entry
push 0x20 (int #)
jmp intr_entry

intr_entry:
save regs as frame
set up kernel env.
call intr_handler

intr_exit:
restore regs
iret

Wrapper for
generic handler

Intr_handler(*frame)
- classify
- dispatch
- ack IRQ
- maybe thread yield

0x20

0

Pintos
intr_handlers

0x20

timer_intr(*frame)
tick++
thread_tick()

timer.c

interrupt.c

stubs.S

Lec 6.489/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Timer may trigger thread switch

• thread_tick
– Updates thread counters
– If quanta exhausted, sets yield flag

• thread_yield
– On path to rtn from interrupt
– Sets current thread back to READY
– Pushes it back on ready_list
– Calls schedule to select next thread to run upon iret

• Schedule
– Selects next thread to run
– Calls switch_threads to change regs to point to stack

for thread to resume
– Sets its status to RUNNING
– If user thread, activates the process
– Returns back to intr_handler

Lec 6.499/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Pintos Return from Processing

Hardware
interrupt
vector thread_yield()

- schedule

schedule()
- switch

Resume Some Thread

0

255
Hardware
interrupt
vector

stubs

push 0x20 (int #)
jmp intr_entry
push 0x20 (int #)
jmp intr_entry

intr_entry:
save regs as frame
set up kernel env.
call intr_handler

intr_exit:
restore regs
iret

Wrapper for
generic handler

0x20

stubs.S

0

Pintos
intr_handlers

0x20

timer_intr(*frame)
tick++
thread_tick()

timer.c

Intr_handler(*frame)
- classify
- dispatch
- ack IRQ
- maybe thread yield

interrupt.c

Lec 6.509/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Thread Abstraction

• Infinite number of processors
• Threads execute with variable speed

– Programs must be designed to work with any schedule

Lec 6.519/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Multiprocessing vs Multiprogramming
• Remember Definitions:

– Multiprocessing Multiple CPUs
– Multiprogramming Multiple Jobs or Processes
– Multithreading Multiple threads per Process

• What does it mean to run two threads “concurrently”?
– Scheduler is free to run threads in any order and
interleaving: FIFO, Random, …

– Dispatcher can choose to run each thread to completion
or time-slice in big chunks or small chunks

A B C

BA ACB C BMultiprogramming

A
B
C

Multiprocessing

Lec 6.529/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Correctness for systems with concurrent threads
• If dispatcher can schedule threads in any way,

programs must work under all circumstances
– Can you test for this?
– How can you know if your program works?

• Independent Threads:
– No state shared with other threads
– Deterministic Input state determines results
– Reproducible Can recreate Starting Conditions, I/O
– Scheduling order doesn’t matter (if switch() works!!!)

• Cooperating Threads:
– Shared State between multiple threads
– Non-deterministic
– Non-reproducible

• Non-deterministic and Non-reproducible means that
bugs can be intermittent
– Sometimes called “Heisenbugs”

Lec 6.539/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Interactions Complicate Debugging
• Is any program truly independent?

– Every process shares the file system, OS resources,
network, etc

– Extreme example: buggy device driver causes thread A to
crash “independent thread” B

• You probably don’t realize how much you depend on
reproducibility:
– Example: Evil C compiler

» Modifies files behind your back by inserting errors into C
program unless you insert debugging code

– Example: Debugging statements can overrun stack
• Non-deterministic errors are really difficult to find

– Example: Memory layout of kernel+user programs
» depends on scheduling, which depends on timer/other things
» Original UNIX had a bunch of non-deterministic errors

– Example: Something which does interesting I/O
» User typing of letters used to help generate secure keys

Lec 6.549/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Why allow cooperating threads?

• People cooperate; computers help/enhance people’s lives,
so computers must cooperate
– By analogy, the non-reproducibility/non-determinism of
people is a notable problem for “carefully laid plans”

• Advantage 1: Share resources
– One computer, many users
– One bank balance, many ATMs

» What if ATMs were only updated at night?
– Embedded systems (robot control: coordinate arm & hand)

• Advantage 2: Speedup
– Overlap I/O and computation

» Many different file systems do read-ahead
– Multiprocessors – chop up program into parallel pieces

• Advantage 3: Modularity
– More important than you might think
– Chop large problem up into simpler pieces

» To compile, for instance, gcc calls cpp | cc1 | cc2 | as | ld
» Makes system easier to extend

Lec 6.559/16/15 Kubiatowicz CS162 ©UCB Fall 2015

High-level Example: Web Server

• Server must handle many requests
• Non-cooperating version:

serverLoop() {
con = AcceptCon();
ProcessFork(ServiceWebPage(),con);

}
• What are some disadvantages of this technique?

Lec 6.569/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Threaded Web Server
• Now, use a single process
• Multithreaded (cooperating) version:

serverLoop() {
connection = AcceptCon();
ThreadFork(ServiceWebPage(),connection);

}
• Looks almost the same, but has many advantages:

– Can share file caches kept in memory, results of CGI
scripts, other things

– Threads are much cheaper to create than processes, so
this has a lower per-request overhead

• Question: would a user-level (say one-to-many)
thread package make sense here?
– When one request blocks on disk, all block…

• What about Denial of Service attacks or digg /
Slash-dot effects?

Lec 6.579/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Thread Pools
• Problem with previous version: Unbounded Threads

– When web-site becomes too popular – throughput sinks
• Instead, allocate a bounded “pool” of worker threads,

representing the maximum level of multiprogramming

master() {
allocThreads(worker,queue);
while(TRUE) {

con=AcceptCon();
Enqueue(queue,con);
wakeUp(queue);

}
}

worker(queue) {
while(TRUE) {

con=Dequeue(queue);
if (con==null)

sleepOn(queue);
else

ServiceWebPage(con);
}

}

Master
Thread

Thread Pool

queue

Lec 6.589/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Summary (1 of 2)
• Processes have two parts

– Threads (Concurrency)
– Address Spaces (Protection)

• Concurrency accomplished by multiplexing CPU Time:
– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(),
I/O operations) or involuntary (timer, other interrupts)

• Protection accomplished restricting access:
– Memory mapping isolates processes from each other
– Dual-mode for isolating I/O, other resources

• Various Textbooks talk about processes
– When this concerns concurrency, really talking about
thread portion of a process

– When this concerns protection, talking about address
space portion of a process

Lec 6.599/16/15 Kubiatowicz CS162 ©UCB Fall 2015

Summary (2 or 2)

• Concurrent threads are a very useful abstraction
– Allow transparent overlapping of computation and I/O
– Allow use of parallel processing when available

• Concurrent threads introduce problems when accessing
shared data
– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become
completely inconsistent

• Important concept: Atomic Operations
– An operation that runs to completion or not at all
– These are the primitives on which to construct various
synchronization primitives

• Showed how to protect a critical section with only
atomic load and store pretty complex!

