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Recall: Private Key Cryptography
• Private Key (Symmetric) Encryption:

– Single key used for both encryption and decryption
• Plaintext: Unencrypted Version of message
• Ciphertext: Encrypted Version of message

• Important properties
– Can’t derive plain text from ciphertext (decode) without 
access to key

– Can’t derive key from plain text and ciphertext
– As long as password stays secret, get both secrecy and 
authentication

• Symmetric Key Algorithms: DES, Triple-DES, AES 

Insecure
Transmission
(ciphertext)

Decrypt

Key

Encrypt

Key

Plaintext

PlaintextSPY CIA
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• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired 
by anyone/used by anyone

– Only person with private key can decrypt message
• What about authentication?

– Use combination of private and public key
– AliceBob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• But: how does Alice know that it was Bob who sent 
her Bpublic?  And vice versa…

– Need a certificate authority to sign keys!

Bprivate
Aprivate

Recall: Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel
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Non-Repudiation: RSA Crypto & Signatures

• Suppose Alice has published public key KE
• If she wishes to prove who she is, she can send a 

message x encrypted with her private key KD (i.e., 
she sends E(x, KD))

– Anyone knowing Alice’s public key KE can recover x, 
verify that Alice must have sent the message

» It provides a signature
– Alice can’t deny it  non-repudiation

• Could simply encrypt a hash of the data to sign a 
document that you wanted to be in clear text 

• Note that either of these signature techniques work 
perfectly well with any data (not just messages)

– Could sign every datum in a database, for instance
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RSA Crypto & Signatures (cont’d)

I will pay 
Bob $500

I will pay 
Bob $500
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Digital Certificate Authorities

• How do you know KE is Alice’s public key?
• Trusted authority (e.g., Verisign) signs binding 

between Alice and KE with its private key KVprivate
– C = E({Alice, KE}, KVprivate)
– C: digital certificate 

• Alice: distribute her digital certificate, C
• Anyone: use trusted authority’s KVpublic, to extract 

Alice’s public key from C
– D(C, KVpublic) = 
D(E({Alice, KE}, KVprivate), KVpublic) = {Alice, KE}

• Where does someone get KVpublic from?
– Typically compiled into the browser (for instance)!
– Can you trust this??
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Properties of RSA Public Cryptosystems

• Requires generating large, random prime numbers
– Algorithms exist for quickly finding these (probabilistic!)

• Requires exponentiating very large numbers
– Again, fairly fast algorithms exist

• Overall, much slower than symmetric key crypto
– One general strategy: use public key crypto to exchange 
a (short) symmetric session key 

» Use that key then with AES or such
• How difficult is recovering d, the private key? 

– Equivalent to finding prime factors of a large number
» Many have tried - believed to be very hard 

(= brute force only)
» (Though quantum computers could do so in polynomial time!)
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Simple Public Key Authentication

• Each side need only to know the 
other side’s public key

– No secret key need be shared
• A encrypts a nonce (random num.) x

– Avoid replay attacks, e.g., 
attacker impersonating client or 
server

• B proves it can recover x, generates 
second nonce y

• A can authenticate itself to B in the 
same way

• A and B have shared private secrets 
on which to build private key!

– We just did secure key distribution!
• Many more details to make this work 

securely in practice!

A B

Notation: E(m,k) –
encrypt message m 
with key k
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Summary of Our Crypto Toolkit

• If we can securely distribute a key, then
– Symmetric ciphers (e.g., AES) offer fast, 
presumably strong confidentiality

• Public key cryptography does away with 
(potentially major) problem of secure key 
distribution

– But: not as computationally efficient
» Often addressed by using public key crypto to 

exchange a session key
• Digital signature binds the public key to an entity
• Public Key Pairs can serve as Identities!

– Verified by certificate authority
– Or distributed by other techniques
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Putting It All Together - HTTPS
• What happens when you click on 

https://www.amazon.com?

• https = “Use HTTP over SSL/TLS”
– SSL = Secure Socket Layer
– TLS = Transport Layer Security

» Successor to SSL
– Provides security layer (authentication, encryption) 
on top of TCP

» Fairly transparent to applications
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HTTPS Connection (SSL/TLS) (cont’d)

• Browser (client) connects 
via TCP to Amazon’s 
HTTPS server

• Client sends over list of 
crypto protocols it 
supports

• Server picks protocols to 
use for this session

• Server sends over its 
certificate

• (all of this is in the clear)

Browser Amazon
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Inside the Server’s Certificate

• Name associated with cert (e.g., Amazon)
• Amazon’s RSA public key
• A bunch of auxiliary info (physical address, type of 

cert, expiration time)
• Name of certificate’s signatory (who signed it)
• A public-key signature of a hash (SHA-256) of all this

– Constructed using the signatory’s private RSA key, i.e.,
– Cert = E(HSHA256(KApublic, www.amazon.com, …), KSprivate))

» KApublic: Amazon’s public key
» KSprivate: signatory (certificate authority) private key 

• …
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• Browser constructs a random 
session key K used for data 
communication

– Private key for bulk crypto
• Browser encrypts K using 

Amazon’s public key
• Browser sends E(K, KApublic) 

to server
• Browser displays
• All subsequent comm. encrypted 

w/ symmetric cipher 
(e.g., AES128) using key K

– E.g., client can authenticate using 
a password

Browser Amazon

K

HTTPS Connection (SSL/TLS) cont’d

K
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Administrivia
• Midterm 2 grading still continuing

– ETA: very soon.  
– Have a couple of sub problems still to grade
– Solutions have been posted

• Final Exam
– Friday, December 18th, 2015.
– 3-6P, Wheeler Auditorium
– All material from the course 

» (excluding option lecture on 12/7)
» With slightly more focus on second half, but you are still 

responsible for all the material
– Two sheets of notes, both sides
– Will need dumb calculator

• Targeted review sessions: See posts on Piazza
– Possibly 3 different sessions focused on parts of course
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Use Quantum Mechanics to Compute?
• Weird but useful properties of quantum mechanics:

– Quantization: Only certain values or orbits are good
» Remember orbitals from chemistry???

– Superposition: Schizophrenic physical elements don’t quite 
know whether they are one thing or another

• All existing digital abstractions try to eliminate QM
– Transistors/Gates designed with classical behavior
– Binary abstraction: a “1” is a “1” and a “0” is a “0”

• Quantum Computing: 
Use of Quantization and Superposition to compute.

• Interesting results:
– Shor’s algorithm: factors in polynomial time!
– Grover’s algorithm: Finds items in unsorted database in time 
proportional to square-root of n.

– Materials simulation: exponential classically, linear-time QM
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Quantization: Use of “Spin”

• Particles like Protons have an intrinsic “Spin” 
when defined with respect to an external 
magnetic field

• Quantum effect gives “1” and “0”:
– Either spin is “UP” or “DOWN” nothing between

North

South

Spin ½ particle:
(Proton/Electron)

Representation:
|0> or |1>
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Now add Superposition!
• The bit can be in a combination of “1” and “0”:

– Written as:  = C0|0> + C1|1>
– The C’s are complex numbers!
– Important Constraint: |C0|2 + |C1|2 =1

• If measure bit to see what looks like, 
– With probability |C0|2 we will find |0> (say “UP”)
– With probability |C1|2 we will find |1> (say “DOWN”)

• Is this a real effect?  Options:
– This is just statistical – given a large number of protons, a 

fraction of them (|C0|2 ) are “UP” and the rest are down.
– This is a real effect, and the proton is really both things 

until you try to look at it
• Reality: second choice! 

– There are experiments to prove it!

Lec 25.1812/7/15 Kubiatowicz CS162 ©UCB Fall 2015

A register can have many values!

• Implications of superposition:
– An n-bit register can have 2n values simultaneously!
– 3-bit example:

= C000|000>+ C001|001>+ C010|010>+ C011|011>+ 
C100|100>+ C101|101>+ C110|110>+ C111|111>

• Probabilities of measuring all bits are set by 
coefficients:
– So, prob of getting |000> is |C000|2, etc.
– Suppose we measure only one bit (first):

» We get “0” with probability: P0=|C000|2+ |C001|2+ |C010|2+ |C011|2
Result: =    (C000|000>+ C001|001>+ C010|010>+ C011|011>)

» We get “1” with probability: P1=|C100|2+ |C101|2+ |C110|2+ |C111|2
Result: =    (C100|100>+ C101|101>+ C110|110>+ C111|111>)

• Problem: Don’t want environment to measure
before ready!
– Solution: Quantum Error Correction Codes!
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Spooky action at a distance

• Consider the following simple 2-bit state:
= C00|00>+ C11|11>

– Called an “EPR” pair for “Einstein, Podolsky, Rosen”
• Now, separate the two bits:

• If we measure one of them, it instantaneously sets other one!
– Einstein called this a “spooky action at a distance”
– In particular, if we measure a |0> at one side, we get a |0> at the other 

(and vice versa)
• Teleportation

– Can “pre-transport” an EPR pair (say bits X and Y)
– Later to transport bit A from one side to the other we:

» Perform operation between A and X, yielding two classical bits
» Send the two bits to the other side
» Use the two bits to operate on Y
» Poof! State of bit A appears in place of Y

Light-Years?
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MEMs-Based Ion Trap Devices
• Ion Traps: One of the more promising quantum 

computer implementation technologies 
– Built on Silicon

» Can bootstrap the vast infrastructure that currently exists 
in the microchip industry

– Seems to be on a “Moore’s Law” like scaling curve
» 12 bits exist, 30 promised soon, …
» Many researchers working on this problem

– Some optimistic researchers speculate about room temperature
• Properties:

– Has a long-distance Wire
» So-called “ballistic movement”

– Seems to have relatively long decoherence times
– Seems to have relatively low error rates for:

» Memory, Gates, Movement
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Electrode Control

• Qubits are atomic ions (e.g. Be+)
– State is stored in hyperfine levels
– Ions suspended in channels between 

electrodes
• Quantum gates performed by lasers 

(either one or two bit ops)
– Only at certain trap locations
– Ions move between laser sites to 

perform gates
• Classical control

– Gate (laser) ops
– Movement (electrode) ops

• Complex pulse sequences to cause 
Ions to migrate

• Care must be taken to avoid 
disturbing state

• Demonstrations in the Lab
– NIST, MIT, Michigan, many others

Quantum Computing with Ion Traps

Gate Location

Qubit Ions

Electrodes

Courtesy of Chuang group, MIT Lec 25.2212/7/15 Kubiatowicz CS162 ©UCB Fall 2015

Measure

Model: 
Operations on coefficients + measurements

• Basic Computing Paradigm:
– Input is a register with superposition of many values 

» Possibly all 2n inputs equally probable!
– Unitary transformations compute on coefficients

» Must maintain probability property (sum of squares = 1)
» Looks like doing computation on all 2n inputs simultaneously!

– Output is one result attained by measurement
• If do this poorly, just like probabilistic computation:

– If 2n inputs equally probable, may be 2n outputs equally 
probable.

– After measure, like picked random input to classical function!
– All interesting results have some form of “fourier transform” 

computation being done in unitary transformation

Unitary 
Transformations

Input
Complex

State

Output
Classical
Answer
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Shor’s Factoring Algorithm

• The Security of RSA Public-key cryptosystems 
depends on the difficulty of factoring a number N=pq 
(product of two primes)
– Classical computer: sub-exponential time factoring
– Quantum computer: polynomial time factoring

• Shor’s Factoring Algorithm (for a quantum computer)
1) Choose random x : 2  x  N-1.
2) If gcd(x,N)  1, Bingo!
3) Find smallest integer r : xr  1 (mod N)
4) If r is odd, GOTO 1
5) If r is even, a  x r/2 (mod N)  (a-1)(a+1) = kN
6) If a  N-1(mod N) GOTO 1
7) ELSE gcd(a ± 1,N) is a non trivial factor of N.

Hard

Easy
Easy

Easy
Easy
Easy
Easy
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Finding r with xr  1 (mod N)

• Finally: Perform measurement
– Find out r with high probability
– Get |y>|aw’> where y is of form k/r and w’ is related
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Quantum Computing Architectures
• Why study quantum computing?

– Interesting, says something about physics
» Failure to build   quantum mechanics wrong?

– Mathematical Exercise (perfectly good reason)
– Hope that it will be practical someday:

» Shor’s factoring, Grover’s search, Design of Materials
» Quantum Co-processor included in your Laptop?

• To be practical, will need to hand quantum computer 
design off to classical designers

– Baring Adiabatic algorithms, will probably need 100s to 1000s 
(millions?) of working logical Qubits 
1000s to millions of physical Qubits working together

– Current chips: ~1 billion transistors!
• Large number of components is realm of architecture

– What are optimized structures of quantum algorithms when 
they are mapped to a physical substrate? 

– Optimization not possible by hand
» Abstraction of elements to design larger circuits
» Lessons of last 30 years of VLSI design: USE CAD
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• Quantum Circuit model – graphical representation
– Time Flows from left to right
– Single Wires: persistent Qubits, Double Wires: classical bits

» Qubit – coherent combination of 0 and 1:   = |0 + |1
– Universal gate set: Sufficient to form all unitary transformations

• Example: Syndrome Measurement (for 3-bit code)
– Measurement (meter symbol)

produces classical bits
• Quantum CAD 

– Circuit expressed as netlist
– Computer manpulated circuits

and implementations

Quantum Circuit Model
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• Quantum State Fragile  encode all Qubits
– Uses many resources: e.g. 3-level [[7,1,3]] 

code 343 physical Qubits/logical Qubit)!
• Still need to handle operations (fault-tolerantly)

– Some set of gates are simply “transversal:”
» Perform identical gate between each physical bit of logical encoding

– Others (like T gate for [[7,1,3]] code) cannot be handled transversally
» Can be performed fault-tolerantly by preparing appropriate ancilla

• Finally, need to perform periodical error correction
– Correct after every(?): Gate, Long distance movement, Long Idle Period
– Correction reducing entropy  Consumes Ancilla bits

• Observation:   90% of QEC gates are used for ancilla production
 70-85% of all gates are used for ancilla production

Adding Quantum ECC

H

T

Not Transversal!

n-physical Qubits
per logical Qubit H

TX

Encoded
/8 (T)
Ancilla

SXT:

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

C
orrect

QEC
Ancilla

Correct
Errors

Correct

Syndrom
e

Com
putation
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An Abstraction of Ion Traps
• Basic block abstraction: Simplify Layout

• Evaluation of layout through simulation
– Yields Computation Time and Probability of Success

• Simple Error Model: Depolarizing Errors
– Errors for every Gate Operation and Unit of Waiting
– Ballistic Movement Error: Two error Models

1. Every Hop/Turn has probability of error
2. Only Accelerations cause error

in/out ports

straight 3-way 4-way turn gate locations
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Example Place and Route Heuristic:
Collapsed Dataflow

• Gate locations placed in dataflow order
– Qubits flow left to right
– Initial dataflow geometry folded and sorted
– Channels routed to reflect dataflow edges

• Too many gate locations, collapse dataflow
– Using scheduler feedback, identify latency critical edges
– Merge critical node pairs
– Reroute channels

• Dataflow mapping allows pipelining of computation!

q0
q1
q2
q3

q0
q1
q2
q3

q0
q1
q2
q3
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Classical Control
Teleportation Network

Vision of Quantum Circuit Design

Schematic Capture
(Graphical Entry)

Quantum Assembly
(QASM)

OR

QEC Insertion
Partitioning

Layout
Network Insertion

Error Analysis
…

Optimization

CAD Tool
Implementation

Custom Layout and
Scheduling
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Quantum CAD flow

QEC Insert
Circuit

Synthesis

Hybrid Fault
Analysis

Circuit
Partitioning

Mapping,
Scheduling,

Classical control

Communication
Estimation

Teleportation
Network
Insertion

Input Circuit

O
utput Layout

ReSynthesis (ADCRoptimal)

P
success

Complete Layout

Re
M

ap
pi
ng

Error Analysis
Most Vulnerable Circuits

Fault-Tolerant 
Circuit

(No layout)

Partitioned
Circuit

Functional
System

QEC 
OptimizationFault

Tolerant

ADCR computation
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• Standard idea: correct after every gate, and long 
communication, and long idle time

– This is the easiest for people to analyze
• This technique is suboptimal (at least in some 

domains)
– Not every bit has same noise level!

• Different idea: identify critical Qubits
– Try to identify paths that feed into noisiest output bits
– Place correction along these paths to reduce maximum noise

H

Sample Optimization: Reducing QEC Overhead

H Correct Correct

Correct

Correct

CorrectCorrect

Correct

HH Correct
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Investigating 1024-bit Shor’s

• Full Layout of all Elements
– Use of 1024-bit Quantum Adders
– Optimized error correction
– Ancilla optimization and Custom Network Layout

• Statistics:
– Unoptimized version: 1.351015 operations
– Optimized Version 1000X smaller
– QFT is only 1% of total execution time
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Comparison of 1024-bit adders

• 1024-bit Quantum Adder Architectures
– Ripple-Carry (QRCA)
– Carry-Lookahead (QCLA)

• Carry-Lookahead is better in all architectures
• QEC Optimization improves ADCR by order of magnitude 

in some circuit configurations

ADCRoptimal for 
1024-bit QCLA

ADCRoptimal for 
1024-bit QRCA and QCLA
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1024-bit Shor’s Continued

• Circuits too big to compute Psuccess
– Working on this problem

• Fastest Circuit: 6108 seconds ~ 19 years
• Smallest Circuit: 7659 mm2

– Compare to previous estimate of 0.9 m2 = 9105 mm2
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1997 - The Internet of Every Computer
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2007 - The Internet of Every Body
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2017 - The Internet of Everyday Things
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Why “Real” Information is so Important

Improve Productivity

Protect Health
High-Confidence Transport

Enhance Safety & Security

Improve Food & H20

Save Resources

Preventing Failures

Increase
Comfort

Enable New Knowledge
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Resources in a Smart Space (2011 Corning Glass)

• Potential Displays Everywhere
– Walls, Tables, Appliances, Smart Phones, Google 
Glasses….

• Audio Output Everywhere
• Inputs Everywhere

– Touch Surfaces 
– Cameras/
Gesture Tracking

– Voice
• Context Tracking

– Who is Where
– What do they want
– Which Inputs map to which applications
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A Day Made of Glass ©Corning
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2013
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2014
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2013

The Nest makes headlines!
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2014
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2014
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Broad Technology Trends

Today: 1 million transistors per $

Moore’s Law: # transistors 
on cost-effective chip doubles 
every 18 months

Mote!years

Computers
Per Person

103:1

1:106

Laptop
PDA

Mainframe

Mini
Workstation

PC

Cell

1:1

1:103

Bell’s Law: a new computer 
class emerges every 10 years

Same fabrication technology provides CMOS 
radios for communication and micro-sensors
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‘Low-Tech’ Enabling Technology

Microcontroller Radio
Communication

Flash
Storage

Sensors

IEEE 802.15.4

Network
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Meeting the needs of 
IoT (the Swarm)

• Discover and Manage resource
• Integrate sensors, portable devices, cloud components
• Guarantee responsiveness, real-time behavior, throughput
• Self-adapt to failure and provide performance predictability
• Secure, high-performance, durable, available information
• Monetize resources when necessary: micropayments

The FOG

Personal/Local 
Swarm

Cloud Services
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Sample App #2: 
Adaptive Weather Prediction

Weather 
Prediction 
Facilities

Local Data
Processing

History

Local Data
Processing

History

Local Data
Processing

History

Collected
Data
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Sample App #3: 
Air Traffic Control

Local Data
Processing

Local Data
Processing

Local Data
Processing

Data
Processing

Data
Processing

History

History

History

HistoryHistory
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Speaker 
Tracking/

Compositing

Sample App #4:
Smart Seminar Room

External
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Low BW
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Network

Archiv
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Input

RAWRAWRAW

Camera/
Microphone

Array
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An Application Model

• A Swarm Application is a 
Connected graph of Components

– Globally distributed, but locality and QoS aware
– Avoid Stovepipe solutions through reusability

• Many components are Shared Services written by 
programmers with a variety of skill-sets and motivations

– Well-defined semantics and a managed software version scheme
– Service Level Agreements (SLA) with micropayments

• Many are “Swarmlets” written by domain programmers
– They care what application does, not how it does it

Sensors
with

Aggregation

Distributed
Archival
Storage

Real-Time
Components

SwarmLet
(“The Application”)

Transform
and Archive

Channel
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The Missing Link?

Home 
security/
emergency

Unpad
Energy-
efficient

home Health 
monitoringApps

Resources Sensors/
Input devs

A t t /

devs

Actuators/
Output 
devs

Networks

Storage

Computing

SWARM-OS

SWARM-OS: A mediation layer that discovers 
resources and connects them with applications
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SWARMLETs

• SWARMLET: a software component written by 
domain programmer that is easy to write but exhibits 
sophisticated behavior by exploiting services 
distributed within the infrastructure

• Swarmlets specify their needs in terms of human-
understandable requirements

– Necessary Services, Frame rates, Minimum Bandwidths
– Locality, Ownership, and Micropayment parameters for 
sensors and/or data

• Swarmlets may evolve into Shared Services 
• Programmers of Services used by Swarmlets think in 

terms of contracts provided to Swarmlets
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CWSN'11

Storage ProcessingWireless Sensors
WSN mote platform

TinyOS – Framework for Innovation

Radio 
Serial

Flash ADC, 
Sensor 
I/F

MCU, 
Timers, 
Bus,…

Link

Network
Protocols Blocks, 

Logs, Files
Scheduling, 
Management

Streaming 
drivers

Over-the-air 
Programming

Applications and Services

Communication Centric
Resource-Constrained
Event-driven Execution
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What about the “FOG” and “Cloud”?
New Abstraction: the Cell

• Properties of a Cell: Service Level Guarantees
– A user-level software component with guaranteed resources
– Has full control over resources it owns (“Bare Metal”)
– Contains at least one memory protection domain (possibly more)
– Contains a set of secured channel endpoints to other Cells
– Contains a security context which may protect and decrypt 

information
• When mapped to the hardware, a cell gets:

– Gang-schedule hardware thread resources (“Harts”)
– Guaranteed fractions of other physical resources

» Physical Pages (DRAM), Cache partitions, memory bandwidth, 
power

– Guaranteed fractions of system services
• Predictability of performance 

– Ability to model performance vs resources
– Ability for user-level schedulers to better provide QoS
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Implementing Cells:
Space-Time Partitioning

• Spatial Partition: 
Performance isolation
– Each partition receives a 

vector of basic resources
» A number HW threads
» Chunk of physical memory
» A portion of shared cache
» A fraction of memory BW
» Shared fractions of services

• Partitioning varies over time
– Fine-grained multiplexing and 

guarantee of resources
» Resources are gang-scheduled

• Controlled multiplexing, not 
uncontrolled virtualization

• Partitioning adapted to the 
system’s needs

Time

Space
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Cell Implementation Platform: Tessellation Version 2
• Tessellation Operating System

– Provides basic Cell Implementation
– Build on the Xen Hypervisor

• Why Xen?
– Provides clean starting point for resource containers
– Leverage mature OS (Linux) device support, critical 
drivers can be isolated in a stub domain

– Framework for developing VM schedulers
– Mini-OS, a lightweight POSIX-compatible Xen guest 
OS, is basis for the customizable app runtime

– Support for ARM and x86
• Unikernels: Software Appliances

– Small compiled kernels with only enough components to 
support one application

– Every component has its own resource container
• Dynamic resource optimization framework
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Signature, Policy
Version, GUID

Trusted Swarm Platform

• External Data Encrypted 
All The Time 

• Only decrypted in “Data Jails” (trusted platform)
– Build in hardware or in software with secure attestation
– Data leaving cell automatically reencrypted

• Trusted Platform given keys to do its work
– Keys never given out to application software

• Built through secure boot mechanisms (i.e. TPM/etc)

Signature, Policy
Version, GUID

Decrypt Encrypt

Distributed Public Key 
Infrastructure
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DataCentric Vision

• Hardware resources are a commodity
– Computation resource fails?  Get another
– Sensor fails?  Find another
– Change your location?  Find new resources

• All that really matters is the information
– Integrity, Privacy, Availability, Durability
– Hardware to prevent accidental information leakage

• Permanent state handled by Universal Data 
Storage, Distribution, and Archiving

• We need a new Internet for the Internet of 
Things?

– Communication and Storage are really duals
– Why separate them?
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The Global Data Plane

Archival Storage and 
Optimized Streaming

Personal
Cache

Aggregate/Filter
Universal Tivo

Cloud ServicesCloud Services
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GDP Secure Log

• Locality Optimization/QoS
– Flat 256-bit address space
– Routes adapted as elements 

move
– Hardware QoS exploited
– Multicast trees built as needed

• Durability
– Replicas/Reed-Solomon coding

• Single Writer/Append only
– Owner Key Signs entries
– LOG server rejects bad 

entries
– Tradeoff in granularity, i.e. 

frequency of signatures
• Multiple 

Readers/Subscribers
– Random access/push based

LOG
Replica
Server

Writer:
Signed 

Source of 
Packets

Subscriber

SubscriberLOG
Replica
Server

LOG
Server

Random
Reader Random

Reader
Random
Reader
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Simple Log-based Use-case

• Lightweight Logs  One Log per Device
• Log Input Secured via Owner Key/Checked by consumer
• Optional encryption for privacy
• Timestamps to help ensure freshness

Data
Distillation

Service

Sensors
w/key

Service
w/key

(MultiWriter,
Aggregator,

Control)

Actuator

LOGLOGLOGLOG

LOG
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Security of Data in Log

• Two Completely Different uses of Keys:
– Each LOG associated with an Owner public key 

» This key must be known and protected by writers
» All data in GDP must be signed  Single writer log

– Each LOG associated with one or more keys for Encryption
» The use of encryption keys not mandated by GDP infrastructure
» However, will (shortly) have sample/recommended use cases and 

libraries to support different styles of encryption
• Writer has sole control over integrity of data

– LOG servers may deny existence of data, but can not forge it
– Public key of writer established at LOG creation time
– Next version of GDP will have authentication support

• Automatic construction and registration of LOGs
– New sensors tied into GDP via secure registration process
– Ultimately, interaction with Control Plane
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Build DataStores on top of GDP through Composition

• Common Access APIs (CAAPIs): Support common 
data access methods such as:

– Key/Value Store
– Object Store/File System
– Data Base (i.e. Google Spanner)

• CAPPIs exported by services that consume the LOG
– Much more convenient way to access data

• The LOG is the Ground Truth for data, but data is 
projected into a more convenient form

– To do Random File access, Indexing, SQL queries, 
Latest value for given Key, etc

– Optional Checkpoints stored for quick restart/cloning
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Example: DataBase CAAPI

• CAAPI Service can be taken down, replicated, and 
restarted

• Time-stamp driven transactions (Google Spanner)
• Cloud-based computation (Spark) 

LOG

DataBase
Service
(R/W)

DataBase
Projection

(RAM)CAAPI 
Service
w/key

DataBase
Client

DataBase
Client

Client
w/key

Client
w/key

Read/Write

Read/Write

LOG

LOG

DataBase
Projection

(RAM)

Replica 
Service
(R/O)

LOG
Replica

Slave
CAAPI 
Service
w/o key

Long Distance Communication
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GDP Root

GDP
Client

GDP
Service

GDP Router

The Global Data Plane 
(Physical View and Status)

• Current status: deployed infrastructure with substantial functionality
– GDP router works behind firewalls and preserves locality
– Tolerates failure and incremental addition of new routers
– Log servers check data signatures and push updates to subscribers
– Discovery GDP infrastructure through combination of Zeroconf

protocol (same as Apple Bonjour) and/or connection with well-known 
GDP Root Routers

– Delivery of data through push-based multicast (works across subnets)
– SwarmBox can serve as GDP Router, Log Server, and Client

Cloud Services

Log Server,
GDP Router

GDP discovery 
on local subnet 
using Zeroconf

SwarmBox
[+GDP router]

SwarmBox
[+Log Server]

Local GDP Domain behind 
Firewall

(all communication local, exported as to 
rest of GDP through GDP interfaces)

GDP Router

GDP Routers form network with other GDP routers 
(with public or private IP addresses). 

Initial connection through well-known Root routers.

GDP
Client

GDP-aware Clients, 
Services, and Devices 

connect to any 
router.

GDP
Device

Cloud can host GDP clients,
servers, and routers

Log servers can
Connect to any 

GDP Router
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SwarmBox (HW and SW)

• Fanless Industrial Computer
• Intel 5th Generation i5 

Processor
• IEEE 1588 Ethernet port(s)
• BLE and WiFi
• 8GB DRAM
• 64GB SSD or 1 TB disk drive
• USB

Applications

Swarm Services

SwarmOS
Services

COTS System 
Software
SwarmBox
Hardware

Brokerage, Computation, Hosting, 
Service Proxying, Service 
Launch/Monitor/Teardown, Time Access, 
Device/Service Discovery

Linux, DHCP, Firewall, IP Router
Container/VM, 802.1AS

Localization, Identification, Gestures
Context Modeling, Machine Learning

Proactive Environments

Intel NUC, i210 enet, Beagle Bone Black

Global Data 
Plane Communications, Routing, Data Storage

• Current status: Version 2 now available
– Pre-loaded with a variety of Software Components
– Management through Docker and Ansible
– Operating version of the GDP Router and Log Server

• Complete list of current boxes available at: 
https://www.terraswarm.org/testbeds/wiki/Main/SwarmBoxes

[Lutz, 
Wawrzynek,
Kubiatowicz]
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Properties of the GDP (Summary)
• Universal way to address every stream of information

– Publish/Subscribe view of information 
– Large flat address space (at least 256 bits)
– Mechanisms for access control, privacy, and transactions
– Streams of data persisted automatically for later access

• Location Independence  Above network level
– Build Swarmlets once and run them anywhere
– Migrate or replicate running swarmlets
– Locality optimization/QoS handled by underlying system

• Common Access APIs (CAAPIs) provide standard 
Interfaces

– Key/Value Store, Data Bases, File Systems
• Deep Archival Storage: 

– Automatic Geographically Distributed Archival Storage
• One system for sensors and big data
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The Revolution
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The Revolution
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Good Luck on the Final!

• Quantum Computing
– Shor’s Factoring Algorithm: Factor large numbers in 
polynomial time

– Ion Traps provide potential to scale with Moore’s law
– Quantum CAD: Optimize limited resources

» Makes particular sense for Quantum Computers!
• Internet of Everyday Things

– Soon – everything connected all the time
– Wireless, Wired, FOG and Cloud
– How to build a useful infrastructure for the future?

» Computation everywhere
» Global Data Plane: Truly ubiquitous storage
» Applications that span many services and geographical 

distances


