
CS162
Operating Systems and
Systems Programming

Lecture 24

Key-Value Stores (Finished)
Security + Cloud (a bit)

December 2nd, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 24.212/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Open Connection: 3-Way Handshaking

• Original sequence shown above
• Vulnerabilities: Denial of service

– SYN attack: send a huge number of SYN messages
– Causes victim system to commit resources (e.g. 768 byte TCP/IP

data structure)
• Alternatives: Do not commit resources until receive final ACK

– SYN Cache: when SYN received, put small entry into cache and
send SYN/ACK. If receive ACK, then put into listening socket

– SYN Cookie: when SYN received, encode connection info into
sequence number/other TCP header blocks, decode on ACK

Client (initiator) Server
Active
Open

Passive
Open

connect() listen()

accept()

allocate
buffer space

tim
e

Lec 24.312/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Iterative vs. Recursive Query

• Recursive Query:
– Advantages:

» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can

serialize puts()/gets()
– Disadvantages: scalability bottleneck, as all “Values” go

through master/directory
• Iterative Query

– Advantages: more scalable
– Disadvantages: slower, harder to enforce data

consistency

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)
V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

V14
N3

Recursive Iterative

Lec 24.412/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Scalability

• More Storage: use more nodes

• More Requests:
– Can serve requests from all nodes on which a value
is stored in parallel

– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by
different masters/directories

» How do you partition?

Lec 24.512/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Scalability: Load Balancing

• Directory keeps track of the storage availability at
each node

– Preferentially insert new values on nodes with more
storage available

• What happens when a new node is added?
– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new
node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes

Lec 24.612/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Consistency

• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every

node?
– Wait for acknowledgements from every node

• What happens if a node fails during replication?
– Pick another node and try again

• What happens if a node is slow?
– Slow down the entire put()? Pick another node?

• In general, with multiple replicas
– Slow puts and fast gets

Lec 24.712/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Consistency (cont’d)

• If concurrent updates (i.e., puts to same key)
may need to make sure that updates happen in
the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14’)

K14 V14

put(K14, V14’’)

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’)
reach N1 and N3 in reverse order

• What does get(K14) return?
• Undefined!

• put(K14, V14’) and put(K14, V14’’)
reach N1 and N3 in reverse order

• What does get(K14) return?
• Undefined!

Lec 24.812/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Consistency (cont’d)

• Large variety of consistency models:
– Atomic consistency (linearizability): reads/writes
(gets/puts) to replicas appear as if there was a single
underlying replica (single system image)

» Think “one updated at a time”
» Transactions

– Eventual consistency: given enough time all updates will
propagate through the system

» One of the weakest form of consistency; used by many
systems in practice

» Must eventually converge on single value/key (coherence)
– And many others: causal consistency, sequential
consistency, strong consistency, …

Lec 24.912/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Quorum Consensus

• Improve put() and get() operation performance

• Define a replica set of size N
– put() waits for acknowledgements from at least W replicas
– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the update

• Why might you use W+R > N+1?

Lec 24.1012/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Quorum Consensus Example

• N=3, W=2, R=2
• Replica set for K14: {N1, N2, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

Lec 24.1112/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Quorum Consensus Example

• Now, issuing get() to any two nodes out of three
will return the answer

N1 N2 N3 N4

K14 V14K14 V14

get(K
14)

nill
Lec 24.1212/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Scaling Up Directory

• Challenge:
– Directory contains a number of entries equal to
number of (key, value) tuples in the system

– Can be tens or hundreds of billions of entries in
the system!

• Solution: consistent hashing
• Associate to each node a unique id in an uni-

dimensional space 0..2m-1
– Partition this space across m machines
– Assume keys are in same uni-dimensional space
– Each (Key, Value) is stored at the node with the
smallest ID larger than Key

Lec 24.1312/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Key to Node Mapping Example

• m = 6 ID space: 0..63
• Node 8 maps keys [5,8]
• Node 15 maps keys [9,15]
• Node 20 maps keys [16, 20]
• …
• Node 4 maps keys [59, 4]

4

20

3235

8

15

44

58

14 V14

63 0

Lec 24.1412/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Lookup in Chord-like system (with Leaf Set)

0…

10…

110…

111…

Lookup ID

Source• Assign IDs to nodes
– Map hash values to
node with closest ID

• Leaf set is
successors and
predecessors
– All that’s needed for
correctness

• Routing table
matches successively
longer prefixes
– Allows efficient
lookups

• Data Replication:
– On leaf set

Lec 24.1512/2/15 Kubiatowicz CS162 ©UCB Fall 2015

DynamoDB Example: Service Level Agreements (SLA)

• Application can deliver its
functionality in a bounded
time:

– Every dependency in the
platform needs to deliver its
functionality with even tighter
bounds.

• Example: service guaranteeing
that it will provide a response
within 300ms for 99.9% of its
requests for a peak client load
of 500 requests per second

• Contrast to services which
focus on mean response time

Service-oriented architecture of
Amazon’s platform

Lec 24.1612/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Administrivia
• Midterm 2 grading

– In progress. To be done by end of weekend
» Will have until midweek (Wed) to put in regrade requests

– Solutions have been posted
• Project 3 Extension:

– Code: Wednesday (12/9), Report: Thursday (12/10)
• HW4 Assumptions:

– Assume coordinator does not fail (unlike full 2-phase
commit protocol)

• Take Peer Reviews seriously!
– We look carefully at your grades *and* comments!

» Make sure to give us enough information to evaluate the
group dynamic

– Projects are a zero-sum game
» If you don’t participate, you won’t get the same grade as

your partners!
» Your points can be given to your group members

Lec 24.1712/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Administrivia (2)
• Final topics (Monday, 12/7):

– Go to poll on Piazza!
– Current front runners:

» Quantum Computing
» Internet of Things
» Virtual Machines

• Final Exam
– Friday, December 18th, 2015.
– 3-6P, Wheeler Auditorium
– All material from the course

» (excluding option lecture on 12/7)
» With slightly more focus on second half, but you are still

responsible for all the material
– Two sheets of notes, both sides
– Will need dumb calculator

• Targeted review sessions: See posts on Piazza
– Possibly 3 different sessions focused on parts of course

Lec 24.1812/2/15 Kubiatowicz CS162 ©UCB Fall 2015

What is Computer Security Today?

• Computing in the presence of an adversary!
– Adversary is the security field’s defining
characteristic

• Reliability, robustness, and fault tolerance
– Dealing with Mother Nature (random failures)

• Security
– Dealing with actions of a knowledgeable attacker
dedicated to causing harm

– Surviving malice, and not just mischance
• Wherever there is an adversary, there is a

computer security problem!

Lec 24.1912/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Protection vs. Security

• Protection: mechanisms for controlling access of
programs, processes, or users to resources

– Page table mechanism
– Round-robin schedule
– Data encryption

• Security: use of protection mech. to prevent misuse
of resources

– Misuse defined with respect to policy
» E.g.: prevent exposure of certain sensitive information
» E.g.: prevent unauthorized modification/deletion of data

– Need to consider external environment the system
operates in

» Most well-constructed system cannot protect information
if user accidentally reveals password – social engineering
challenge

Lec 24.2012/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Security Requirements

• Authentication
– Ensures that a user is who is claiming to be

• Data integrity
– Ensure that data is not changed from source to
destination or after being written on a storage device

• Confidentiality
– Ensures that data is read only by authorized users

• Non-repudiation
– Sender/client can’t later claim didn’t send/write data
– Receiver/server can’t claim didn’t receive/write data

Lec 24.2112/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Securing Communication: Cryptography

• Cryptography: communication in the presence of
adversaries

• Studied for thousands of years
– See the Simon Singh’s The Code Book for an excellent,
highly readable history

• Central goal: confidentiality
– How to encode information so that an adversary can’t
extract it, but a friend can

• General premise: there is a key, possession of which
allows decoding, but without which decoding is
infeasible

– Thus, key must be kept secret and not guessable

Lec 24.2212/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Using Symmetric Keys

• Same key for encryption and decryption
• Achieves confidentiality
• Vulnerable to tampering and replay attacks

Internet
Encrypt with
secret key

Decrypt with
secret key

Plaintext (m) m

Ciphertext

Lec 24.2312/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Symmetric Keys

• Can just XOR plaintext with the key
– Easy to implement, but easy to
break using frequency analysis

– Unbreakable alternative: XOR with
one-time pad

» Use a different key for each
message

Lec 24.2412/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Block Ciphers with Symmetric Keys
• More sophisticated (e.g., block cipher) algorithms

– Works with a block size (e.g., 64 bits)
• Can encrypt blocks separately:

– Same plaintextsame ciphertext
• Much better:

– Add in counter and/or link ciphertext of previous block

Lec 24.2512/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Symmetric Key Ciphers - DES & AES

• Data Encryption Standard (DES)
– Developed by IBM in 1970s, standardized by NBS/NIST
– 56-bit key (decreased from 64 bits at NSA’s request)
– Still fairly strong other than brute-forcing the key
space

» But custom hardware can crack a key in < 24 hours
– Today many financial institutions use Triple DES

» DES applied 3 times, with 3 keys totaling 168 bits
• Advanced Encryption Standard (AES)

– Replacement for DES standardized in 2002
– Key size: 128, 192 or 256 bits

• How fundamentally strong are they?
– No one knows (no proofs exist)

Lec 24.2612/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Authentication in Distributed Systems
• What if identity must be established across network?

– Need way to prevent exposure of information while still
proving identity to remote system

– Many of the original UNIX tools sent passwords over the
wire “in clear text”

» E.g.: telnet, ftp, yp (yellow pages, for distributed login)
» Result: Snooping programs widespread

• What do we need? Cannot rely on physical security!
– Encryption: Privacy, restrict receivers
– Authentication: Remote Authenticity, restrict senders

NetworkPA
SS: gina

Lec 24.2712/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Authentication via Secret Key

• Main idea: entity proves identity by decrypting a
secret encrypted with its own key

– K – secret key shared only by A and B
• A can asks B to authenticate itself by decrypting a

nonce, i.e., random value, x
– Avoid replay attacks (attacker impersonating client or
server)

• Vulnerable to man-in-the middle attack
A B

Notation: E(m,k) –
encrypt message m
with key k

Lec 24.2812/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Secure Hash Function

• Hash Function: Short summary of data (message)
– For instance, h1=H(M1) is the hash of message M1

» h1 fixed length, despite size of message M1.
» Often, h1 is called the “digest” of M1.

• Hash function H is considered secure if
– It is infeasible to find M2 with h1=H(M2); ie. can’t easily
find other message with same digest as given message.

– It is infeasible to locate two messages, m1 and m2,
which “collide”, i.e. for which H(m1) = H(m2)

– A small change in a message changes many bits of
digest/can’t tell anything about message given its hash

DFCD3454BBEA788A
751A696C24D97009
CA992D17

The red fox
runs across
the ice

Hash
Function

Hash
Function

52ED879E70F71D92
6EB6957008E03CE4
CA6945D3

Fox

Lec 24.2912/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Integrity: Cryptographic Hashes

• Basic building block for integrity: cryptographic hashing
– Associate hash with byte-stream, receiver verifies match

» Assures data hasn’t been modified, either accidentally – or
maliciously

• Approach:
– Sender computes a secure digest of message m using H(x)

» H(x) is a publicly known hash function
» Digest d = HMAC (K, m) = H (K | H (K | m))
» HMAC(K, m) is a hash-based message authentication

function

– Send digest d and message m to receiver

– Upon receiving m and d, receiver uses shared secret key,
K, to recompute HMAC(K, m) and see whether result
agrees with d

Lec 24.3012/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Using Hashing for Integrity

InternetDigest
HMAC(K,m)

plaintext (m)

Encrypted Digest

Digest
HMAC(K,m)

=

digest’

NO

corrupted msg m

Unencrypted Message

Can encrypt m for confidentiality

Lec 24.3112/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Standard Cryptographic Hash Functions

• MD5 (Message Digest version 5)
– Developed in 1991 (Rivest), produces 128 bit hashes
– Widely used (RFC 1321)
– Broken (1996-2008): attacks that find collisions

• SHA-1 (Secure Hash Algorithm)
– Developed in 1995 (NSA) as MD5 successor with 160 bit

hashes
– Widely used (SSL/TLS, SSH, PGP, IPSEC)
– Broken in 2005, government use discontinued in 2010

• SHA-2 (2001)
– Family of SHA-224, SHA-256, SHA-384, SHA-512 functions

• HMAC’s are secure even with older “insecure” hash
functions

–
Lec 24.3212/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Key Distribution
• How do you get shared secret to both places?

– For instance: how do you send authenticated, secret mail
to someone who you have never met?

– Must negotiate key over private channel
» Exchange code book
» Key cards/memory stick/others

• Third Party: Authentication Server (like Kerberos)
– Notation:

» Kxy is key for talking between x and y
» (…)K means encrypt message (…) with the key K
» Clients: A and B, Authentication server S

– A asks server for key:
» AS: [Hi! I’d like a key for talking between A and B]
» Not encrypted. Others can find out if A and B are talking

– Server returns session key encrypted using B’s key
» SA: Message [Use Kab (This is A! Use Kab)Ksb] Ksa
» This allows A to know, “S said use this key”

– Whenever A wants to talk with B
» AB: Ticket [This is A! Use Kab]Ksb
» Now, B knows that Kab is sanctioned by S

Lec 24.3312/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Authentication Server Continued [Kerberos]

• Details
– Both A and B use passwords (shared with key server) to
decrypt return from key servers

– Add in timestamps to limit how long tickets will be used
to prevent attacker from replaying messages later

– Also have to include encrypted checksums (hashed
version of message) to prevent malicious user from
inserting things into messages/changing messages

– Want to minimize # times A types in password
» AS (Give me temporary secret)
» SA (Use Ktemp-sa for next 8 hours)Ksa
» Can now use Ktemp-sa in place of Ksa in prototcol

Key
Server

Ticket
Secure Communication

Lec 24.3412/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Asymmetric Encryption (Public Key)

• Idea: use two different keys, one to encrypt (e)
and one to decrypt (d)

– A key pair

• Crucial property: knowing e does not give away d

• Therefore e can be public: everyone knows it!

• If Alice wants to send to Bob, she fetches Bob’s
public key (say from Bob’s home page) and encrypts
with it

– Alice can’t decrypt what she’s sending to Bob …
– … but then, neither can anyone else (except Bob)

Lec 24.3512/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Public Key / Asymmetric Encryption

• Sender uses receiver’s public key
– Advertised to everyone

• Receiver uses complementary private key
– Must be kept secret

Internet
Encrypt with
public key

Decrypt with
private key

Plaintext Plaintext

Ciphertext

Lec 24.3612/2/15 Kubiatowicz CS162 ©UCB Fall 2015

• Idea: Kpublic can be made public, keep Kprivate private

• Gives message privacy (restricted receiver):
– Public keys (secure destination points) can be acquired
by anyone/used by anyone

– Only person with private key can decrypt message
• What about authentication?

– Use combination of private and public key
– AliceBob: [(I’m Alice)Aprivate Rest of message]Bpublic
– Provides restricted sender and receiver

• But: how does Alice know that it was Bob who sent
her Bpublic? And vice versa…

Bprivate
Aprivate

Public Key Encryption Details

Alice Bob

Bpublic
Apublic

Insecure Channel

Insecure Channel

Lec 24.3712/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Public Key Cryptography

• Invented in the 1970s
– Revolutionized cryptography
– (Was actually invented earlier by British intelligence)

• How can we construct an encryption/decryption
algorithm using a key pair with the public/private
properties?

– Answer: Number Theory
• Most fully developed approach: RSA

– Rivest / Shamir / Adleman, 1977; RFC 3447
– Based on modular multiplication of very large integers
– Very widely used (e.g., ssh, SSL/TLS for https)

• Also mature approach: Eliptic Curve Cryptography (ECC)
– Based on curves in a Galois-field space
– Shorter keys and signatures than RSA

Lec 24.3812/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Properties of RSA

• Requires generating large, random prime numbers
– Algorithms exist for quickly finding these (probabilistic!)

• Requires exponentiating very large numbers
– Again, fairly fast algorithms exist

• Overall, much slower than symmetric key crypto
– One general strategy: use public key crypto to exchange a

(short) symmetric session key
» Use that key then with AES or such

• How difficult is recovering d, the private key?
– Equivalent to finding prime factors of a large number

» Many have tried - believed to be very hard
(= brute force only)

» (Though quantum computers could do so in polynomial time!)

Lec 24.3912/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Simple Public Key Authentication

• Each side need only to know the
other side’s public key

– No secret key need be shared
• A encrypts a nonce (random num.) x

– Avoid replay attacks, e.g.,
attacker impersonating client or
server

• B proves it can recover x, generates
second nonce y

• A can authenticate itself to B in the
same way

• A and B have shared private secrets
on which to build private key!

– We just did secure key distribution!
• Many more details to make this work

securely in practice!

A B

Notation: E(m,k) –
encrypt message m
with key k

Lec 24.4012/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Non-Repudiation: RSA Crypto & Signatures

• Suppose Alice has published public key KE
• If she wishes to prove who she is, she can send a

message x encrypted with her private key KD (i.e.,
she sends E(x, KD))

– Anyone knowing Alice’s public key KE can recover x,
verify that Alice must have sent the message

» It provides a signature
– Alice can’t deny it non-repudiation

• Could simply encrypt a hash of the data to sign a
document that you wanted to be in clear text

• Note that either of these signature techniques work
perfectly well with any data (not just messages)

– Could sign every datum in a database, for instance

Lec 24.4112/2/15 Kubiatowicz CS162 ©UCB Fall 2015

RSA Crypto & Signatures (cont’d)

I will pay
Bob $500

I will pay
Bob $500

Lec 24.4212/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Digital Certificates

• How do you know KE is Alice’s public key?

• Trusted authority (e.g., Verisign) signs binding
between Alice and KE with its private key KVprivate

– C = E({Alice, KE}, KVprivate)
– C: digital certificate

• Alice: distribute her digital certificate, C
• Anyone: use trusted authority’s KVpublic, to extract

Alice’s public key from C
– D(C, KVpublic) =
D(E({Alice, KE}, KVprivate), KVpublic) = {Alice, KE}

Lec 24.4312/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Summary of Our Crypto Toolkit

• If we can securely distribute a key, then
– Symmetric ciphers (e.g., AES) offer fast,
presumably strong confidentiality

• Public key cryptography does away with
(potentially major) problem of secure key
distribution

– But: not as computationally efficient
» Often addressed by using public key crypto to

exchange a session key

• Digital signature binds the public key to an entity

Lec 24.4412/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Putting It All Together - HTTPS
• What happens when you click on

https://www.amazon.com?

• https = “Use HTTP over SSL/TLS”
– SSL = Secure Socket Layer
– TLS = Transport Layer Security

» Successor to SSL
– Provides security layer (authentication, encryption)
on top of TCP

» Fairly transparent to applications

Lec 24.4512/2/15 Kubiatowicz CS162 ©UCB Fall 2015

HTTPS Connection (SSL/TLS) (cont’d)

• Browser (client) connects
via TCP to Amazon’s
HTTPS server

• Client sends over list of
crypto protocols it
supports

• Server picks protocols to
use for this session

• Server sends over its
certificate

• (all of this is in the clear)

Browser Amazon

Lec 24.4612/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Inside the Server’s Certificate

• Name associated with cert (e.g., Amazon)
• Amazon’s RSA public key
• A bunch of auxiliary info (physical address, type of

cert, expiration time)
• Name of certificate’s signatory (who signed it)
• A public-key signature of a hash (SHA-256) of all this

– Constructed using the signatory’s private RSA key, i.e.,
– Cert = E(HSHA256(KApublic, www.amazon.com, …), KSprivate))

» KApublic: Amazon’s public key
» KSprivate: signatory (certificate authority) private key

• …

Lec 24.4712/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Validating Amazon’s Identity
• How does the browser authenticate certificate signatory?

– Certificates of several certificate authorities (e.g., Verisign)
are hardwired into the browser (or OS)

• If can’t find cert, warn user that site has not been
verified

– And may ask whether to continue
– Note, can still proceed, just without authentication

• Browser uses public key in signatory’s cert to decrypt
signature

– Compares with its own SHA-256 hash of Amazon’s cert
• Assuming signature matches, now have high confidence it’s

indeed Amazon …
– … assuming signatory is trustworthy
– DigiNotar CA breach (July-Sept 2011): Google, Yahoo!,

Mozilla, Tor project, Wordpress, … (531 total certificates)

Lec 24.4812/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Certificate Validation

E(HSHA256(KApublic, www.amazon.com, …), KSprivate)),
KApublic, www.amazon.com, …

HSHA256(KApublic, www.amazon.com, …)

E(HSHA256(…), KSpublic))
(recall, KSpublic hardwired)

=

Yes

Validation successful

Validation failed
No

HSHA256(KApublic, www.amazon.com, …)

HSHA256(KApublic, www.amazon.com, ..)

Certificate

Can also validate using peer approach: https://www.eff.org/observatory

Lec 24.4912/2/15 Kubiatowicz CS162 ©UCB Fall 2015

• Browser constructs a random
session key K used for data
communication

– Private key for bulk crypto
• Browser encrypts K using

Amazon’s public key
• Browser sends E(K, KApublic)

to server
• Browser displays
• All subsequent comm. encrypted

w/ symmetric cipher
(e.g., AES128) using key K

– E.g., client can authenticate using
a password

Browser Amazon

K

HTTPS Connection (SSL/TLS) cont’d

K

Lec 24.5012/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Background of Cloud Computing

• 1980’s and 1990’s: 52% growth in performance per year!

• 2002: The thermal wall
– Speed (frequency) peaks,
but transistors keep
shrinking

• 2000’s: Multicore revolution
– 15-20 years later than
predicted, we have hit
the performance wall

• 2010’s: Rise of Big Data

Lec 24.5112/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Data Deluge

• Billions of users connected through the net
– WWW, FB, twitter, cell phones, …
– 80% of the data on FB was produced last year

• Storage getting cheaper
– Store more data!
– 8TB drives common
– 10TB announced

• Units of interest:
– Gigabyte: 230 109

– Terabyte: 240 1012

– Petabyte: 250 1015

– Exabyte: 260 1018

– Zettabyte: 2070 1021

– Yottabyte: 2080 1024

Lec 24.5212/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Data Grows Faster than Moore’s Law

Projected Growth

In
cr

ea
se

 o
ve

r 2
01

0

0

10

20

30

40

50

60

2010 2011 2012 2013 2014 2015

Moore's Law

Particle Accel.

DNA Sequencers

Lec 24.5312/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Solving the Impedance Mismatch

• Computers not getting faster,
and we are drowning in data

– How to resolve the dilemma?

• Solution adopted by web-scale
companies

– Go massively distributed
and parallel

Lec 24.5412/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Enter the World of Distributed Systems

• Distributed Systems/Computing
– Loosely coupled set of computers, communicating through
message passing, solving a common goal

– Tools: Msg passing, Distributed shared memory, RPC

• Distributed computing is challenging
– Dealing with partial failures (examples?)
– Dealing with asynchrony (examples?)
– Dealing with scale (examples?)
– Dealing with consistency (examples?)

• Distributed Computing versus Parallel Computing?
– distributed computing

parallel computing + partial failures

Lec 24.5512/2/15 Kubiatowicz CS162 ©UCB Fall 2015

The Datacenter is the new Computer

• “The datacenter as a computer” still in its infancy
– Special purpose clusters, e.g., Hadoop cluster
– Built from less reliable components
– Highly variable performance
– Complex concepts are hard to program (low-level
primitives)

= ?

Lec 24.5612/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Datacenter/Cloud Computing OS

• If the datacenter/cloud is the new computer
– What is its Operating System?
– Note that we are not talking about a host OS

• Could be equivalent in benefit as the LAMP stack
was to the .com boom – every startup secretly
implementing the same functionality!

• Open source stack for a Web 2.0 company:
– Linux OS
– Apache web server
– MySQL, MariaDB or MongoDB DBMS
– PHP, Perl, or Python languages for dynamic web pages

Lec 24.5712/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Classical Operating Systems

• Data sharing
– Inter-Process Communication, RPC, files, pipes, …

• Programming Abstractions
– Libraries (libc), system calls, …

• Multiplexing of resources
– Scheduling, virtual memory, file allocation/protection,
…

Lec 24.5812/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Datacenter/Cloud Operating System

• Data sharing
– Google File System, key/value stores
– Apache project: Hadoop Distributed File System

• Programming Abstractions
– Google MapReduce
– Apache projects: Hadoop, Pig, Hive, Spark

• Multiplexing of resources
– Apache projects: Mesos, YARN (MapReduce v2),
ZooKeeper, BookKeeper, …

Lec 24.5912/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Google Cloud Infrastructure

• Google File System (GFS), 2003
– Distributed File System for entire
cluster

– Single namespace

• Google MapReduce (MR), 2004
– Runs queries/jobs on data
– Manages work distribution & fault-
tolerance

– Collocated with file system

• Apache open source versions:
Hadoop DFS and Hadoop MR

Lec 24.6012/2/15 Kubiatowicz CS162 ©UCB Fall 2015

GFS/HDFS Insights

• Petabyte storage
– Files split into large blocks (128 MB) and replicated
across several nodes

– Big blocks allow high throughput sequential reads/writes

• Data striped on hundreds/thousands of servers
– Scan 100 TB on 1 node @ 50 MB/s = 24 days
– Scan on 1000-node cluster = 35 minutes

Lec 24.6112/2/15 Kubiatowicz CS162 ©UCB Fall 2015

GFS/HDFS Insights (2)

• Failures will be the norm
– Mean time between failures for 1 node = 3 years
– Mean time between failures for 1000 nodes = 1 day

• Use commodity hardware
– Failures are the norm anyway, buy cheaper hardware

• No complicated consistency models
– Single writer, append-only data

Lec 24.6212/2/15 Kubiatowicz CS162 ©UCB Fall 2015

MapReduce Programming Model

• Data type: key-value records

• Map function:
(Kin, Vin) list(Kinter, Vinter)

• Reduce function:
(Kinter, list(Vinter)) list(Kout, Vout)

Lec 24.6312/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Word Count Execution

the quick
brown fox

the fox ate
the mouse

how now
brown
cow

Map

Map

Map

Reduce

Reduce

brown, 2
fox, 2
how, 1
now, 1
the, 3

ate, 1
cow, 1

mouse, 1
quick, 1

the, 1
brown, 1

fox, 1

quick, 1

the, 1
fox, 1
the, 1

how, 1
now, 1

brown, 1
ate, 1

mouse, 1

cow, 1

Input Map Shuffle & Sort Reduce Output

Lec 24.6412/2/15 Kubiatowicz CS162 ©UCB Fall 2015

MapReduce Insights

• Restricted key-value model
– Same fine-grained operation (Map & Reduce) repeated
on big data

– Operations must be deterministic
– Operations must be idempotent/no side effects
– Only communication is through the shuffle
– Operation (Map & Reduce) output saved (on disk)

Lec 24.6512/2/15 Kubiatowicz CS162 ©UCB Fall 2015

What is MapReduce Used For?

• At Google:
– Index building for Google Search
– Article clustering for Google News
– Statistical machine translation

• At Yahoo!:
– Index building for Yahoo! Search
– Spam detection for Yahoo! Mail

• At Facebook:
– Data mining
– Ad optimization
– Spam detection

Lec 24.6612/2/15 Kubiatowicz CS162 ©UCB Fall 2015

MapReduce Pros
• Distribution is completely transparent

– Not a single line of distributed programming (ease,
correctness)

• Automatic fault-tolerance
– Determinism enables running failed tasks somewhere else
again

– Saved intermediate data enables just re-running failed
reducers

• Automatic scaling
– As operations as side-effect free, they can be distributed
to any number of machines dynamically

• Automatic load-balancing
– Move tasks and speculatively execute duplicate copies of
slow tasks (stragglers)

Lec 24.6712/2/15 Kubiatowicz CS162 ©UCB Fall 2015

MapReduce Cons

• Restricted programming model
– Not always natural to express problems in this model
– Low-level coding necessary
– Little support for iterative jobs (lots of disk access)
– High-latency (batch processing)

• Addressed by follow-up research and Apache projects
– Pig and Hive for high-level coding
– Spark for iterative and low-latency jobs

Lec 24.6812/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Future?

• Complete location transparency
– Mobile Data, encrypted all the time
– Computation anywhere any time
– Cryptographic-based identities
– Large Cloud-centers, Fog Computing

• Internet of Things?
– Everything connected, all the time!
– Huge Potential
– Very Exciting and Scary at same time

• Better programming models need to be developed!
• Perhaps talk about this on Monday

Lec 24.6912/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Truly Distributed Apps: The Swarm of Resources

Cloud/FOG Services

The Local Swarm:
Person, House, Office, Café Enterprise Services

Lec 24.7012/2/15 Kubiatowicz CS162 ©UCB Fall 2015

An New Application Model

• A Swarm Application is a
Connected graph of Components

– Globally distributed, but locality and QoS aware
– Avoid Stovepipe solutions through reusability

• Many components are Shared Services written by
programmers with a variety of skill-sets and motivations

– Service Level Agreements (SLA) with micropayments

Sensors
with

Aggregation

Distributed
Archival
Storage

Real-Time
Components

SwarmLet
(“The Application”)

Transform
and Archive

Channel

Lec 24.7112/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Thank you!

• Let’s Thank the TAs!
• Thanks for helping us with this experimental version

of the course… I think that it is going to be great!
• Good Bye!

intro

