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Recall: Multilevel Indexed Files (Original 4.1 BSD)
• Sample file in multilevel 

indexed format:
– 10 direct ptrs, 1K blocks
– How many accesses for 
block #23? (assume file 
header accessed on open)?

» Two: One for indirect block, 
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block, 

indirect block, and data
• UNIX 4.1 Pros and cons

– Pros: Simple (more or less)
Files can easily expand (up to a point)
Small files particularly cheap and easy

– Cons: Lots of seeks
Very large files must read many indirect block (four 
I/Os per block!)
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File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from pathsinodes
– Disk blocks: Mapping from block addressdisk content

• Buffer Cache: Memory used to cache kernel resources, 
including disk blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)
• Replacement policy?  LRU

– Can afford overhead full LRU implementation
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to 

accommodate a host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system, 
thereby flushing the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used
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File System Caching (con’t)
• Cache Size: How much memory should the OS allocate 

to the buffer cache vs virtual memory?
– Too much memory to the file system cache  won’t be 
able to run many applications at once

– Too little memory to file system cache  many 
applications may run slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk 
access rates for paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early
– Key Idea: exploit fact that most common file access is 
sequential by prefetching subsequent disk blocks ahead of 
current read request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of 
prefetches from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among 

concurrent file requests
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File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent 

out to disk
– Instead, write() copies data from user space buffer 
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written 
file blocks in cache for a while

» If some other application tries to read data before 
written to disk, file system will read from cache 

– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages: 

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value 

for a file
» Some files need never get written to disk! (e..g temporary 

scratch files written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file 

has been written out? (lose pointer to inode!)
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Important “ilities”
• Availability: the probability that the system can 

accept and process requests
– Often measured in “nines” of probability.  So, a 99.9% 
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data 

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on 
pyramids was very durable, but could not be accessed 
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to 
perform its required functions under stated conditions 
for a specified period of time (IEEE definition)

– Usually stronger than simply availability: means that the 
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk 
crashes, other problems
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How to make file system durable?
• Disk blocks contain Reed-Solomon error correcting 

codes (ECC) to deal with small defects in disk drive
– Can allow recovery of data from small media defects 

• Make sure writes survive in short term
– Either abandon delayed writes or
– use special, battery-backed RAM (called non-volatile RAM 
or NVRAM) for dirty blocks in buffer cache.

• Make sure that data survives in long term
– Need to replicate!  More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is 

struck by lightning…. 
» Could put copies on servers in different continents…

• RAID: Redundant Arrays of Inexpensive Disks
– Data stored on multiple disks (redundancy)
– Either in software or hardware

» In hardware case, done by disk controller; file system may 
not even know that there is more than one disk in use

Lec 20.811/9/15 Kubiatowicz CS162 ©UCB Fall 2015

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its "shadow“
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully 
synchronized (hard to do exactly)

• Reads may be optimized
– Can have two independent reads to same data

• Recovery: 
– Disk failure  replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be 
used for immediate replacement

recovery
group
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• Data stripped across 
multiple disks 

– Successive blocks 
stored on successive 
(non-parity) disks

– Increased bandwidth
over single disk

• Parity block (in green) 
constructed by XORing 
data bocks in stripe

– P0=D0D1D2D3
– Can destroy any one 
disk and still 
reconstruct data

– Suppose D3 fails, 
then can reconstruct:
D3=D0D1D2P0

• Later in term: talk about spreading information widely 
across internet for durability.

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk 
Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
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Higher Durability/Reliability through 
Geographic Replication

• Highly durable – hard to destroy bits
• Highly available for reads
• Low availability for writes

– Can’t write if any one is not up
– Or – need relaxed consistency model

• Reliability?
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File System Reliability

• What can happen if disk loses power or machine 
software crashes?

– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all 
such failures

– Bit-for-bit protection of bad state?
– What if one disk of RAID group not written?

• File system wants durability (as a minimum!)
– Data previously stored can be retrieved (maybe after 
some recovery step), regardless of failure
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Storage Reliability Problem

• Single logical file operation can involve updates to 
multiple physical disk blocks

– inode, indirect block, data block, bitmap, …
– With remapping, single update to physical disk block 
can require multiple (even lower level) updates

• At a physical level, operations complete one at a 
time

– Want concurrent operations for performance
• How do we guarantee consistency regardless of 

when crash occurs?
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Threats to Reliability

• Interrupted Operation
– Crash or power failure in the middle of a series of 
related updates may leave stored data in an 
inconsistent state.

– e.g.: transfer funds from BofA to Schwab.  What 
if transfer is interrupted after withdrawal and 
before deposit

• Loss of stored data
– Failure of non-volatile storage media may cause 
previously stored data to disappear or be corrupted
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Administrivia

• Midterm II: Coming up in 2 weeks! (11/23)
– 7-10PM, “here” (2040, 2050, 2060 VLSB)
– Topics up to and including previous Wednesday
– 1 page of hand-written notes, both sides

• Moved HW4 forward 1 week (hand out next Monday)
• No class on Wednesday (it is a holiday)
• Only 5 official lectures left (including this one!)
• Final (optional) lecture

– Monday of RRR week (12/07)
– Whatever topics you would like!
– Let me know what you want to hear about
– Examples: IoT, security hardware, quantum 
computing…..
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Reliability Approach #1: Careful Ordering

• Sequence operations in a specific order
– Careful design to allow sequence to be interrupted 
safely

• Post-crash recovery
– Read data structures to see if there were any 
operations in progress

– Clean up/finish as needed

• Approach taken in FAT, FFS (fsck), and many 
app-level recovery schemes (e.g., Word)
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FFS: Create a File

Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of 
free blocks

• Update directory 
with file name -> 
file number

• Update modify time 
for directory

Recovery:
• Scan inode table
• If any unlinked files 
(not in any 
directory), delete

• Compare free block 
bitmap against inode
trees

• Scan directories for 
missing update/access 
times

Time proportional to 
size of disk
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Reliability Approach #2:
Copy on Write File Layout

• To update file system, write a new version of 
the file system containing the update

– Never update in place
– Reuse existing unchanged disk blocks

• Seems expensive!  But
– Updates can be batched
– Almost all disk writes can occur in parallel

• Approach taken in network file server appliances 
(WAFL, ZFS)
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COW integrated with file system

• If file represented as a tree of blocks, just need 
to update the leading fringe

Write 

old version new version

Lec 20.1911/9/15 Kubiatowicz CS162 ©UCB Fall 2015

COW with smaller-radix blocks

• If file represented as a tree of blocks, just need 
to update the leading fringe

Write 

old version new version
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ZFS

• Variable sized blocks: 512 B – 128 KB
• Symmetric tree

– Know if it is large or small when we make the copy
• Store version number with pointers

– Can create new version by adding blocks and new 
pointers

• Buffers a collection of writes before creating a 
new version with them 

• Free space represented as tree of extents in 
each block group

– Delay updates to freespace (in log) and do them all 
when block group is activated
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More General Solutions

• Transactions for Atomic Updates
– Ensure that multiple related updates are performed 
atomically

– i.e., if a crash occurs in the middle, the state of the 
systems reflects either all or none of the updates

– Most modern file systems use transactions internally to 
update the many pieces

– Many applications implement their own transactions
• Redundancy for media failures

– Redundant representation (error correcting codes)
– Replication
– E.g., RAID disks
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Transactions

• Closely related to critical sections in manipulating 
shared data structures

• Extend concept of atomic update from memory to 
stable storage

– Atomically update multiple persistent data structures
• Like flags for threads, many ad hoc approaches

– FFS carefully ordered the sequence of updates so 
that if a crash occurred while manipulating directory 
or inodes the disk scan on reboot would detect and 
recover the error, -- fsck

– Applications use temporary files and rename 
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Key concept: Transaction

• An atomic sequence of actions (reads/writes) on 
a storage system (or database)

• That takes it from one consistent state to 
another

consistent state 1 consistent state 2
transaction
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Typical Structure

• Begin a transaction – get transaction id
• Do a bunch of updates

– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction
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“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00 
WHERE name = 'Alice'; 

UPDATE branches SET balance = balance - 100.00 
WHERE name = (SELECT branch_name FROM accounts 
WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 100.00 
WHERE name = 'Bob'; 

UPDATE branches SET balance = balance + 100.00 
WHERE name = (SELECT branch_name FROM accounts 
WHERE name = 'Bob');

BEGIN;    --BEGIN TRANSACTION

COMMIT;    --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account
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The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or 
none happen

• Consistency: transactions maintain data integrity, 
e.g.,

– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated 
from that of all others; no problems from concurrency

• Durability: if a transaction commits, its effects 
persist despite crashes
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Transactional File Systems

• Better reliability through use of log
– All changes are treated as transactions 
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, 
data preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

• Journaling File System
– Applies updates to system metadata using transactions 
(using logs, etc.)

– Updates to non-directory files (i.e., user stuff) can be 
done in place (without logs), full logging optional

– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4
• Full Logging File System

– All updates to disk are done in transactions
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Logging File Systems

• Instead of modifying data structures on disk directly, write 
changes to a journal/log

– Intention list: set of changes we intend to make
– Log/Journal is append-only
– Single commit record commits transaction

• Once changes are in the log, it is safe to apply changes to 
data structures on disk

– Recovery can read log to see what changes were intended
– Can take our time making the changes

» As long as new requests consult the log first
• Once changes are copied, safe to remove log
• But, …

– If the last atomic action is not done … poof … all gone
• Basic assumption: 

– Updates to sectors are atomic and ordered
– Not necessarily true unless very careful, but key assumption
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Redo Logging

• Prepare
– Write all changes 
(in transaction) to 
log

• Commit
– Single disk write to 
make transaction 
durable

• Redo
– Copy changes to 
disk

• Garbage collection
– Reclaim space in log

• Recovery
– Read log
– Redo any operations 
for committed 
transactions

– Garbage collect log
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Example: Creating a file

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point
--------------------------
• Write map (i.e., mark used)
• Write inode entry to point to 

block(s)
• Write dirent to point to inode

Data blocks

Free 
Space 
map…

Inode table

Directory
entries
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Ex: Creating a file (as a transaction)

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point
--------------------------
• Write map (used)
• Write inode entry to point to 

block(s)
• Write dirent to point to inode

Data blocks

Free 
Space 
map…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m
m
it

Lec 20.3211/9/15 Kubiatowicz CS162 ©UCB Fall 2015

ReDo log 

• After Commit
• All access to file system first 

looks in log
• Eventually copy changes to disk

Data blocks

Free 
Space 
map…

Inode table

Directory
entries

Log in non-volatile storage (Flash)

headtail

pending

done

st
ar

t

co
m
m
it

tail tail tail tail
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Crash during logging - Recover

• Upon recovery scan the long
• Detect transaction start 

with no commit
• Discard log entries
• Disk remains unchanged Data blocks

Free 
Space 
map…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t
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Recovery After Commit

• Scan log, find start
• Find matching commit
• Redo it as usual

– Or just let it happen later
Data blocks

Free 
Space 
map…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m
m
it
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Course Structure: Spiral

intro
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Societal Scale Information Systems

Scalable, Reliable,
Secure Services

MEMS for 
Sensor Nets

Internet
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large 
distributed system

– Microprocessors in 
everything

– Vast infrastructure behind 
them

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet
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Centralized vs Distributed Systems

• Centralized System: System in which major functions 
are performed by a single physical computer

– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers 
working together on some task

– Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model
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Distributed Systems: Motivation/Issues
• Why do we want distributed systems?

– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: Much easier for users to collaborate through 
network resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure 

• Reality has been disappointing
– Worse availability: depend on every machine being up

» Lamport: “a distributed system is one where I can’t do work 
because some machine I’ve never heard of isn’t working!”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information 
(using only a network)

– What would be easy in a centralized system becomes a lot 
more difficult
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Distributed Systems: Goals/Requirements
• Transparency: the ability of the system to mask its 

complexity behind a simple interface
• Possible transparencies:

– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by spliting 
them into smaller pieces

– Fault Tolerance: System may hide varoius things that go 
wrong in the system

• Transparency and collaboration require some way for 
different processors to communicate with one another
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What Is A Protocol?

• A protocol is an agreement on how to communicate
• Includes

– Syntax: how a communication is specified & structured
» Format, order messages are sent and received

– Semantics: what a communication means
» Actions taken when transmitting, receiving, or when a timer 

expires

• Described formally by a state machine
– Often represented as a message transaction diagram
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Examples of Protocols in Human Interactions

• Telephone
1. (Pick up / open up the phone)
2. Listen for a dial tone / see that you have service
3. Dial
4. Should hear ringing …
5. Callee: “Hello?”
6. Caller: “Hi, it’s John….”

Or: “Hi, it’s me” ( what’s that about?)
7. Caller: “Hey, do you think … blah blah blah …” pause

1. Callee: “Yeah, blah blah blah …” pause
2. Caller: Bye
3. Callee: Bye
4. Hang up
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End System: Computer on the ‘Net

Internet

Also known as a “host”…
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Clients and Servers

• Client program
– Running on end host
– Requests service
– E.g., Web browser

GET /index.html
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Clients and Servers

• Client program
– Running on end host
– Requests service
– E.g., Web browser

• Server program
– Running on end host
– Provides service
– E.g., Web server

GET /index.html

“Site under construction”
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Client-Server Communication

• Client “sometimes on”
– Initiates a request to the 

server when interested
– E.g., Web browser on 

your laptop or cell phone
– Doesn’t communicate 

directly with other clients
– Needs to know the 

server’s address

• Server is “always on”
– Services requests from 

many client hosts
– E.g., Web server for the 

www.cnn.com Web site
– Doesn’t initiate contact 

with the clients
– Needs a fixed, well-

known address
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Peer-to-Peer Communication

• No always-on server at the center of it all
– Hosts can come and go, and change addresses
– Hosts may have a different address each time

• Example: peer-to-peer file sharing (e.g., BitTorrent)
– Any host can request files, send files, query to find 

where a file is located, respond to queries, and forward 
queries

– Scalability by harnessing millions of peers
– Each peer acting as both a client and server
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Global Communication: The Problem

• Many different applications
– email, web, P2P, etc.

• Many different network styles and technologies
– Wireless vs. wired vs. optical, etc.

• How do we organize this mess?
– Re-implement every application for every technology?

• No! But how does the Internet design avoid this?

Skype SSH NFS

Packet
Radio

Coaxial 
cable

Fiber
optic

Application

Transmission
Media

HTTP
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Solution: Intermediate Layers

• Introduce intermediate layers that provide set of 
abstractions for various network functionality & 
technologies

– A new app/media implemented only once
– Variation on “add another level of indirection”

Skype SSH NFS

Packet
radio

Coaxial 
cable

Fiber
optic

Application

Transmission
Media

HTTP

Intermediate 
layers

“Narrow Waist”
Internet Protocol
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Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on 
different machines 

» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and 

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive
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Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receiver actually 
received the message?

– When can sender reuse the memory containing message?
• Mailbox provides 1-way communication from T1T2

– T1bufferT2
– Very similar to producer/consumer 

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!
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Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];while(1) {prepare message; send(msg1,mbox);}

Consumer:int buffer[1000];while(1) {receive(buffer,mbox);process message;}
• No need for producer/consumer to keep track of space 

in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of 
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message
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Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client  requester, Server  responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)char response[1000];

send(“read rutabaga”, server_mbox);receive(response, client_mbox);
Server: (responding with the file)char command[1000], answer[1000];

receive(command, server_mbox);decode command;read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response
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• General’s paradox: 
– Constraints of problem: 

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because 
he arrived a couple of days too early

• Can messages over an unreliable network be used to 
guarantee two entities do something simultaneously?

– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

General’s Paradox

Lec 20.5411/9/15 Kubiatowicz CS162 ©UCB Fall 2015

Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e. 

simultaneous action), let’s solve a related problem
– Distributed transaction: Two machines agree to do 
something, or not do it, atomically 

• Two-Phase Commit protocol does this
– Persistent stable log on each machine: keep track of 
whether commit has happened

» If a machine crashes, when it wakes up it first checks its 
log to recover state of world at time of crash

– Prepare Phase:
» The global coordinator requests that all participants will 

promise to commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its 

log and tells everyone to abort; each records “Abort” in log
– Commit Phase:

» After all participants respond that they are prepared, then 
the coordinator writes “Commit” to its log

» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “Got Commit” to log

– Log can be used to complete this process such that all 
machines either commit or don’t commit
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2PC Algorithm

• Developed by Turing award winner Jim Gray (first 
Berkeley CS PhD, 1969)

• One coordinator 
• N workers (replicas) 
• High level algorithm description

– Coordinator asks all workers if they can commit
– If all workers reply “VOTE-COMMIT”, then coordinator 
broadcasts “GLOBAL-COMMIT”, 
Otherwise coordinator broadcasts “GLOBAL-ABORT”

– Workers obey the GLOBAL messages
• Use a persistent, stable log on each machine to keep 

track of what you are doing
– If a machine crashes, when it wakes up it first checks 
its log to recover state of world at time of crash
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Detailed Algorithm

Coordinator sends VOTE‐REQ to all 
workers

– Wait for VOTE‐REQ from coordinator
– If ready, send VOTE‐COMMIT to 

coordinator
– If not ready, send VOTE‐ABORT to 

coordinator
– And immediately abort

– If receive VOTE‐COMMIT from all N 
workers, send GLOBAL‐COMMIT to 
all workers

– If doesn’t receive VOTE‐COMMIT
from all N workers, send GLOBAL‐
ABORT to all workers

– If receive GLOBAL‐COMMIT then 
commit

– If receive GLOBAL‐ABORT then abort

Coordinator Algorithm Worker Algorithm
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Failure Free Example Execution

coordinator

worker 1

time

VOTE‐
REQ

VOTE‐
COMMIT

GLOBAL‐
COMMIT

worker 2

worker 3
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State Machine of Coordinator

• Coordinator implements simple state machine:

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: all VOTE‐COMMIT
Send: GLOBAL‐COMMIT
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State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Dealing with Worker Failures

• How to deal with worker failures?
– Failure only affects states in which the node is 
waiting for messages

– Coordinator only waits for votes in “WAIT” state
– In WAIT, if doesn’t receive 
– N votes, it times out and sends
– GLOBAL-ABORT

INIT

WAIT

ABORT COMMIT

Recv: START
Send: VOTE‐REQ

Recv: VOTE‐ABORT
Send: GLOBAL‐ABORT

Recv: VOTE‐COMMIT
Send: GLOBAL‐COMMIT
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Example of Worker Failure

coordinator

worker 1

time

VOTE‐REQ

VOTE‐
COMMIT

GLOBAL‐
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3
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Dealing with Coordinator Failure

• How to deal with coordinator failures?
– worker waits for VOTE-REQ in INIT

» Worker can time out and abort (coordinator handles it)
– worker waits for GLOBAL-* message in READY

» If coordinator fails, workers must
BLOCK waiting for coordinator
to recover and send
GLOBAL_* message INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Example of Coordinator Failure #1

coordinator

worker 1

VOTE‐
REQ

VOTE‐
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3
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Example of Coordinator Failure #2

VOTE‐REQ

VOTE‐
COMMIT

INIT

READY

ABORT COMM

block waiting for 
coordinator

restarted

GLOBAL‐
ABORT

coordinator

worker 1

worker 2

worker 3
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Durability

• All nodes use stable storage* to store which state 
they are in

• Upon recovery, it can restore state and resume:
– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, ABORT
– Worker commits in COMMIT
– Worker asks Coordinator in READY

• * - stable storage is non-volatile storage (e.g. 
backed by disk) that guarantees atomic writes. 
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Blocking for Coordinator to Recover

• A worker waiting for global decision can ask 
fellow workers about their state

– If another worker is in ABORT or 
COMMIT state then coordinator 
must have sent GLOBAL-*

» Thus, worker can safely 
abort or commit, respectively

– If another worker is still in 
INIT state then both workers 
can decide to abort 

– If all workers are in ready, 
need to BLOCK (don’t know if coordinator 
wanted to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE‐REQ
Send: VOTE‐ABORT

Recv: VOTE‐REQ
Send: VOTE‐COMMIT

Recv: GLOBAL‐ABORT Recv: GLOBAL‐COMMIT
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Distributed Decision Making Discussion
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one or 
more of them fail during the process

» Simple failure mode called “failstop” (different modes later)
– After decision made, result recorded in multiple places

• Undesirable feature of Two-Phase Commit: Blocking
– One machine can be stalled until another site recovers:

» Site B writes “prepared to commit” record to its log, 
sends a “yes” vote to the coordinator (site A) and crashes

» Site A crashes
» Site B wakes up, check its log, and realizes that it has 

voted “yes” on the update. It sends a message to site A 
asking what happened. At this point, B cannot decide to 
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items, 
pages pinned in memory, etc) until learns fate of update

• PAXOS: An alternative used by GOOGLE and others 
that does not have this blocking problem

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making
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Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1 
lieutenants such that:

– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal 
lieutenants obey the order he sends

General

Retreat!
Attack!

Lieutenant

Lieutenant

LieutenantMalicious!
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Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision 
even if some subset of them (< n/3 ) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision
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Remote Procedure Call
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls: remoteFileSystemRead(“rutabaga”);
– Translated automatically into call on server:fileSysRead(“rutabaga”);

• Implementation:
– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

» Client stub is responsible for “marshalling” arguments and 
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling” 
arguments and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing 
objects, copying arguments passed by reference, etc. 
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RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2
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RPC Details
• Equivalence with regular procedure call

– Parameters Request Message
– Result  Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box) 

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition 
language (IDL)”

» Contains, among other things, types of arguments/return
– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for 
result, unpack result and return to caller

» Code for server to unpack message, call procedure, pack 
results, send them off

• Cross-platform issues:
– What if client/server machines are different 
architectures or in different languages?

» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded 

(avoids unnecessary conversions).
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RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network 
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name 
into a network endpoint

» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of servicembox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request
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Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a 
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same 

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while 
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free 

» Caching can help, but may make failure handling complex
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Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address 
spaces on different machines or the same machine

– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)
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Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces 
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can 

be on a separate machine from X server; Neither has to run 
on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure
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Summary (1/2)
• Important system properties

– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• Use of Log to improve Reliability
– Journaled file systems such as ext3, NTFS

• Transactions: ACID semantics
– Atomicity
– Consistency
– Isolation
– Durability
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Summary (2/2)
• Two-phase commit: distributed decision making

– First, make sure everyone guarantees that they will 
commit if asked (prepare)

– Next, ask everyone to commit
• Byzantine General’s Problem: distributed decision making 

with malicious failures
– One general, n-1 lieutenants: some number of them may 
be malicious (often “f” of them)

– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n  3f+1

• Remote Procedure Call (RPC): Call procedure on remote 
machine

– Provides same interface as procedure
– Automatic packing and unpacking of arguments without 
user programming (in stub)


