
CS162
Operating Systems and
Systems Programming

Lecture 19

File Systems (Con’t),
MMAP, Buffer Cache

November 4th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 19.211/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = 2/m12

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ = Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1):

» Called M/M/1 queue: Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server:

» Called M/G/1 queue: Tq = Tser x ½(1+C) x u/(1 – u))

Arrival Rate

Queue Server
Service Rate
μ=1/Tser

Lec 19.311/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Building a File System
• File System: Layer of OS that transforms block

interface of disks (or other block devices) into Files,
Directories, etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite
crashes, media failures, attacks, etc

• User vs. System View of a File
– User’s view:

» Durable Data Structures
– System’s view (system call interface):

» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you

want to store on disk!
– System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while
a sector is the physical transfer unit)

» Block size sector size; in UNIX, block size is 4KB

Lec 19.411/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Disk Management Policies
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in
logical space

– Directory: user-visible index mapping names to files
(next lecture)

• Access disk as linear array of sectors. Two Options:
– Identify sectors as vectors [cylinder, surface, sector].
Sort in cylinder-major order. Not used much anymore.

– Logical Block Addressing (LBA). Every sector has integer
address from zero up to max number of sectors.

– Controller translates from address physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

• Need way to track free disk blocks
– Link free blocks together too slow today
– Use bitmap to represent free space on disk

• Need way to structure files: File Header (“Inode”)
– Track which blocks belong at which offsets within the
logical file structure

– Optimize placement of files’ disk blocks to match access
and usage patterns

Lec 19.511/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Components of a File System

Directory
Structure

File path

File Index
Structure

File number

…

Data blocks

“inode”

“inumber”

One Block = multiple sectors
Eg: 512 sector, 4K block

Lec 19.611/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Components of a file system

• Open performs name resolution
– Translates pathname into a “file number”

» Used as an “index” to locate the blocks
– Creates a file descriptor in PCB within kernel
– Returns a “handle” (another int) to user process

• Read, Write, Seek, and Sync operate on handle
– Mapped to descriptor and to blocks

file name
offset directory

file number
offset index structureStorage block

Lec 19.711/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Directories

Lec 19.811/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Directory

• Basically a hierarchical structure
• Each directory entry is a collection of

– Files
– Directories

» A link to another entries
• Each has a name and attributes

– Files have data
• Links (hard links) make it a DAG, not just a tree

– Softlinks (aliases) are another name for an entry

Lec 19.911/4/15 Kubiatowicz CS162 ©UCB Fall 2015

File

• Named permanent storage
• Contains

– Data
» Blocks on disk somewhere

– Metadata (Attributes)
» Owner, size, last opened, …
» Access rights

• R, W, X
• Owner, Group, Other (in Unix
systems)

• Access control list in Windows
system

…

Data blocks

File descriptor
Fileobject (inode)
Position

File handle

Lec 19.1011/4/15 Kubiatowicz CS162 ©UCB Fall 2015

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

In-Memory File System Structures

Lec 19.1111/4/15 Kubiatowicz CS162 ©UCB Fall 2015

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes

In-Memory File System Structures

Lec 19.1211/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Administrivia

• HW3 – Moved deadline to Wednesday (11/04)
– Sorry about fact that server was down!

• Project 2 code due this Friday!
• Don’t forget Peer-review for project 1

– Everyone must submit one!
• Midterm I Regrade requests: Due Today!
• Midterm II: Coming up in 3 weeks! (11/23)

– 7-10PM, “here” (2040, 2050, 2060 VLSB)
– Topics up to and including previous Wednesday
– 1 page of hand-written notes, both sides

• Only 30 people filled out course survey
– Please give us more feedback!

Lec 19.1311/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Our first filesystem: FAT (File Allocation Table)

• Assume (for now) we have a
way to translate a path to a “file
number”

– i.e., a directory structure
• Disk Storage is a collection of

Blocks
– Just hold file data

• Example: file_read 31, < 2, x >
– Index into FAT with file number
– Follow linked list to block
– Read the block from disk into mem

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

mem
Lec 19.1411/4/15 Kubiatowicz CS162 ©UCB Fall 2015

• File is collection of disk blocks
• FAT is linked list 1-1 with

blocks
• File Number is index of root

of block list for the file
• File offset (o = B:x)
• Follow list to get block #
• Unused blocks FAT free list

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Properties

Lec 19.1511/4/15 Kubiatowicz CS162 ©UCB Fall 2015

• File is collection of disk blocks
• FAT is linked list 1-1 with

blocks
• File Number is index of root

of block list for the file
• File offset (o = B:x)
• Follow list to get block #
• Unused blocks FAT free list
• Ex: file_write(51, <3, y>)

– Grab blocks from free list
– Linking them into file

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Properties

File 31, Block 3

Lec 19.1611/4/15 Kubiatowicz CS162 ©UCB Fall 2015

• File is collection of disk blocks
• FAT is linked list 1-1 with

blocks
• File Number is index of root

of block list for the file
• Grow file by allocating free

blocks and linking them in
• Ex: Create file, write, write

File 31, Block 3

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Properties

File 63, Block 1

File 63, Block 0

File 2 number

63:

Lec 19.1711/4/15 Kubiatowicz CS162 ©UCB Fall 2015

File 31, Block 3

• Used in DOS, Windows, thumb
drives, …

• Where is FAT stored?
– On Disk, restore on boot, copy
in memory

• What happens when you format
a disk?

– Zero the blocks, link up the FAT
free-list

• Simple

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Assessment

File 63, Block 1

File 63, Block 063:

File 2 number

Lec 19.1811/4/15 Kubiatowicz CS162 ©UCB Fall 2015

File 31, Block 3

• Time to find block (large files) ??
• Block layout for file ???
• Sequential Access ???
• Random Access ???
• Fragmentation ???
• Small files ???
• Big files ???

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-
1:

0:0:

N-1:

31:

file number

free

mem

FAT Assessment

File 63, Block 1

File 63, Block 063:

File 2 number

Lec 19.1911/4/15 Kubiatowicz CS162 ©UCB Fall 2015

What about the Directory?

• Essentially a file containing
<file_name: file_number> mappings

• Free space for new entries
• In FAT: attributes kept in directory (!!!)
• Each directory a linked list of entries
• Where do you find root directory (“/”)?

Lec 19.2011/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Directory Structure (Con’t)

• How many disk accesses to resolve “/my/book/count”?
– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs. Search linearly – ok
since directories typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer
to a directory (inode) used for resolving file names

– Allows user to specify relative filename instead of
absolute path (say CWD=“/my/book” can resolve “count”)

Lec 19.2111/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Big FAT security holes

• FAT has no access rights
• FAT has no header in the file blocks
• Just gives and index into the FAT

– (file number = block number)

Lec 19.2211/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Characteristics of Files

• Most files are small
• Most of the space is occupied

by the rare big ones

Lec 19.2311/4/15 Kubiatowicz CS162 ©UCB Fall 2015

So what about a “real” file system

• Meet the inode:

file_number

Lec 19.2411/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Unix File System

• Original inode format appeared in BSD 4.1
– Berkeley Standard Distribution Unix
– Part of your heritage!
– Similar structure for Linux Ext2/3

• File Number is index into inode arrays
• Multi-level index structure

– Great for little and large files
– Asymmetric tree with fixed sized blocks

• Metadata associated with the file
– Rather than in the directory that points to it

• UNIX FFS: BSD 4.2: Locality Heuristics
– Block group placement
– Reserve space

• Scalable directory structure

Lec 19.2511/4/15 Kubiatowicz CS162 ©UCB Fall 2015

An “almost real” file system

• Pintos: src/filesys/file.c, inode.c

file_number

Lec 19.2611/4/15 Kubiatowicz CS162 ©UCB Fall 2015

File Attributes

• Inode metadata

User
Group
9 basic access control bits

- UGO x RWX
Setuid bit

- execute at owner permissions
- rather than user

Getgid bit
- execute at group’s permissions

Lec 19.2711/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Data Storage

• Small files: 12 pointers direct to data blocks

Direct pointers

4kB blocks sufficient
For files up to 48KB

Lec 19.2811/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Data Storage

• Large files: 1,2,3 level indirect pointers

Indirect pointers
- point to a disk block

containing only pointers
- 4 kB blocks => 1024 ptrs

=> 4 MB @ level 2
=> 4 GB @ level 3
=> 4 TB @ level 4 48 KB

+4 MB

+4 GB

+4 TB

Lec 19.2911/4/15 Kubiatowicz CS162 ©UCB Fall 2015

UNIX BSD 4.2
• Same as BSD 4.1 (same file header and triply indirect

blocks), except incorporated ideas from Cray DEMOS:
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned next slide)

• Problem: When create a file, don’t know how big it
will become (in UNIX, most writes are by appending)

– How much contiguous space do you allocate for a file?
– In BSD 4.2, just find some range of free blocks

» Put each new file at the front of different range
» To expand a file, you first try successive blocks in

bitmap, then choose new range of blocks
– Also in BSD 4.2: store files from same directory near
each other

• Fast File System (FFS)
– Allocation and placement policies for BSD 4.2

Lec 19.3011/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a

track: give time for processing to overlap rotation
– Solution2: Read ahead: read next block right after first,
even if application hasn’t asked for it yet.

» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have

internal RAM that allows them to read a complete track
• Important Aside: Modern disks+controllers do many

complex things “under the covers”
– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

Lec 19.3111/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file
system, headers stored in special array in
outermost cylinders

– Header not stored anywhere near the data blocks.
To read a small file, seek to get header, seek back
to data.

– Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

Lec 19.3211/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Where are inodes stored?

• Later versions of UNIX moved the header
information to be closer to the data blocks

– Often, inode for file stored in same “cylinder group”
as parent directory of the file (makes an ls of that
directory run fast).

– Pros:
» UNIX BSD 4.2 puts a portion of the file header array

on each of many cylinders. For small directories, can fit
all data, file headers, etc. in same cylinder no seeks!

» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from disk at
same time

» Reliability: whatever happens to the disk, you can find
many of the files (even if directories disconnected)

– Part of the Fast File System (FFS)
» General optimization to avoid seeks

Lec 19.3311/4/15 Kubiatowicz CS162 ©UCB Fall 2015

4.2 BSD Locality: Block Groups

• File system volume is divided into a
set of block groups

– Close set of tracks
• Data blocks, metadata, and free

space interleaved within block
group

– Avoid huge seeks between user
data and system structure

• Put directory and its files in
common block group

• First-Free allocation of new
file blocks

– To expand file, first try
successive blocks in bitmap, then
choose new range of blocks

– Few little holes at start, big
sequential runs at end of group

– Avoids fragmentation
– Sequential layout for big files

• Important: keep 10% or more free!
– Reserve space in the BG

Lec 19.3411/4/15 Kubiatowicz CS162 ©UCB Fall 2015

FFS First Fit Block Allocation

• Fills in the small holes at the start of block group
• Avoids fragmentation, leaves contiguous free space

at end

Lec 19.3511/4/15 Kubiatowicz CS162 ©UCB Fall 2015

FFS

• Pros
– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data

• Cons
– Inefficient for tiny files (a 1 byte file requires
both an inode and a data block)

– Inefficient encoding when file is mostly contiguous
on disk (no equivalent to superpages)

– Need to reserve 10-20% of free space to prevent
fragmentation

Lec 19.3611/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Linux Example: Ext2/3 Disk Layout
• Disk divided into block

groups
– Provides locality
– Each group has two
block-sized bitmaps
(free blocks/inodes)

– Block sizes settable
at format time:
1K, 2K, 4K, 8K…

• Actual Inode structure
similar to 4.2BSD

– with 12 direct pointers
• Ext3: Ext2 w/Journaling

– Several degrees of
protection with more or
less cost • Example: create a file1.dat

under /dir1/ in Ext3

Lec 19.3711/4/15 Kubiatowicz CS162 ©UCB Fall 2015

A bit more on directories
• Stored in files, can be read, but typically don’t

– System calls to access directories
– Open / Creat traverse the structure
– mkdir /rmdir add/remove entries
– Link / Unlink

» Link existing file to a directory
• Not in FAT !

» Forms a DAG
• When can file be deleted?

– Maintain ref-count of links to the file
– Delete after the last reference is gone.

• libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent *entry,

struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

/usr/lib/foo

Lec 19.3811/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Links

• Hard link
– Sets another directory entry to contain the file
number for the file

– Creates another name (path) for the file
– Each is “first class”

• Soft link or Symbolic Link
– Directory entry contains the name of the file
– Map one name to another name

Lec 19.3911/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Large Directories: B-Trees (dirhash)

Lec 19.4011/4/15 Kubiatowicz CS162 ©UCB Fall 2015

NTFS

• New Technology File System (NTFS)
– Common on Microsoft Windows systems

• Variable length extents
– Rather than fixed blocks

• Everything (almost) is a sequence of
<attribute:value> pairs

– Meta-data and data
• Mix direct and indirect freely
• Directories organized in B-tree structure by default

Lec 19.4111/4/15 Kubiatowicz CS162 ©UCB Fall 2015

NTFS

• Master File Table
– DataBase with Flexible 1KB entries for metadata/data
– Variable-sized attribute records (data or metadata)
– Extend with variable depth tree (non-resident)

• Extents – variable length contiguous regions
– Block pointers cover runs of blocks
– Similar approach in Linux (ext4)
– File create can provide hint as to size of file

• Journalling for reliability
– Discussed later

Lec 19.4211/4/15 Kubiatowicz CS162 ©UCB Fall 2015

NTFS Small File

Create time, modify time, access time,
Owner id, security specifier, flags (ro, hid, sys)

data attribute

Attribute list

Lec 19.4311/4/15 Kubiatowicz CS162 ©UCB Fall 2015

NTFS Medium File

Lec 19.4411/4/15 Kubiatowicz CS162 ©UCB Fall 2015

NTFS Multiple Indirect Blocks

Lec 19.4511/4/15 Kubiatowicz CS162 ©UCB Fall 2015 Lec 19.4611/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Memory Mapped Files

• Traditional I/O involves explicit transfers
between buffers in process address space to
regions of a file

– This involves multiple copies into caches in memory,
plus system calls

• What if we could “map” the file directly into an
empty region of our address space

– Implicitly “page it in” when we read it
– Write it and “eventually” page it out

• Executable file is treated this way when we exec
the process !!

Lec 19.4711/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Who does what, when?

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

Lec 19.4811/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Using Paging to mmap files

virtual address

MMU PTinstruction

physical address
page#

frame#

offset
page fault

Process

File

mmap file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry

Read File
contents

from memory!

Lec 19.4911/4/15 Kubiatowicz CS162 ©UCB Fall 2015

mmap system call

• May map a specific region or let the system find
one for you

– Tricky to know where the holes are
• Used both for manipulating files and for sharing

between processes
Lec 19.5011/4/15 Kubiatowicz CS162 ©UCB Fall 2015

An example
#include <sys/mman.h>

int something = 162;

int main (int argc, char *argv[]) {
int myfd;
char *mfile;

printf("Data at: %16lx\n", (long unsigned int) &something);
printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
printf("Stack at: %16lx\n", (long unsigned int) &mfile);

/* Open the file */
myfd = open(argv[1], O_RDWR | O_CREATE);
if (myfd < 0) { perror((“open failed!”);exit(1); }

/* map the file */
mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

printf("mmap at : %16lx\n", (long unsigned int) mfile);

puts(mfile);
strcpy(mfile+20,"Let's write over it");
close(myfd);
return 0;

}

Lec 19.5111/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Sharing through Mapped Files

• Also: anonymous memory between parents and children
– no file backing – just swap space

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

Lec 19.5211/4/15 Kubiatowicz CS162 ©UCB Fall 2015

System-V-style Shared Memory
Common chunk of read/write memory

among processes

Proc. 1 Proc. 2

ptrAttach

Proc. 3 Proc. 4 Proc. 5

ptr ptr ptr

ptr
Attach

Create

Shared Memory
(unique key)

0

MAX

Lec 19.5311/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Creating Shared Memory
// Create new segment
int shmget(key_t key, size_t size, int shmflg);

Example:
key_t key;
int shmid;

key = ftok(“<somefile>", ‘A');

shmid = shmget(key, 1024, 0644 | IPC_CREAT);

Special key: IPC_PRIVATE (create new segment)
Flags: IPC_CREAT (Create new segment)

IPC_EXCL (Fail if segment with key already exists)
lower 9 bits – permissions use on new segment

Filename only used to generate
key – not for storage

Lec 19.5411/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Attach and Detach Shared Memory
// Attach
void *shmat(int shmid, void *shmaddr, int shmflg);

Flags: SHM_RDONLY, SHM_REMAP
// Detach
int shmdt(void *shmaddr);

Example:
key_t key;
int shmid;
char *sharedmem;

key = ftok("<somefile>", ‘A');
shmid = shmget(key, 1024, 0644);
sharedmem = shmat(shmid, (void *)0, 0); // Attach smem
// Use shared memory segment (address is in sharedmem)
…
shmdt(sharedmem); // Detach smem (all finished)

Lec 19.5511/4/15 Kubiatowicz CS162 ©UCB Fall 2015

File System Caching
• Key Idea: Exploit locality by caching data in memory

– Name translations: Mapping from pathsinodes
– Disk blocks: Mapping from block addressdisk content

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)
• Replacement policy? LRU

– Can afford overhead of timestamps for each disk block
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to

accommodate a host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system,
thereby flushing the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used
Lec 19.5611/4/15 Kubiatowicz CS162 ©UCB Fall 2015

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate

to the buffer cache vs virtual memory?
– Too much memory to the file system cache won’t be
able to run many applications at once

– Too little memory to file system cache many
applications may run slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early
– Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among

concurrent file requests

Lec 19.5711/4/15 Kubiatowicz CS162 ©UCB Fall 2015

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent

out to disk
– Instead, write() copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other application tries to read data before
written to disk, file system will read from cache

– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value

for a file
» Some files need never get written to disk! (e..g temporary

scratch files written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file

has been written out? (lose pointer to inode!)

Lec 19.5811/4/15 Kubiatowicz CS162 ©UCB Fall 2015

Important “ilities”
• Availability: the probability that the system can

accept and process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data

despite faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone

• Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)

– Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk
crashes, other problems

Lec 19.5911/4/15 Kubiatowicz CS162 ©UCB Fall 2015

File System Summary (1/2)
• File System:

– Transforms blocks into Files and Directories
– Optimize for size, access and usage patterns
– Maximize sequential access, allow efficient random access
– Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”
• Naming: act of translating from user-visible names to actual

system resources
– Directories used for naming for local file systems
– Linked or tree structure stored in files

• Multilevel Indexed Scheme
– inode contains file info, direct pointers to blocks, indirect

blocks, doubly indirect, etc..
– NTFS uses variable extents, rather than fixed blocks, and tiny

files data is in the header
• 4.2 BSD Multilevel index files

– Inode contains pointers to actual blocks, indirect blocks, double
indirect blocks, etc.

– Optimizations for sequential access: start new files in open
ranges of free blocks, rotational Optimization

Lec 19.6011/4/15 Kubiatowicz CS162 ©UCB Fall 2015

File System Summary (2/2)

• File layout driven by freespace management
– Integrate freespace, inode table, file blocks and
directories into block group

• Deep interactions between memory management, file
system, and sharing

– mmap(): map file or anonymous segment to memory
– ftok/shmget/shmat: Map (anon) shared-memory segments

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)
• Important system properties

– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

