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Recall: I/O Performance

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

Controller

I/O
device

• Performance of I/O subsystem
– Metrics: Response Time, Throughput
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n )
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior:
– Can lead to big increases of latency as utilization increases
– Solutions?

100%

Response
Time (ms)

Throughput  (Utilization)
(% total BW)

0

100

200

300

0%

Lec 18.311/2/15 Kubiatowicz CS162 ©UCB Fall 2015

A Simple Deterministic World

• Assume requests arrive at regular intervals, take a 
fixed time to process, with plenty of time between …

• Service rate (μ = 1/TS)  - operations per sec
• Arrival rate: (λ =  1/TA) - requests per second 
• Utilization: U = λ/μ , where λ < μ
• Average rate is the complete story

Queue Serverarrivals departures

TQ TS

TA TA TA
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A Ideal Linear World

• What does the queue wait time look like?
– Grows unbounded at a rate ~ (Ts/TA) till request 
rate subsides

Offered Load  (TS/TA)
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A Bursty World

• Requests arrive in a burst, must queue up till served
• Same average arrival time, but almost all of the 

requests experience large queue delays
• Even though average utilization is low

Queue Serverarrivals departures
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Q depth

Server

Arrivals
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Likelihood of an event occuring
is independent of how long we’ve 
been waiting

So how do we model the burstiness of arrival?

• Elegant mathematical framework if you start with 
exponential distribution
– Probability density function of a continuous random 
variable with a mean of 1/λ

– f(x) = λe-λx

– “Memoryless”

Lots of short arrival 
intervals (i.e., high 
instantaneous rate)

Few long gaps (i.e., low 
instantaneous rate)

x (λ)

mean arrival interval (1/λ)
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Background: General Use of random distributions

• Server spends variable time with customers
– Mean (Average) m1 = p(T)T
– Variance 2 = p(T)(T-m1)2 = p(T)T2-m12

– Squared coefficient of variance: C = 2/m12

Aggregate description of the distribution.

• Important values of C:
– No variance or deterministic  C=0 
– “memoryless” or exponential  C=1

» Past tells nothing about future
» Many complex systems (or aggregates)

well described as memoryless 
– Disk response times C  1.5 (majority seeks < avg)

Mean 
(m1)

mean

Memoryless

Distribution
of service times
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DeparturesArrivals

Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state 
behavior  Arrival rate = Departure rate

• Arrivals characterized by some probabilistic distribution
• Departures characterized by some probabilistic 

distribution

Queue

Controller

Disk
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Little’s Law

• In any stable system 
– Average arrival rate = Average departure rate 

• the average number of tasks in the system (N) is equal to 
the throughput (B) times the response time (L) 

• N (ops) = B (ops/s) x L (s)
• Regardless of structure, bursts of requests, 
variation in service
– instantaneous variations, but it washes out in the average
– Overall requests match departures

arrivals departuresN
B

L
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A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– : mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = 2/m12

– μ: service rate = 1/Tser
– u: server utilization (0u1): u = /μ =   Tser

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue =   Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1):

» Called M/M/1 queue: Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server:

» Called M/G/1 queue: Tq = Tser x ½(1+C) x u/(1 – u))

Arrival Rate


Queue Server
Service Rate
μ=1/Tser
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A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions: 
– How utilized is the disk? 

» Ans: server utilization, u = Tser
– What is the average time spent in the queue? 

» Ans: Tq
– What is the number of requests in the queue? 

» Ans: Lq
– What is the avg response time for disk request? 

» Ans: Tsys = Tq + Tser
• Computation:
 (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) =  x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u) 

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) =  x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms
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Queuing Theory Resources

• Handouts page contains Queueing Theory Resources:
– Scanned pages from Patterson and Hennesey book that 
gives further discussion and simple proof for general eq.

– A complete website full of resources
• Midterms with queueing theory questions:

– Midterm IIs from previous years that I’ve taught
• Assume that Queueing theory is fair game for Midterm II 

and/or the final!
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Administrivia

• HW3 – Moved deadline to Wednesday (11/04)
– Sorry about fact that server was down!

• Project 2 code due this Friday!
• Midterm I Regrade requests: Due this Wednesday
• Midterm II: Coming up in 3 weeks! (11/23)

– 7-10PM, “here” (2040, 2050, 2060 VLSB)
– Topics up to and including previous Wednesday
– 2 pages of hand-written notes, both sides
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Quick Aside: Big Projects
• What is a big project?

– Time/work estimation is hard
– Programmers are eternal optimistics 
(it will only take two days)!
» This is why we bug you about 

starting the project early
» Had a grad student who used to say he just needed 

“10 minutes” to fix something. Two hours later…
• Can a project be efficiently partitioned?

– Partitionable task decreases in time as
you add people

– But, if you require communication:
» Time reaches a minimum bound
» With complex interactions, time increases!

– Mythical person-month problem:
» You estimate how long a project will take
» Starts to fall behind, so you add more people
» Project takes even more time!
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Techniques for Partitioning Tasks
• Functional

– Person A implements threads, Person B implements 
semaphores, Person C implements locks…

– Problem: Lots of communication across APIs
» If B changes the API, A may need to make changes
» Story: Large airline company spent $200 million on a new 

scheduling and booking system. Two teams “working 
together.” After two years, went to merge software. 
Failed! Interfaces had changed (documented, but no one 
noticed). Result: would cost another $200 million to fix. 

• Task
– Person A designs, Person B writes code, Person C tests
– May be difficult to find right balance, but can focus on 
each person’s strengths (Theory vs systems hacker)

– Since Debugging is hard, Microsoft has two testers for 
each programmer

• Most CS162 project teams are functional, but people 
have had success with task-based divisions
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Communication
• More people mean more communication

– Changes have to be propagated to more people
– Think about person writing code for most 
fundamental component of system: everyone depends 
on them!

– You should be meeting in person at least twice/week!
• Miscommunication is common

– “Index starts at 0?  I thought you said 1!”
• Who makes decisions?

– Individual decisions are fast but trouble
– Group decisions take time
– Centralized decisions require a big picture view (someone 
who can be the “system architect”)

• Often designating someone as the system architect 
can be a good thing
– Better not be clueless
– Better have good people skills
– Better let other people do work 
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Coordination
• More people  no one can make all meetings!

– They miss decisions and associated discussion
– Example from earlier class: one person missed 
meetings and did something group had rejected

• People have different work styles
– Some people work in the morning, some at night
– How do you decide when to meet or work together?

• What about project slippage?
– It will happen, guaranteed!
– Example: phase 4 of one project, everyone busy but 
not talking.  One person way behind.  No one knew 
until very end – too late!

• Hard to add people to existing group
– Members have already figured out how to work 
together
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Optimize I/O Performance

• Howto improve performance?
– Make everything faster 
– More Decoupled (Parallelism) systems

» multiple independent buses or controllers
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the service
– Do other useful work while waiting

• Queues absorb bursts and smooth the flow
• Admissions control (finite queues)

– Limits delays, but may introduce unfairness and livelock

Response Time = 
Queue + I/O device service time

User
Thread
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[OS Paths]

Controller

I/O
device
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When is the disk performance highest?

• When there are big sequential reads, or
• When there is so much work to do that they can be 

piggy backed (reordering queues—one moment)

• OK, to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?

• Other techniques:
– Reduce overhead through user level drivers
– Reduce the impact of I/O delays by doing other 
useful work in the meantime

Lec 18.2011/2/15 Kubiatowicz CS162 ©UCB Fall 2015

Disk Scheduling
• Disk can do only one request at a time; What order do 

you choose to do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be to 
random spots on the disk  Very long seeks

• SSTF: Shortest seek time first
– Pick the request that’s closest on the disk
– Although called SSTF, today must include 
rotational delay in calculation, since 
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but 
may lead to starvation

• SCAN: Implements an Elevator Algorithm: take the 
closest request in the direction of travel
– No starvation, but retains flavor of SSTF

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle
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Review: Device Drivers
• Device Driver: Device-specific code in the kernel that 

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with 
different device drivers

– Special device-specific configuration supported with the ioctl() system call
• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» implements a set of standard, cross-device calls like open(), close(), read(), write(), ioctl(),strategy()
» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep 

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete
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Kernel vs User-level I/O

• Both are popular/practical for different reasons:
– Kernel-level drivers for critical devices that must keep 
running, e.g. display drivers.
» Programming is a major effort, correct operation of the 

rest of the kernel depends on correct driver operation. 
– User-level drivers for devices that are non-threatening, 
e.g USB devices in Linux (libusb). 
» Provide higher-level primitives to the programmer, avoid 

every driver doing low-level I/O register tweaking. 
» The multitude of USB devices can be supported by Less-

Than-Wizard programmers. 
» New drivers don’t have to be compiled for each version of 

the OS, and loaded into the kernel. 
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Kernel vs User-level Programming Styles
• Kernel-level drivers

– Have a much more limited set of resources available:
» Only a fraction of libc routines typically available.
» Memory allocation (e.g. Linux kmalloc) much more limited in 

capacity and required to be physically contiguous. 
» Should avoid blocking calls. 
» Can use asynchrony with other kernel functions but tricky 

with user code. 

• User-level drivers 
– Similar to other application programs but: 

» Will be called often – should do its work fast, or postpone 
it – or do it in the background.

» Can use threads, blocking operations (usually much simpler) 
or non-blocking or asynchronous. 
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Performance: multiple outstanding requests

• Suppose each read takes 10 ms to service.
• If a process works for 100 ms after each read, 

what is the utilization of the disk?
– U = 10 ms / 110ms = 9%

• What it there are two such processes?
– U = (10 ms + 10 ms) / 110ms = 18%

• What if each of those processes have two such 
threads?

Queue Server
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Recall: How do we hide I/O latency?
• Blocking Interface: “Wait”

– When request data (e.g., read() system call), put process 
to sleep until data is ready

– When write data (e.g., write() system call), put process 
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of 
bytes successfully transferred to kernel

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When requesting data, take pointer to user’s buffer, 
return immediately; later kernel fills buffer and notifies 
user

– When sending data, take pointer to user’s buffer, return 
immediately; later kernel takes data and notifies user 
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I/O & Storage Layers

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Operations, Entities and Interface

file_open, file_read, … on struct file * & void *

we are here …
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Recall: C Low level I/O

• Operations on File Descriptors – as OS object 
representing the state of a file
– User has a “handle” on the descriptor 

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int creat (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends, …)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
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Recall: C Low Level Operations

• When write returns, data is on its way to disk and 
can be read, but it may not actually be permanent!

ssize_t read (int filedes, void *buffer, size_t maxsize)
- returns bytes read, 0 => EOF, -1 => error
ssize_t write (int filedes, const void *buffer, size_t size)
- returns bytes written

off_t lseek (int filedes, off_t offset, int whence)

int fsync (int fildes) – wait for i/o to finish
void sync (void) – wait for ALL to finish
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Building a File System
• File System: Layer of OS that transforms block 

interface of disks (or other block devices) into Files, 
Directories, etc.

• File System Components
– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite 
crashes, media failures, attacks, etc

• User vs. System View of a File
– User’s view: 

» Durable Data Structures
– System’s view (system call interface):

» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you 

want to store on disk!
– System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while 
a sector is the physical transfer unit)

» Block size  sector size; in UNIX, block size is 4KB
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Translating from User to System View

• What happens if user says: give me bytes 2—12?
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about: write bytes 2—12?
– Fetch block
– Modify portion
– Write out Block

• Everything inside File System is in whole size blocks
– For example, getc(), putc()  buffers something like 
4096 bytes, even if interface is one byte at a time

• From now on, file is a collection of blocks

File
System
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So you are going to design a file system …

• What factors are critical to the design choices?
• Durable data store => it’s all on disk
• Disks Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the 
actual file resource are, in advance

• Size is determined as they are used !!!
– Can write (or read zeros) to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to allocate / free blocks 
– Such that access remains efficient
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Disk Management Policies
• Basic entities on a disk:

– File: user-visible group of blocks arranged sequentially in 
logical space

– Directory: user-visible index mapping names to files 
(next lecture)

• Access disk as linear array of sectors.  Two Options: 
– Identify sectors as vectors [cylinder, surface, sector]. 
Sort in cylinder-major order. Not used much anymore.

– Logical Block Addressing (LBA). Every sector has integer 
address from zero up to max number of sectors.

– Controller translates from address  physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

• Need way to track free disk blocks
– Link free blocks together  too slow today
– Use bitmap to represent free space on disk

• Need way to structure files: File Header
– Track which blocks belong at which offsets within the 
logical file structure

– Optimize placement of files’ disk blocks to match access 
and usage patterns
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Components of a File System

Directory 
Structure

File path

File Index 
Structure

File number

…

Data blocks
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Components of a file system

• Open performs name resolution
– Translates pathname into a “file number”

» Used as an “index” to locate the blocks
– Creates a file descriptor in PCB within kernel
– Returns a “handle” (another int) to user process

• Read, Write, Seek, and Sync operate on handle
– Mapped to descriptor and to blocks

file name
offset directory

file number
offset index structureStorage block
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Directories
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Directory

• Basically a hierarchical structure
• Each directory entry is a collection of

– Files
– Directories

» A link to another entries
• Each has a name and attributes

– Files have data
• Links (hard links) make it a DAG, not just a tree

– Softlinks (aliases) are another name for an entry
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I/O & Storage Layers

High Level I/O 
Low Level I/O 

Syscall

File System

I/O Driver

Application / Service
streams

handles
registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

…

Data blocks

#4 - handle

Directory Structure
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File

• Named permanent storage
• Contains

– Data
» Blocks on disk somewhere

– Metadata (Attributes)
» Owner, size, last opened, …
» Access rights

• R, W, X
• Owner, Group, Other (in Unix 
systems)

• Access control list in Windows 
system

…

Data blocks

File descriptor
Fileobject (inode)
Position

File handle
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Summary
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency  

Tq = Tser x ½(1+C) x u/(1 – u))
• File System:

– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header, called “inode”
• Multilevel Indexed Scheme

– Inode contains file info, direct pointers to blocks, 
– indirect blocks, doubly indirect, etc..

• 4.2 BSD Multilevel index files
– Inode contains pointers to actual blocks, indirect blocks, double 

indirect blocks, etc. 
– Optimizations for sequential access: start new files in open 

ranges of free blocks, rotational Optimization


