
CS162
Operating Systems and
Systems Programming

Lecture 16

Demand Paging (Finished),
General I/O

October 26th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Lec 16.210/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Clock Algorithm (Not Recently Used)

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Which bits of a PTE entry are useful to us?
– Use: Set when page is referenced; cleared by clock algorithm
– Modified: set when page is modified, cleared when page written to

disk
– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!
• Clock Algorithm: pages arranged in a ring

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

0selected candidate for replacement
– Crude partitioning of pages into two groups: young and old

Lec 16.310/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits
and mark page as invalid again

• Remember, however, that clock is just an
approximation of LRU

– Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list

Lec 16.410/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

New
SC
Victims

Lec 16.510/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused
for a long time)

– Con: Increased overhead trapping to OS (software /
hardware tradeoff)

• With page translation, we can adapt to any kind of
access the program makes

– Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway
Lec 16.610/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

Lec 16.710/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Reverse Page Mapping (Sometimes called “Coremap”)
• Physical page frames often shared by many different

address spaces/page tables
– All children forked from given process
– Shared memory pages between processes

• Whatever reverse mapping mechanism that is in
place must be very fast

– Must hunt down all page tables pointing at given page
frame when freeing a page

– Must hunt down all PTEs when seeing if pages “active”
• Implementation options:

– For every page descriptor, keep linked list of page
table entries that point to it

» Management nightmare – expensive
– Linux 2.6: Object-based reverse mapping

» Link together memory region descriptors instead (much
coarser granularity)

Lec 16.810/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Linux Memory Details?

• Memory management in Linux considerably more complex
that the previous indications

• Memory Zones: physical memory categories
– ZONE_DMA: < 16MB memory, DMAable on ISA bus
– ZONE_NORMAL: 16MB  896MB (mapped at 0xC0000000)
– ZONE_HIGHMEM: Everything else (> 896MB)

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
• Many different types of allocation

– SLAB allocators, per-page allocators, mapped/unmapped
• Many different types of allocated memory:

– Anonymous memory (not backed by a file, heap/stack)
– Mapped memory (backed by a file)

• Allocation priorities
– Is blocking allowed/etc

Lec 16.910/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Recall: Linux Virtual memory map

Kernel
Addresses

Empty
Space

User
Addresses

User
Addresses

Kernel
Addresses

0x00000000

0xC0000000

0xFFFFFFFF

0x0000000000000000

0x00007FFFFFFFFFFF

0xFFFF800000000000

0xFFFFFFFFFFFFFFFF

3G
B

To
ta

l

12
8T

iB

1G
B

12
8T

iB

896MB
Physical 64 TiB

Physical

32-Bit Virtual Address Space 64-Bit Virtual Address Space

“Canonical Hole”

Lec 16.1010/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Virtual Map (Details)

• Kernel memory not generally visible to user
– Exception: special VDSO facility that maps kernel code into user

space to aid in system calls (and to provide certain actual
system calls such as gettimeofday().

• Every physical page described by a “page” structure
– Collected together in lower physical memory
– Can be accessed in kernel virtual space
– Linked together in various “LRU” lists

• For 32-bit virtual memory architectures:
– When physical memory < 896MB

» All physical memory mapped at 0xC0000000
– When physical memory >= 896MB

» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000

• For 64-bit virtual memory architectures:
– All physical memory mapped above 0xFFFF800000000000

Lec 16.1110/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Internal Interfaces: Allocating Memory
• One mechanism for requesting pages: everything else

on top of this mechanism:
– Allocate contiguous group of pages of size 2order bytes
given the specified mask:

struct page * alloc_pages(gfp_t gfp_mask,unsigned int order)
– Allocate one page:

struct page * alloc_page(gfp_t gfp_mask)

– Convert page to logical address (assuming mapped):

void * page_address(struct page *page)
• Also routines for freeing pages
• Zone allocator uses “buddy” allocator that tries to

keep memory unfragmented
• Allocation routines pick from proper zone, given flags

Lec 16.1210/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Page Frame Reclaiming Algorithm (PFRA)
• Several entrypoints:

– Low on Memory Reclaiming: The kernel detects a “low on
memory” condition

– Hibernation reclaiming: The kernel must free memory because
it is entering in the suspend-to-disk state

– Periodic reclaiming: A kernel thread is activated periodically
to perform memory reclaiming, if necessary

• Low on Memory reclaiming:
– Start flushing out dirty pages to disk
– Start looping over all memory nodes in the system

» try_to_free_pages()
» shrink_slab()
» pdflush kernel thread writing out dirty pages

• Periodic reclaiming:
– Kswapd kernel threads: checks if number of free page

frames in some zone has fallen below pages_high watermark
– Each zone keeps two LRU lists: Active and Inactive

» Each page has a last-chance algorithm with 2 count
» Active page lists moved to inactive list when they have been

idle for two cycles through the list
» Pages reclaimed from Inactive list

Lec 16.1310/26/15 Kubiatowicz CS162 ©UCB Fall 2015

SLAB Allocator
• Replacement for free-lists that are hand-coded by users

– Consolidation of all of this code under kernel control
– Efficient when objects allocated and freed frequently

• Objects segregated into “caches”
– Each cache stores different type of object
– Data inside cache divided into “slabs”, which are continuous

groups of pages (often only 1 page)
– Key idea: avoid memory fragmentation

Cache

SLAB

SLAB

Obj 1

Obj 2

Obj 3

Obj 5

Obj 4

Lec 16.1410/26/15 Kubiatowicz CS162 ©UCB Fall 2015

SLAB Allocator Details

• Based on algorithm first introduced for SunOS
– Observation: amount of time required to initialize a
regular object in the kernel exceeds the amount of time
required to allocate and deallocate it

– Resolves around object caching
» Allocate once, keep reusing objects

• Avoids memory fragmentation:
– Caching of similarly sized objects, avoid fragmentation
– Similar to custom freelist per object

• Reuse of allocation
– When new object first allocated, constructor runs
– On subsequent free/reallocation, constructor does not
need to be reexecuted

Lec 16.1510/26/15 Kubiatowicz CS162 ©UCB Fall 2015

SLAB Allocator: Cache Use

• Example:
task_struct_cachep =

kmem_cache_create(“task_struct”,
sizeof(struct task_struct),
ARCH_MIN_TASKALIGN,
SLAB_PANIC | SLAB_NOTRACK,
NULL);

• Use of example:
struct task_struct *tsk;
tsk = kmem_cache_alloc(task_struct_cachep, GFP_KERNEL);
if (!tsk)

return NULL;
kmem_free(task_struct_cachep,tsk);

Lec 16.1610/26/15 Kubiatowicz CS162 ©UCB Fall 2015

SLAB Allocator Details (Con’t)

• Caches can be later destroyed with:
int kmem_cache_destroy(struct kmem_cache *cachep);
– Assuming that all objects freed
– No one ever tries to use cache again

• All caches kept in global list
– Including global caches set up with objects of powers of
2 from 25 to 217

– General kernel allocation (kmalloc/kfree) uses least-fit
for requested cache size

• Reclamation of memory
– Caches keep sorted list of empty, partial, and full slabs

» Easy to manage – slab metadata contains reference count
» Objects within slabs linked together

– Ask individual caches for full slabs for reclamation

Lec 16.1710/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Administrivia

Lec 16.1810/26/15 Kubiatowicz CS162 ©UCB Fall 2015

The Requirements of I/O

• So far in this course:
– We have learned how to manage CPU, memory

• What about I/O?
– Without I/O, computers are useless (disembodied
brains?)

– But… thousands of devices, each slightly different
» How can we standardize the interfaces to these

devices?
– Devices unreliable: media failures and transmission
errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what
they will do or how they will perform?

Lec 16.1910/26/15 Kubiatowicz CS162 ©UCB Fall 2015

OS Basics: I/O

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

Lec 16.2010/26/15 Kubiatowicz CS162 ©UCB Fall 2015

In a picture

• I/O devices you recognize are supported by I/O Controllers
• Processors accesses them by reading and writing IO registers

as if they were memory
– Write commands and arguments, read status and results

Core

Core

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Secondary
Storage
(SSD)

I/O
Controllers

Read /
Write

Read /
Write wires

interrupts

DMA transfer

Lec 16.2110/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Operational Parameters for I/O

• Data granularity: Byte vs. Block
– Some devices provide single byte at a time (e.g.,

keyboard)
– Others provide whole blocks (e.g., disks, networks,

etc.)
• Access pattern: Sequential vs. Random

– Some devices must be accessed sequentially (e.g., tape)
– Others can be accessed “randomly” (e.g., disk, cd,

etc.)
» Fixed overhead to start sequential transfer (more

later)
• Transfer Notification: Polling vs. Interrupts

– Some devices require continual monitoring
– Others generate interrupts when they need service

• Transfer Mechanism: Programmed IO and DMA

Lec 16.2210/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Kernel Device Structure

The System Call Interface

Process
Management

Memory
Management Filesystems Device

Control Networking

Architecture
Dependent

Code

Memory
Manager

Device
Control

Network
Subsystem

File System
Types

Block
Devices

IF drivers

Concurrency,
multitasking

Virtual
memory

Files and dirs:
the VFS

TTYs and
device access Connectivity

Lec 16.2310/26/15 Kubiatowicz CS162 ©UCB Fall 2015

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of
Different Devices

– This code works on many different devices:
FILE fd = fopen(“/dev/something”,”rw”);
for (int i = 0; i < 10; i++) {

fprintf(fd,”Count %d\n”,i);
}
close(fd);

– Why? Because code that controls devices (“device
driver”) implements standard interface.

• We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture

– Can only scratch surface!

Lec 16.2410/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices

– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own
interface

– Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

Lec 16.2510/26/15 Kubiatowicz CS162 ©UCB Fall 2015

How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put
process to sleep until data is ready

– When write data (e.g. write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of
bytes successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Lec 16.2610/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Chip-scale features of Recent x86 (SandyBridge)

• Significant pieces:
– Four OOO cores

» New Advanced Vector eXtensions
(256-bit FP)

» AES instructions
» Instructions to help with Galois-Field mult
» 4 -ops/cycle

– Integrated GPU
– System Agent (Memory and Fast I/O)
– Shared L3 cache divided in 4 banks
– On-chip Ring bus network

» Both coherent and non-coherent transactions
» High-BW access to L3 Cache

• Integrated I/O
– Integrated memory controller (IMC)

» Two independent channels of DDR3 DRAM
– High-speed PCI-Express (for Graphics cards)
– DMI Connection to SouthBridge (PCH)

Lec 16.2710/26/15 Kubiatowicz CS162 ©UCB Fall 2015

SandyBridge I/O: PCH

• Platform Controller Hub
– Used to be

“SouthBridge,” but no
“NorthBridge” now

– Connected to processor
with proprietary bus

» Direct Media
Interface

– Code name “Cougar
Point” for SandyBridge
processors

• Types of I/O on PCH:
– USB
– Ethernet
– Audio
– BIOS support
– More PCI Express (lower

speed than on Processor)
– Sata (for Disks)

SandyBridge
System Configuration

Lec 16.2810/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Modern I/O Systems

network

Lec 16.2910/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Example: PCI Architecture

CPURAM Memory
Bus

USB
Controller

SCSI
Controller Scanner

Hard
Disk

CD ROM

Root
Hub

Hub Webcam

Mouse Keyboard

PCI #1

PCI #0
PCI Bridge

PCI Slots

Host Bridge

ISA Bridge

ISA
Controller

Legacy
Devices

Lec 16.3010/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Example Device-Transfer Rates in Mb/s
(Sun Enterprise 6000)

• Device Rates vary over 12 orders of magnitude !!!
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

10m

Lec 16.3110/26/15 Kubiatowicz CS162 ©UCB Fall 2015

How does the processor actually talk to the device?

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

• CPU interacts with a Controller
– Contains a set of registers that
can be read and written

– May contain memory for request
queues or bit-mapped images

• Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:

– I/O instructions: in/out instructions
» Example from the Intel architecture: out 0x21,AL

– Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 16.3210/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Example: Memory-Mapped Display Controller

• Memory-Mapped:
– Hardware maps control registers and

display memory into physical address space
» Addresses set by hardware jumpers or

programming at boot time
– Simply writing to display memory (also

called the “frame buffer”) changes image
on screen

» Addr: 0x8000F000—0x8000FFFF
– Writing graphics description to command-

queue area
» Say enter a set of triangles that describe

some scene
» Addr: 0x80010000—0x8001FFFF

– Writing to the command register may cause
on-board graphics hardware to do
something

» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 16.3310/26/15 Kubiatowicz CS162 ©UCB Fall 2015

addr
len

Transferring Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data blocks to/from memory directly

• Sample interaction with DMA controller (from OSC):

Lec 16.3410/26/15 Kubiatowicz CS162 ©UCB Fall 2015

I/O Device Notifying the OS

• The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

• I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

• Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or
unpredictable I/O operations

• Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

Lec 16.3510/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with
different device drivers

– Special device-specific configuration supported with the ioctl() system call
• Device Drivers typically divided into two pieces:

– Top half: accessed in call path from system calls
» implements a set of standard, cross-device calls like open(), close(), read(), write(), ioctl(),strategy()
» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

Lec 16.3610/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

Lec 16.3710/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Basic Performance Concepts

• Response Time or Latency: Time to perform an
operation (s)

• Bandwidth or Throughput: Rate at which operations
are performed (op/s)

– Files: mB/s, Networks: mb/s, Arithmetic: GFLOP/s
• Start up or “Overhead”: time to initiate an

operation
• Most I/O operations are roughly linear

– Latency (n) = Ovhd + n/Bandwidth

Lec 16.3810/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Example (fast network)
• Consider a gpbs link (125 MB/s)
• With a startup cost S = 1 ms
• Theorem: half-power point occurs at n=S*B:

– When transfer time = startup T(S*B) = S + S*B/B

Lec 16.3910/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Example: at 10 ms startup (disk)

0

5

10

15

20

25

30

35

40

45

50

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

Ba
nd

w
id
th

 (m
B/
s)

La
te
nc
y
(u
s)

Length (b)

Performance of gbps link with 10 ms startup

Lec 16.4010/26/15 Kubiatowicz CS162 ©UCB Fall 2015

What determines peak BW for I/O ?

• Bus Speed
– PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
– ULTRA WIDE SCSI: 40 MB/s
– Serial Attached SCSI & Serial ATA & IEEE 1394
(firewire) : 1.6 Gbps full duplex (200 MB/s)

– USB 1.5 – 12 mb/s
• Device Transfer Bandwidth

– Rotational speed of disk
– Write / Read rate of nand flash
– Signaling rate of network link

• Whatever is the bottleneck in the path

Lec 16.4110/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Storage Devices

• Magnetic disks
– Storage that rarely becomes corrupted
– Large capacity at low cost
– Block level random access
– Slow performance for random access
– Better performance for streaming access

• Flash memory
– Storage that rarely becomes corrupted
– Capacity at intermediate cost (50x disk ???)
– Block level random access
– Good performance for reads; worse for random writes
– Erasure requirement in large blocks
– Wear patterns

Lec 16.4210/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Are we in an inflection point?

Lec 16.4310/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Hard Disk Drives (HDDs)

IBM/Hitachi Microdrive

Western Digital Drive
http://www.storagereview.com/guide/

Read/Write Head
Side View

IBM Personal Computer/AT (1986)
30 MB hard disk - $500
30-40ms seek time
0.7-1 MB/s (est.)

Lec 16.4410/26/15 Kubiatowicz CS162 ©UCB Fall 2015

The Amazing Magnetic Disk
• Unit of Transfer: Sector

– Ring of sectors form a track
– Stack of tracks form a cylinder
– Heads position on cylinders

• Disk Tracks ~ 1µm (micron) wide
– Wavelength of light is ~ 0.5µm
– Resolution of human eye: 50µm
– 100K on a typical 2.5” disk

• Separated by unused guard
regions

– Reduces likelihood neighboring
tracks are corrupted during
writes (still a small non-zero
chance)

• Track length varies across disk
– Outside: More sectors per track,

higher bandwidth
– Disk is organized into regions of

tracks with same # of
sectors/track

– Only outer half of radius is used
» Most of the disk area in the

outer regions of the disk

Lec 16.4510/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Magnetic Disk Characteristic

• Cylinder: all the tracks under the
head at a given point on all surfaces

• Read/write: three-stage process:
– Seek time: position the head/arm over the proper track (into proper

cylinder)
– Rotational latency: wait for the desired sector

to rotate under the read/write head
– Transfer time: transfer a block of bits (sector)

under the read-write head
• Disk Latency = Queuing Time + Controller time +

Seek Time + Rotation Time + Xfer Time

• Highest Bandwidth:
– Transfer large group of blocks sequentially from one track

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

H
ardware

Controller

Media Time
(Seek+Rot+Xfer)

Request

Result

Lec 16.4610/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Typical Numbers for Magnetic Disk
Parameter Info / Range
Space/Density Space: 8TB in 3½ inch form factor! (Seagate, Nov 2014)

Areal Density: over 1Terabit/square inch (SMR)
Average seek time Typically 5-10 milliseconds.

Depending on reference locality, actual cost may be 25-
33% of this number.

Average rotational
latency

Most laptop/desktop disks rotate at 3600-7200 RPM
(16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk yielding
corresponding times of 8-4 milliseconds

Controller time Depends on controller hardware
Transfer time Typically 50 to 100 MB/s.

Depends on:
• Transfer size (usually a sector): 512B – 1KB per

sector
• Rotation speed: 3600 RPM to 15000 RPM
• Recording density: bits per inch on a track
• Diameter: ranges from 1 in to 5.25 in

Cost Drops by a factor of two every 1.5 years (or even faster).
$0.03-0.07/GB in 2013

Lec 16.4710/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Intelligence in the controller

• Sectors contain sophisticated error correcting codes
– Disk head magnet has a field wider than track
– Hide corruptions due to neighboring track writes

• Sector sparing
– Remap bad sectors transparently to spare sectors on
the same surface

• Slip sparing
– Remap all sectors (when there is a bad sector) to
preserve sequential behavior

• Track skewing
– Sector numbers offset from one track to the next, to
allow for disk head movement for sequential ops

• …

Lec 16.4810/26/15 Kubiatowicz CS162 ©UCB Fall 2015

Summary
• I/O Devices Types:

– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store to
special physical memory

– Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

• Notification mechanisms
– Interrupts
– Polling: Report results through status register that

processor looks at periodically
• Drivers interface to I/O devices

– Provide clean Read/Write interface to OS above
– Manipulate devices through PIO, DMA & interrupt handling
– 2 types: block, character, and network

