CS162
Operating Systems and
Systems Programming
Lecture 16

Demand Paging (Finished),
General I/0

October 26, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Recall: Clock Algorithm (Not Recently Used)
- N
7/ \ Advances only on page fault!

/ \ Check for pages not used recently
Mark pages as not used recently

Set of all pages I
in Memory

\ /
\ /

~ -
- Which bits of a PTE entry are useful to us?
- Use: Set when page is referenced; cleared by clock algorithm

- g/godified: set when page is modified, cleared when page written to
is
- Valid: ok for program to reference this page
- Read-only: ok for program to read page, but not modify
» For example for catching modifications to code pages!
+ Clock Algorithm: pages arrdnged in a ring

- On page fault: .
» ‘Advance clock hand (not real time)

» Check yse bjt: 1—sused recently; clear and leave alone
8.—>-se|.ec1'e? candlcfrr_e ;3;' repf‘acement
- Crude partitioning of pages into two groups: young and old
10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.2

Recall: Clock Algorithms Details (continued)

* Do we really need a hardware-supported “use” bit?
- No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only
- Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write
- When clock hand passes by, reset use and modified bits
and mark page as invalid again
* Remember, however, that clock is just an
approximation of LRU

- Can we do a better approximation, given that we have
to take page faults on some reads and writes to collect
use information?

- Need to identify an old page, not oldest pagel!
- Answer: second chance list
10/26/15 Kubiatowicz €S5162 ©UCB Fall 2015 Lec 16.3

Second-Chance List Algorithm (VAX/VMS)

), I_l_’ LRV victim

Directly & Second
Mapped Pages |:| 61,, Chance List
Marked: RW I:l Marked: Invalid
List: FIFO | List: LRU
4

. New New
Page-in . .
From disk Active SC

P .
- Split memory in Fwo: Active Ii‘éP{EW), SC list (Invalid)
* Access pages in Active list at full speed
+ Otherwise, Page Fault

- Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

- Desired Page On SC List: move to front of Active list,
mark RW

- Not on SC list: page in to front of Active list, mark RW:;
page out LRU victim at end of SC list

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.4

Second-Chance List Algorithm (con't)

* How many pages for second chance list?

- If 0 = FIFO

- If all = LRU, but page fault on every page reference
* Pick intermediate value. Result is:

- Pro: Few disk accesses (page only goes to disk if unused
for a long time)

- Con: Increased overhead trapping to OS (software /
hardware tradeoff)

+ With page translation, we can adapt to any kind of
access the program makes

- Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

* Question: why didn't VAX include “use” bit?

- Strecker (architect) asked OS people, they said they
didn't need it, so didn't implement it

- He later got blamed, but VAX did OK anyway

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.5

Free List

- SN
4 \ Advances as needed to keep
/ freelist full ("background”)
' Set of all pages
in Memory l
/
N /
N o -
——pFree Pages

For Processes
* Keep set of free pages ready for use in demand paging
- Freelist filled in background by Clock algorithm or other
technique ("Pageout demon”)
- Dirty pages start copying back to disk when enter list
+ Like VAX second-chance list
- If page needed before reused, just return to active set
* Advantage: Faster for page fauf*r
- Can always use page (or pages) immediately on fault

10/26/15 Kubiatowicz €5162 ©UCB Fall 2015 Lec 16.6

Reverse Page Mapping (Sometimes called "Coremap")

* Physical page frames often shared by many different
address spaces/page tables

- All children forked from given process
- Shared memory pages between processes

* Whatever reverse mapping mechanism that is in
place must be very fast

- Must hunt down all page tables pointing at given page
frame when freeing a page

- Must hunt down all PTEs when seeing if pages “active”
+ Implementation options:

- For every page descriptor, keep linked list of page
table en%‘igsgthat poir':r to it P Pag

» Management nightmare - expensive
- Linux 2.6: Object-based reverse mapping

» Link together memory region descriptors instead (much
coarser granularity)

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.7

Linux Memory Details?

* Memory management in Linux considerably more complex
that the previous indications

* Memory Zones: physical memory categories
- ZONE_DMA: < 16MB memory, DMAable on ISA bus
- ZONE_NORMAL: 16MB = 896MB (mapped at 0xCO000000)
- ZONE_HIGHMEM: Everything else (> 896MB)
+ Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
* Many different types of allocation
- SLAB allocators, per-page allocators, mapped/unmapped
* Many different types of allocated memory:
- Anonymous memory (not backed by a file, heap/stack)
- Mapped memory (backed by a file)
+ Allocation priorities
- Is blocking allowed/etc

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.8

Recall: Linux Virtual memory map

NXFFFFFFFF OxFFFFFFFFFFFFFFFF
@
[a1] 896MB Kernel [. Kernel
2 Physical Addresses § I?: T'IBI Addresses
\/0xc0000000 ysica
OxFFFF800000000000
“Canonical Hole" Empty
S Space
s User
” Addresses 0x00007FFFFFFFFFFF
S ®
E User
N Addresses
VXOOOOOOOO 0x0000000000000000
32-Bit Virtual Address Space 64-Bit Virtual Address Space
10/26/15 Kubiatowicz €S162 ©UCB Fall 2015 Lec 16.9

Virtual Map (Details)

+ Kernel memory not generally visible to user

- Exception: special VDSO facility that maps kernel code into user
space to aid in system calls (and to provide certain actual
system calls such as gettimeofday().

+ Every physical page described by a “page” structure
- Collected together in lower physical memory
- Can be accessed in kernel virtual space
- Linked together in various "LRU" lists
* For 32-bit virtual memory architectures:
- When physical memory < 896MB
» All physical memory mapped at 0xCO000000
- When physical memory >= 896MB
» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000
* For 64-bit virtual memory architectures:
- All physical memory mapped above OxFFFF800000000000

10/26/15 Kubiatowicz €5162 ©UCB Fall 2015 Lec 16.10

Internal Interfaces: Allocating Memory

* One mechanism for requesting pages: everything else
on top of this mechanism:
- Allocate contiguous group of pages of size 2°7der bytes
given the specified mask:
struct page * alloc_pages(gfp_t gfp_mask,
unsigned int order)
- Allocate one page:

struct page * alloc_page(gfp_t gfp_mask)

- Convert page to logical address (assuming mapped):

void * page_address(struct page *page)
* Also routines for freeing pages

+ Zone allocator uses "buddy” allocator that tries to
keep memory unfragmented

+ Allocation routines pick from proper zone, given flags

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.11

Page Frame Reclaiming Algorithm (PFRA)

- Several entrypoints:

- Low on Memory Reclaiming: The kernel detects a "low on
memory” condition

- Hibernation reclaiming: The kernel must free memory because
it is entering in the suspend-to-disk state

- Periodic reclaiming: A kernel thread is activated periodically
to perform memory reclaiming, if necessary

* Low on Memory reclaiming:
- Start flushing out dirty pages to disk
- Start looping over all memory nodes in the system
» try_to_free_pages()
» shrink_slab()
» pdflush kernel thread writing out dirty pages
* Periodic reclaiming:
- Kswapd kernel threads: checks if number of free page
frames in some zone has fallen below pages_high wagermar'k
- Each zone keeps two LRU lists: Active and Inactive
» Each page has a last-chance algorithm with 2 count

» Active page lists moved to inactive list when they have been
idle for two cycles through the list

» Pages reclaimed from Inactive list
10/26/15 Kubiatowicz €5162 ©UCB Fall 2015 Lec 16.12

SLAB Allocator

* Replacement for free-lists that are hand-coded by users
- Consolidation of all of this code under kernel control
- Efficient when objects allocated and freed frequently

Obj 1

Obj 2

Obj 3

Obj 4

Obj 5

+ Objects segregated into “caches”
- Each cache stores different type of object

- Data inside cache divided into “slabs”, which are continuous
groups of pages (often only 1 page)

- Key idea: avoid memory fragmentation

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.13

SLAB Allocator Details

* Based on algorithm first introduced for SunOS

- Observation: amount of time required to initialize a
regular object in the kernel exceeds the amount of time
required to allocate and deallocate it

- Resolves around object caching
» Allocate once, keep reusing objects
+ Avoids memory fragmentation:
- Caching of similarly sized objects, avoid fragmentation
- Similar to custom freelist per object
* Reuse of allocation
- When new object first allocated, constructor runs

- On subsequent free/reallocation, constructor does not
need to be reexecuted

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.14

SLAB Allocator: Cache Use

+ Example:
task_struct_cachep =
kmem_cache_create(‘““task_struct”,
sizeof(struct task_struct),
ARCH_MIN_TASKALIGN,
SLAB_PANIC | SLAB_NOTRACK,
NULL);

* Use of example:
struct task struct *tsk;

tsk = kmem_cache_alloc(task_struct_cachep, GFP_KERNEL);
it (1tsk)
return NULL;

kmem_free(task_struct_cachep,tsk);

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.15

SLAB Allocator Details (Con't)

* Caches can be later destroyed with:
int kmem_cache_destroy(struct kmem_cache *cachep);
- Assuming that all objects freed
- No one ever tries to use cache again

+ All caches kept in global list

- Including global caches set up with objects of powers of
2 from 25 to 217

- General kernel allocation (kmalloc/kfree) uses least-fit
for requested cache size

* Reclamation of memory

- Caches keep sorted list of empty, partial, and full slabs
» Easy to manage - slab metadata contains reference count
» Objects within slabs linked together

- Ask individual caches for full slabs for reclamation

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.16

Administrivia

10/26/15

Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.17

The Requirements of I/0

+ So far in this course:
- We have learned how to manage CPU, memory

* What about I70?
- Without I/0, computers are useless (disembodied
brains?)
- But... thousands of devices, each slightly different

» How can we standardize the interfaces to these
devices?

- Devices unreliable: media failures and transmission
errors
» How can we make them reliable???
- Devices unpredictable and/or slow

» How can we manage them if we don't know what
they will do or how they will perform?

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.18

OS Basics: I/0

10/26/15

Threads
Address Spaces Windows
Processes Files Sockets

OS Hardware Virtualization

Software
Hardware 154
Processor Protection
ounda
Networks
c<—> ' _"“'j 5_:_;__
= isplays
Inputs play
Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.19

In a picture

Read /)
Writeim—=S =~ =~ 1 wires
Processor 'E O
Core] !
=] =] [P (Controlle
é’l o S’ hterrupts
2| 18 S [1
2 E3 @ Read Secondary
L Write Storage
Core] —r N (Disk)
— = v W
2| [=] |& ol
al o [& 38
al 18 (<3 S
al 18] |°®

+ I/O devices you recognize are supported by I/O Controllers

* Processors accesses them by reading and writing IO registers
as if they were memory
- Write commands and arguments, read status and results

10/26/15 Kubiatowicz €5162 ©UCB Fall 2015 Lec 16.20

Operational Parameters for I/0

+ Data granularity: Byte vs. Block

- Some devices provide single byte at a time (e.g.,
keyboard)

- O:he;rs provide whole blocks (e.g., disks, networks,
etc.

* Access pattern: Sequential vs. Random
- Some devices must be accessed sequentially (e.g., tape)

- thgrs can be accessed “randomly” (e.g., disk, cd,
efc.

» rixed) overhead to start sequential transfer (more
ater

 Transfer Notification: Polling vs. Interrupts

- Some devices require continual monitoring

- Others generate interrupts when they need service
Transfer Mechanism: Programmed IO and DMA

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.21

Kernel Device Structure

The System Call Interface
iz -

Process Memory . Device .
Management Management Al Control i) 1
Concurrency, Virtual Files and dirs: TTYs and .
multitasking memory the VFS device access Connectivity

File System !
Types Network
Subsystem
Architecture M EEEE Devi 4
Dependent emory evice
penden M Control -
Code Qnagen Block Cniio IF drivers |1
Devices
, DEEE
1

10/26/15 Kubiatowicz €5162 ©UCB Fall 2015 Lec 16.22

The Goal of the I/0 Subsystem

* Provide Uniform Interfaces, Despite Wide Range of
Different Devices

- This code works on many different devices:
FILE fd = fopen(*“/dev/something”,”rw”’);
for (int 1 = 0; 1 < 10; i++) {
fprintf(fd,”Count %d\n”,1);
close(fd);

- Why? Because code that controls devices (“device
driver”) implements standard interface.

* We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture

- Can only scratch surfacel

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.23

Want Standard Interfaces to Devices

* Block Devices: e.g. disk drives, tape drives, DVD-ROM
- Access blocks of data
- Commands include open(), read(), write(), seek()
- Raw I/O or file-system access
- Memory-mapped file access possible
+ Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
- Single characters at a time
- Commands include get(), put()
- Libraries layered on top allow line editing
* Network Devices: e.g. Ethernet, Wireless, Bluetooth

- Different enough from block/character to have own
interface

- Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

- Usage: pipes, FIFOs, streams, queues, mailboxes

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.24

How Does User Deal with Timing?

+ Blocking Interface: “"Wait"

- When request data (e.g. read() system call), put
process to sleep until data is ready

- When write data (e.g. write() system call), put process
to sleep until device is ready for data

+ Non-blocking Interface: “"Don't Wait"

- Returns quickly from read or write request with count of
bytes successfully transferred

- Read may return nothing, write may write nothing
* Asynchronous Interface: "Tell Me Later”

- When request data, take pointer to user's buffer, return
immediately; later kernel fills buffer and notifies user

- When send data, take pointer to user's buffer, return
immediately; later kernel takes data and notifies user

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.25

Chip-scale features of Recent x86 (SandyBridge)

- Significant pieces:
- Four OOO cores
» New Advanced Vector eXtensions
(256-bit FP)
» AES instructions
» Instructions to help with Galois-Field mult
» 4 p-ops/cycle
- Integrated GPU
- System Agent (Memory and Fast I/0)
- Shared L3 cache divided in 4 banks
- On-chip Ring bus network
» Both coherent and non-coherent transactions
» High-BW access to L3 Cache

Graphics + Integrated I/0
' - Integrated memory controller (IMC)
» Two independent channels of DDR3 DRAM
- High-speed PCI-Express (for Graphics cards)
- DMTI Connection to SouthBridge (PCH)

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.26

SandyBridge I/0: PCH

+ Platform Controller Hub

- Used to be
“SouthBridge,” but no
NorthBridge” now

- Connected to processor
with proprietary bus

i » Direct Media
LT Interface

- Code name “Cougar.
Point” for SandyBridge

8 PCl Express* 2.0

14 Hi-Speed USB 2.0 Ports; Rl
ual EHCI; USB Port Disable JEEE

o I processors
sPt . Types of I/0 on PCH:
Intel" Gigabit LAN Connect B ST, - USB
= - Ethernet
- Audio

- BIOS support

- More PCI Express (lower.
speed than on Processor)

- Sata (for Disks)

SandyBridge
System Configuration

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.27

Modern I/O Systems

) L&
X/ XS

SCSI bus

@)
xS

\ B (B (B
\E

BN £
=\

SCS| controller

expansion bus
interface

[keyboard

1. —-expansion bus——!

pa!-aliel | serial -
port port

Lec 16.28

10/26/15 Kubiatowicz €5162 ®UCB Fall 2015 ~

Example: PCT Architecture

__Memory
RAM [« Bus » CPU
a
Host Bridge
y'y T \ PCI #0
ISA Bridge PCI Bridge
—_— | | A 4 PCT #1
ISA
Controller PCT Slots USB SCSI

Controller Controller

@&
—CED

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.29

Example Device-Transfer Rates in Mb/s
(Sun Enterprise 6000)

S,
HyperTransport {32-pair) _
PCI Express 2,0 (+32) [N
Infiniband (QDR 12X)
Serial ATA (SATA-300) [N
gigabit ethernet [N

scsi bus
Frowro
bard o [

0.00001 0,001 0.1 10 1000 100000 10m

- Device Rates vary over 12 orders of magnitude !l!
- System better be able to handle this wide range
- Better not have high overhead/byte for fast devices!

- Better not waste time waiting for slow devices
10/26/15 Kubiatowicz C5162 @UCB Fall 2015 Lec 16.30

How does the processor actually talk to the device? _

_——
Processor Memory Bus Regular
Memory l
Bus : 1 \“
dapto Device <’/
Address+ | Controller NSS—
Other Devices Data Bus EErare
or Buses [nterface Controller
Interrupt Request
read
. . write Addressable
+ CPU interacts with a Controller contro Memory
- Contains a set of registers that o S.I}’Zﬂi a’::{::;
can be read and wriften 9

- May contain memory for request (port oxz%emory Mapped
queues or bit-mapped images don;
* Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
- I/0 instructions: in/out instructions
» Example from the Intel architecture: out 0x21,AL
- Memory mapped I/O: load/store instructions
» Registers/memory appear in physical address space
» I/0 accomplished with load and store instructions
10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.31

Example: Memory-Mapped Display Controller

Memory-Mapped:
- Hardware maps control registers and 0x80020000 I Graphics
display memory into physical address space Command
» Addresses set by hardware jumpers or Queue
programming at boot time
. o . 0x80010000 | _.

- Simply writing to display memory (also Display
called the “frame buffer”) changes image Memory
on screen

» Addr: Ox8000FO00—0x8000FFFF 0x8000F000
- Writing graphics description to command-
queue area
» Say enfer a set of triangles that describe 0x0007F004 | Command
some scene 0x0007F000 | Status
» Addr: 0x80010000—0x8001FFFF

- Writing to the command register may cause
on-boadrd graphics hardware to do —T
something

» Say render the above scene Physical Address
» Addr: 0x0007F004 ' NS ,hSpace
Can protect with address translation — &
Ss—
10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 Lec 16.32

Transferring Data To/From Controller

* Programmed I/0:

- Each byte transferred via processor in/out or load/store

- Pro: Simple hardware, easy to program

- Con: Consumes processor cycles proportional to data size
+ Direct Memory Access:

- Give controller access to memory bus

- Ask it to transfer data blocks to/from memory directly
+ Sample interaction with DMA controller (from OSC):

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
butfer X, increasing transfer C bytes
memoary address from disk to buff
and decreasing C at address X
untlC =0
. when C = 0, DMA :
interrupts CPU to signal addrin Bmi'pt
transfer completion L |enc_or.rtr? or

]

" butfer

PCI bus

& 3. disk controller initiates
IDE disk DMA transter
controller 4. disk controller sends
T T each byte to DMA
el c)
'\aisk: :disl} controller
Y N
10/26/15 Ky fm o,
sk! disk!

=

iefisl

I/0 Device Notifying the OS

* The OS needs to know when:
- The I/0 device has completed an operation
- The I/0 operation has encountered an error

+ I/0 Interrupt:
- Device generates an interrupt whenever it needs service
- Pro: handles unpredictable events well
- Con: interrupts relatively high overhead

* Polling:
- OS periodically checks a device-specific status register

» I/0 device puts completion information in status register
- Pro: low overhead
- Con: may waste many cycles on polling if infrequent or
unpredictable I/0O operations

+ Actual devices combine both polling and interrupts

- For instance - High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015

Lec 16.34

Device Drivers

+ Device Driver: Device-specific code in the kernel that
interacts directly with the device hardware
- Supports a standard, internal interface
- Same kernel I/0 system can interact easily with
different device drivers
- Special device-specific configuration supported with the
ioctl() system call
- Device Drivers typically divided into two pieces:
- Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like
open(), close(), read(), write(), ioctl(),
strategy()

» This is the kernel's interface to the device driver
» Top half will start I/0 to device, may put thread to sleep
until finished
- Bottom half: run as interrupt routine
» Gets input or transfers next block of output
» May wake sleeping threads if I/0 now complete

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.35

Life Cycle of An I/O Request

Usef‘ request 1) ,_,;':':_.,,J unpul|z;i:25§;gb o
output complataa
Program
fransfer data
) 10 process,
il
Kernel I/0
Subsystem
sand request fo device

arive, DIGEK process
opeiaty o

PIOCHSS IOQUES], BEUS

cOMmMAnds k0 conlrosar, davice
configuen controlis 1o ditves
block until nfemupled

datarrming which VO
complated, Indicata state
changa 1o 10 subsysiam

Device Driver
Top Half

receive inedmupd, store
data n device-dmvar buflar
it inpu, signal [0 nblock

Device Driver

Bot?om Half | dn.'v'cuTmr.'.-c
Device Gy | | e
oomplatad genarale nbarnpl
Hardware 2

l lime 3
V.

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015

Lec 16.36

Basic Performance Concepts

* Response Time or Latency: Time to perform an
operation (s)

* Bandwidth or Throughput: Rate at which operations
are performed (op/s)
- Files: mB/s, Networks: mb/s, Arithmetic: GFLOP/s

 Start up or "Overhead”: time to initiate an
operation

* Most I/0 operations are roughly linear
- Latency (n) = Ovhd + n/Bandwidth

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.37

Example (fast network)
+ Consider a gpbs link (125 MB/s)
* With a startup cost S = 1 ms

*+ Theorem: half-power point occurs at n=S*B:
- When transfer time = startup T(S*B) = S + S*B/B

Performance of gbps link with 1 ms startup

7,000 120

5,000

4,000

Latency (us)

3,000

Bandwidth (mB/s)

2,000

0
1,000

o
0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000
Length (b)

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.38

Example: at 10 ms startup (disk)

Performance of gbps link with 10 ms startup
18,000 50
16,000 45
- 40
14,000
b s —
12,000 ~ Q
[%) - 30
2 10,000 -
g s £
2 25 5
9 8000
5 - 20 -E
3
6,000
/ s @
4,000
2,000]
0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000
Length (b)
10/26/15 Kubiatowicz €S5162 ©UCB Fall 2015 Lec 16.39

What determines peak BW for I/0 ?

* Bus Speed
- PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
- ULTRA WIDE SCSI: 40 MB/s

- Serial Attached SCSI & Serial ATA & IEEE 1394
(firewire) : 1.6 Gbps full duplex (200 MB/s)

-USB 1.5 - 12 mb/s
+ Device Transfer Bandwidth
- Rotational speed of disk
- Write / Read rate of nand flash
- Signaling rate of network link
* Whatever is the bottleneck in the path

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.40

Storage Devices

* Magnetic disks
- Storage that rarely becomes corrupted
- Large capacity at low cost
- Block level random access
- Slow performance for random access
- Better performance for streaming access
* Flash memory
- Storage that rarely becomes corrupted
- Capacity at intermediate cost (50x disk 2??)
- Block level random access
- Good performance for reads; worse for random writes
- Erasure requirement in large blocks
- Wear patterns

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.41

Are we in an inflection point?

An Accelerating Trend towards PC 88D

oty 178 1mOS

o
o - P
Notebook PC: SSD vs HOD Price ol l- / ’N\
: et N < <
vl o 0 . V
=] S T e ¥ 530:vs HOO
- A\l I = =| == o
act e E £l
e - o :
el &= 0.1m . JMoine 55~ 8.0m
e o, P ———— Sandisk v .
s = R ssoxomwnne Randem U0 Parformancs Mot
— 11 . ||| 1
- - o
o {F romace vions i S—
St
o 0.5+
R = 08225 * 256 & 250 — Linear (256) —Linear (250)
R T
. .
s \:0?\. . 2 & 5 watts
.
~ \.k — 5500 s pemge
" Ky prop=

" — e (\/ l\ — "
P8P B OB OToroBoBo§oLodosog Somnemeen BackupRates 'Comnon
™ Bhowrs smmsecmoee 20~28 ton
10/26/15 Kubiatowicz €5162 ©UCB Fall 2015 Lec 16.42

Hard Disk Drives (HDDs)

Cover Mounting Holes
{Cover not shown)

Base Casting

Spindle

Slider jand Head)
Actuater Arm

Actuater Axis

Case
Mounting

Hatae Read/Write Head
Side View

Actuator

Platters

™ Ribbon Cable
[attaches heads

SCSI Interface to Logic Board)

Connector
Western Digital Drive
http://www.storagereview.com/guide/

IBM Personal Computer/AT (1986)
30 MB hard disk - $500
30-40ms seek time
0.7-1 MB/s (est.)

10/26/15 Kubiatowicz CS5162 ©UCB Fall 2015 Lec 16.43

IBM/Hitachi Microdrive

The Amazing Magnetic Disk

+ Unit of Transfer: Sector
- Ring of sectors form a track
- Stack of tracks form a cylinder
- Heads position on cylinders
Disk Tracks ~ 1ym (micron) wide
- Wavelength of light is ~ 0.5ym
- Resolution of human eye: 50ym
- 100K on a typical 2.5" disk Surface
+ Separated by unused guard
regions
- Reduces likelihood neighboring
tracks are corrupted during

writes (still a small non-zero
chance

+ Track length varies across disk

- Outside: More sectors per track,
higher bandwidth

- Disk is organized into regions of
tracks i‘ﬁ'\ same # of J
sectors/track

- Only outer half of radius is used

» Most of the disk area in the
outer regions of the disk

Surface

Platter

Arm Assembly
/

4

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.44

Magnetic Disk Characteristic

Sector
* Cylinder: all the tracks under the Head Track
head at a given point on all surfaces
* Read/write: three-stage process: ~~Platter
- Seek time: position the head/arm over the proper track (into proper
cylinder)
- Rotational latency: wait for the desired sector
to rotate under the read/write head
- Transfer time: transfer a block of bits (sector)
under the read-write head
Disk Latency =

+ Controller time +
Seek Time + Rotation Time + Xfer Time

Typical Numbers for Magnetic Disk

Space/Density Space: 8TB in 3% inch form factor! (Seagate, Nov 2014)
Areal Density: over 1Terabit/square inch (SMR)

Average seek time Typically 5-10 milliseconds.
Depending on reference locality, actual cost may be 25-
33% of this number.

Average rotational Most laptop/desktop disks rotate at 3600-7200 RPM

latency (16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk yielding
corresponding fimes of 8-4 milliseconds

Controller time Depends on controller hardware
Transfer time Typically 50 to 100 MB/s.
.Y xR Depends on:
s .(SQof‘l’war‘e % 3 Media Time g . g'ggpgrfer size (usually a sector): 512B - 1KB per
c *| Queue <] > >
a (Device Driver S 3 (Seek+Rot+Xfer) s « Rotation speed: 3600 RPM to 15000 RPM
-+ 83 * Recording density: bits per inch on a track
+ Diameter: ranges from 1into 5.25 in
* Highest Bandwidth: Cost Drops by a factor of two every 1.5 years (or even faster).
- Transfer large group of blocks sequentially from one track $0.03-0.07/68B in 2013
10/26/15 Kubiatowicz €S162 ©UCB Fall 2015 Lec 16.45 10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.46
Intelligence in the controller Summary

+ Sectors contain sophisticated error correcting codes
- Disk head magnet has a field wider than track
- Hide corruptions due to neighboring track writes

+ Sector sparing

- Remap bad sectors transparently to spare sectors on
the same surface

- Slip sparing
- Remap all sectors (when there is a bad sector) to
preserve sequential behavior

*+ Track skewing

- Sector numbers offset from one track to the next, to
allow for disk head movement for sequential ops

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.47

+ I/0 Devices Types:
- Many different speeds (0.1 bytes/sec to GBytes/sec)
- Different Access Patterns:
» Block Devices, Character Devices, Network Devices
- Different Access Timing:
» Blocking, Non-blocking, Asynchronous
+ I/0 Controllers: Hardware that controls actual device
- Processor Accesses through I/O instructions, load/store to
special physical memory
- Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

+ Notification mechanisms
- Interrupts

- Polling: Report results through status register that
processor looks at periodically

- Drivers interface to I/0 devices
- Provide clean Read/Write interface to OS above
- Manipulate devices through PIO, DMA & interrupt handling
- 2 types: block, character, and network

10/26/15 Kubiatowicz 5162 ©UCB Fall 2015 Lec 16.48

