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Recall: Precise Exceptions
• Precise  state of the machine is preserved as if 

program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as 
if they have not even started

– Same system code will work on different implementations 
– Difficult in the presence of pipelining, out-of-order 
execution, ...

– MIPS takes this position
• Imprecise  system software has to figure out what is 

where and put it all back together
• Performance goals often lead designers to forsake 

precise interrupts
– system software developers, user, markets etc. usually 
wish they had not done this

• Modern techniques for out-of-order execution and 
branch prediction help implement precise interrupts
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Working Set Model

• As a program executes it transitions through a 
sequence of “working sets” consisting of varying 
sized subsets of the address space
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Cache Behavior under WS model

• Amortized by fraction of time the WS is active
• Transitions from one WS to the next
• Capacity, Conflict, Compulsory misses
• Applicable to memory caches and pages.  Others ?
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Another model of Locality: Zipf

• Likelihood of accessing item of rank r is α1/ra

• Although rare to access items below the top few, there 
are so many that it yields a “heavy tailed” distribution.

• Substantial value from even a tiny cache
• Substantial misses from even a very large one
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Demand Paging
• Modern programs require a lot of physical memory

– Memory per system growing faster than 25%-30%/year
• But they don’t use all their memory all of the time

– 90-10 rule: programs spend 90% of their time in 10% 
of their code

– Wasteful to require all of user’s code to be in memory
• Solution: use main memory as cache for disk
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Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory 
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than 
physical memory

» More programs fit into memory, allowing more concurrency 
• Principle: Transparent Level of Indirection (page table) 

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB



Virtual
Memory
4 GB
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Demand Paging is Caching

• Since Demand Paging is Caching, must ask:
– What is block size?

» 1 page
– What is organization of this cache (i.e. direct-mapped, 
set-associative, fully-associative)?

» Fully associative: arbitrary virtualphysical mapping
– How do we find a page in the cache when look for it?

» First check TLB, then page-table traversal
– What is page replacement policy? (i.e. LRU, Random…)

» This requires more explanation… (kinda LRU)
– What happens on a miss?

» Go to lower level to fill miss (i.e. disk)
– What happens on a write? (write-through, write back)

» Definitely write-back.  Need dirty bit!
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Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures) 
W: Writeable
U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
L: L=14MB page (directory only).

Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U WP

01234567811-931-12
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• PTE helps us implement demand paging
– Valid  Page in memory, PTE points at physical page
– Not Valid  Page not in memory; use info in PTE to find 
it on disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace 
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs 
another process from ready queue

» Suspended process sits on wait queue

Demand Paging Mechanisms
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Loading an executable into memory

• .exe
– lives on disk in the file system
– contains contents of code & data segments, relocation entries and 

symbols
– OS loads it into memory, initializes registers (and initial stack 

pointer)
– program  sets up stack and heap upon initialization: CRT0
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Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block 
on disk

– called the backing store
– typically in an optimized block store, but can think of it 

like a file
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Create Virtual Address Space of the Process

• User Page table maps entire VAS
• All the utilized regions are backed on disk

– swapped into and out of memory as needed
• For every process
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Create Virtual Address Space of the Process

• User Page table maps entire VAS
– resident pages to the frame in memory they occupy
– the portion of it that the HW needs to access must 
be resident in memory
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Provide Backing Store for VAS

• User Page table maps entire VAS
• Resident pages mapped to memory frames
• For all other pages, OS must record where to find 

them on disk

disk (huge, TB) memory

code

data

heap

stack

kernel

kernel 
code & 
data

user page
frames

user 
pagetable

code

data

heap

stack

VAS – per process

Lec 15.1610/21/15 Kubiatowicz CS162 ©UCB Fall 2015

What data structure is required to map non-
resident pages to disk?

• FindBlock(PID, page#) => disk_block
– Some OSs utilize spare space in PTE for paged blocks
– Like the PT, but purely software

• Where to store it?
– In memory – can be compact representation if swap 
storage is contiguous on disk

– Could use hash table (like Inverted PT)
• Usually want backing store for resident pages too.
• May map code segment directly to on-disk image

– Saves a copy of code to swap file
• May share code segment with multiple instances of 

the program
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Administrivia

• Still working on the grading of exams
– Hope to be done by this weekend!
– Solutions should be posted

• Peer review is *NOT* optional
– Every person must fill out the project 1 peer review
– Due this Sunday

» We will consider taking off points for missing reviews
– The peer review is an important part of our evaluation 
of partner dynamics.  Please take is very seriously.

• Homework 3 deadline pushed out 1 week

Lec 15.1810/21/15 Kubiatowicz CS162 ©UCB Fall 2015

Administrivia (con’t)

• Please use git branches on Project 2
– Merge to the master branch occasionally to invoke the 
autograder (but only occasionally)

– Each team member should be committing code regularly 
(and pushing to github)

» We should see commits from everyone as code is evolving
» We should not see just a single commit from one person

• Survey on Piazza: Please tell us how the course is 
going!

– What is going well, what is not going well
– What could we change?
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Provide Backing Store for VAS

19
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On page Fault …
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On page Fault … find & start load
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On page Fault … schedule other P or T

disk (huge, TB)
memory

kernel 
code & 
data

user pag
frames

user 
pagetablcode

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

Lec 15.2310/21/15 Kubiatowicz CS162 ©UCB Fall 2015

On page Fault … update PTE
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Eventually reschedule faulting thread
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Summary: Steps in Handling a Page Fault
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Management & Access to the Memory Hierarchy
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Some following questions

• During a page fault, where does the OS get a 
free frame?

– Keeps a free list
– Unix runs a “reaper” if memory gets too full
– As a last resort, evict a dirty page first

• How can we organize these mechanisms?
– Work on the replacement policy

• How many page frames/process?
– Like thread scheduling, need to “schedule” memory 
resources:

» utilization?  fairness? priority?
– allocation of disk paging bandwidth
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Demand Paging Cost Model
• Since Demand Paging like caching, can compute 

average access time! (“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
= 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then 
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT  p < 2.5 x 10-6

– This is about 1 page fault in 400000!
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What Factors Lead to Misses?
• Compulsory Misses: 

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow!  More later.

• Capacity Misses:
– Not enough memory. Must somehow increase size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option:  If multiple processes in memory: adjust 

percentage of memory allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, 
since it is a “fully-associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out 
prematurely because of the replacement policy

– How to fix? Better replacement policy
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Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page.  Be fair – let every page live in 
memory for same amount of time.

– Bad, because throws out heavily used pages instead of 
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time 
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s.  Simple hardware
– Pretty unpredictable – makes it hard to make real-time 
guarantees
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Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a 
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.
• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that 
can change position in list… 

– Many instructions for each hardware access
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)
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• Suppose we have 3 page frames, 4 virtual pages, and 
following reference stream: 

– A B C A B D A D B C B
• Consider FIFO Page replacement:

– FIFO: 7 faults. 
– When referencing D, replacing A is bad choice, since 
need A again right away

Example: FIFO
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B
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BCBDADBACBA

3

2

1

Ref:
Page:
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• Suppose we have the same reference stream: 
– A B C A B D A D B C B

• Consider MIN Page replacement:

– MIN: 5 faults 
– Where will D be brought in? Look for page not 
referenced farthest in future.

• What will LRU do?
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C
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B

A

BCBDADBACBA

3

2

1

Ref:
Page:
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• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better:

D

When will LRU perform badly?
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Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the 
miss rate goes down

– Does this always happen?
– Seems like it should, right?

• No: BeLady’s anomaly 
– Certain replacement algorithms (FIFO) don’t have this 
obvious property!
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Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults?

– Yes for LRU and MIN
– Not necessarily for FIFO!  (Called Belady’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with 
X pages are a subset of contents with X+1 Page
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Implementing LRU
• Perfect:

– Timestamp page on each reference
– Keep list of pages ordered by time of reference
– Too expensive to implement in reality for many reasons

• Clock Algorithm: Arrange physical pages in circle with 
single clock hand

– Approximate LRU (approx to approx to MIN)
– Replace an old page, not the oldest page

• Details:
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy 

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

0selected candidate for replacement
– Will always find a page or loop forever?

» Even if all use bits set, will eventually loop aroundFIFO
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Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• What if hand moving slowly?
– Good sign or bad sign?

» Not many page faults and/or find page quickly
• What if hand is moving quickly?

– Lots of page faults and/or lots of reference bits set
• One way to view clock algorithm: 

– Crude partitioning of pages into two groups: young and old
– Why not partition into more than 2 groups?
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Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1clear use and also clear counter (used in last sweep)
» 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without 
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give 
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)
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Clock Algorithms: Details
• Which bits of a PTE entry are useful to us?

– Use: Set when page is referenced; cleared by clock 
algorithm

– Modified: set when page is modified, cleared when page 
written to disk

– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!
• Do we really need hardware-supported “modified” bit?

– No.  Can emulate it (BSD Unix) using read-only bit
» Initially, mark all pages as read-only, even data pages
» On write, trap to OS. OS sets software “modified” bit, 

and marks page as read-write.
» Whenever page comes back in from disk, mark read-only
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Clock Algorithms Details (continued)
• Do we really need a hardware-supported “use” bit?

– No. Can emulate it similar to above:
» Mark all pages as invalid, even if in memory
» On read to invalid page, trap to OS
» OS sets use bit, and marks page read-only

– Get modified bit in same way as previous:
» On write, trap to OS (either invalid or read-only)
» Set use and modified bits, mark page read-write

– When clock hand passes by, reset use and modified bits 
and mark page as invalid again 

• Remember, however, that clock is just an 
approximation of LRU

– Can we do a better approximation, given that we have 
to take page faults on some reads and writes to collect 
use information?

– Need to identify an old page, not oldest page!
– Answer: second chance list
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Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to 
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list, 
mark RW

– Not on SC list: page in to front of Active list, mark RW; 
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second 
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

New
SC
Victims
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Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0  FIFO
– If all  LRU, but page fault on every page reference

• Pick intermediate value.  Result is:
– Pro: Few disk accesses (page only goes to disk if unused 
for a long time) 

– Con: Increased overhead trapping to OS (software / 
hardware tradeoff)

• With page translation, we can adapt to any kind of 
access the program makes

– Later, we will show how to use page translation / 
protection to share memory between threads on widely 
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they 
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway
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Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other 
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep 
freelist full (“background”)

D

D

Free Pages
For Processes
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Demand Paging (more details) 

• Does software-loaded TLB need use bit? 
Two Options:

– Hardware sets use bit in TLB; when TLB entry is 
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything 
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page  physical page 
– Do we need a reverse mapping (i.e. physical page 
virtual page)?

» Yes. Clock algorithm runs through page frames. If sharing, 
then multiple virtual-pages per physical page

» Can’t push page out to disk without invalidating all PTEs
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Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?  
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into 
memory can make forward progress

– Example:  IBM 370 – 6 pages to handle SS MOVE 
instruction:

» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame 
from set of all frames; one process can take a frame 
from another

– Local replacement – each process selects from only its own 
set of allocated frames
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Fixed/Priority Allocation
• Equal allocation (Fixed Scheme): 

– Every process gets same amount of memory
– Example: 100 frames, 5 processesprocess gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = si
m = total number of frames

ai = allocation for pi = 

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault, 
select for replacement a frame from a process with lower 
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S
si 
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Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically 

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?
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Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high.  This leads to:

– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing  a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?
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• Program Memory Access 
Patterns have temporal 
and spatial locality

– Group of Pages accessed 
along a given time slice 
called the “Working Set”

– Working Set defines 
minimum number of pages 
needed for process to 
behave well

• Not enough memory for 
Working SetThrashing

– Better to swap out 
process?

Locality In A Memory-Reference Pattern
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Working-Set Model

•   working-set window  fixed number of page 
references 

– Example:  10,000 instructions
• WSi (working set of Process Pi) = total set of pages 

referenced in the most recent  (varies in time)
– if  too small will not encompass entire locality
– if  too large will encompass several localities
– if  =   will encompass entire program

• D = |WSi|  total demand frames 
• if D > m  Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!
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What about Compulsory Misses?

• Recall that compulsory misses are misses that occur 
the first time that a page is seen

– Pages that are touched for the first time
– Pages that are touched after process is swapped 
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the 
faulting page

– Since efficiency of disk reads increases with sequential 
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set
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Reverse Page Mapping (Sometimes called “Coremap”)
• Physical page frames often shared by many different 

address spaces/page tables
– All children forked from given process
– Shared memory pages between processes

• Whatever reverse mapping mechanism that is in 
place must be very fast

– Must hunt down all page tables pointing at given page 
frame when freeing a page

– Must hunt down all PTEs when seeing if pages “active”
• Implementation options:

– For every page descriptor, keep linked list of page 
table entries that point to it

» Management nightmare – expensive
– Linux 2.6: Object-based reverse mapping

» Link together memory region descriptors instead (much 
coarser granularity)
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Linux Memory Details?

• Memory management in Linux considerably more complex 
that the previous indications

• Memory Zones: physical memory categories
– ZONE_DMA: < 16MB memory, DMAable on ISA bus
– ZONE_NORMAL: 16MB  896MB (mapped at 0xC0000000)
– ZONE_HIGHMEM: Everything else (> 896MB)

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
• Many different types of allocation

– SLAB allocators, per-page allocators, mapped/unmapped
• Many different types of allocated memory:

– Anonymous memory (not backed by a file, heap/stack)
– Mapped memory (backed by a file)

• Allocation priorities
– Is blocking allowed/etc
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Recall: Linux Virtual memory map

Kernel
Addresses

Empty
Space

User
Addresses

User
Addresses

Kernel
Addresses

0x00000000

0xC0000000

0xFFFFFFFF

0x0000000000000000

0x00007FFFFFFFFFFF

0xFFFF800000000000

0xFFFFFFFFFFFFFFFF

3G
B 

To
ta

l

12
8T

iB

1G
B

12
8T

iB

896MB
Physical 64 TiB

Physical

32-Bit Virtual Address Space 64-Bit Virtual Address Space

“Canonical Hole”
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Virtual Map (Details)

• Kernel memory not generally visible to user
– Exception: special VDSO facility that maps kernel code into user 

space to aid in system calls (and to provide certain actual 
system calls such as gettimeofday().

• Every physical page described by a “page” structure
– Collected together in lower physical memory
– Can be accessed in kernel virtual space
– Linked together in various “LRU” lists

• For 32-bit virtual memory architectures:
– When physical memory < 896MB

» All physical memory mapped at 0xC0000000
– When physical memory >= 896MB

» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000

• For 64-bit virtual memory architectures:
– All physical memory mapped above 0xFFFF800000000000
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Internal Interfaces: Allocating Memory
• One mechanism for requesting pages: everything else 

on top of this mechanism:
– Allocate contiguous group of pages of size 2order bytes 
given the specified mask:

struct page * alloc_pages(gfp_t gfp_mask,unsigned int order)
– Allocate one page:

struct page * alloc_page(gfp_t gfp_mask)

– Convert page to logical address (assuming mapped):

void * page_address(struct page *page)
• Also routines for freeing pages
• Zone allocator uses “buddy” allocator that tries to 

keep memory unfragmented
• Allocation routines pick from proper zone, given flags
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Page Frame Reclaiming Algorithm (PFRA)
• Several entrypoints:

– Low on Memory Reclaiming: The kernel detects a “low on 
memory” condition

– Hibernation reclaiming: The kernel must free memory because 
it is entering in the suspend-to-disk state

– Periodic reclaiming: A kernel thread is activated periodically 
to perform memory reclaiming, if necessary

• Low on Memory reclaiming:
– Start flushing out dirty pages to disk
– Start looping over all memory nodes in the system

» try_to_free_pages()
» shrink_slab()
» pdflush kernel thread writing out dirty pages

• Periodic reclaiming:
– Kswapd kernel threads: checks if number of free page 

frames in some zone has fallen below pages_high watermark
– Each zone keeps two LRU lists: Active and Inactive

» Each page has a last-chance algorithm with 2 count
» Active page lists moved to inactive list when they have been 

idle for two cycles through the list
» Pages reclaimed from Inactive list
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SLAB Allocator
• Replacement for free-lists that are hand-coded by users

– Consolidation of all of this code under kernel control
– Efficient when objects allocated and freed frequently

• Objects segregated into “caches”
– Each cache stores different type of object
– Data inside cache divided into “slabs”, which are continuous 

groups of pages (often only 1 page)
– Key idea: avoid memory fragmentation

Cache

SLAB

SLAB

Obj 1

Obj 2

Obj 3

Obj 5

Obj 4
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SLAB Allocator Details

• Based on algorithm first introduced for SunOS
– Observation: amount of time required to initialize a 
regular object in the kernel exceeds the amount of time 
required to allocate and deallocate it

– Resolves around object caching
» Allocate once, keep reusing objects

• Avoids memory fragmentation:
– Caching of similarly sized objects, avoid fragmentation 
– Similar to custom freelist per object

• Reuse of allocation
– When new object first allocated, constructor runs
– On subsequent free/reallocation, constructor does not 
need to be reexecuted
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SLAB Allocator: Cache Use

• Example:
task_struct_cachep = 

kmem_cache_create(“task_struct”,
sizeof(struct task_struct),
ARCH_MIN_TASKALIGN,
SLAB_PANIC | SLAB_NOTRACK,
NULL);

• Use of example:
struct task_struct *tsk;
tsk = kmem_cache_alloc(task_struct_cachep, GFP_KERNEL);
if (!tsk)

return NULL;
kmem_free(task_struct_cachep,tsk);
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SLAB Allocator Details (Con’t)

• Caches can be later destroyed with:
int kmem_cache_destroy(struct kmem_cache *cachep);
– Assuming that all objects freed
– No one ever tries to use cache again

• All caches kept in global list
– Including global caches set up with objects of powers of 
2 from 25 to 217

– General kernel allocation (kmalloc/kfree) uses least-fit 
for requested cache size

• Reclamation of memory
– Caches keep sorted list of empty, partial, and full slabs

» Easy to manage – slab metadata contains reference count
» Objects within slabs linked together

– Ask individual caches for full slabs for reclamation
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Summary
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past 

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU 
and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process


