
HW 4: Two Phase Commit

Due December 4 2015

Contents

1 Overview 2

2 API 2

3 Existing Code 3
3.1 KVMessage . 3
3.2 KVConstants . 3
3.3 KVServer . 3
3.4 TPCLeader . 4

4 Your Assignment 4
4.1 Tasks . 5
4.2 Consistent Hashing . 5
4.3 Two-Phase Commit . 6
4.4 Using the API . 7

5 Appendix 7
5.1 Follower Server Registration . 7
5.2 libhttp and liburl . 7
5.3 KVStore . 7
5.4 Work Queue . 8
5.5 Socket Server . 8
5.6 UTHash, UTList . 8

1

CS 162 Fall 2014 HW 4: Two Phase Commit

1 Overview

In this homework, you will be building a distributed key-value store with three operations: get, put, and
delete. Data will be replicated across multiple follower servers to ensure data integrity, and actions will
be coordinated across these servers via a single leader server.

Your job is to implement (a) two-phase commit, which will be used to ensure consistency across
follower servers, and (b) logging to save a follower server’s data to a persistent log, as well as the ability
to restore from the log after a crash. An implementation of a persistent log and a non-distributed
key-value store has been provided for you.

To get started, ssh into to your Vagrant VM and run:

cd ~/code/personal/

git pull staff master

cd hw4/

2 API

Your key-value system will provide an HTTP API to the client (i.e. the user). Internally, these API
requests and responses are unmarshalled into the C types kvrequest_t and kvresponse_t respectively.
Below are tables that summarize the API. Refer to Section 4.4 for advice on how to use it.

Table 1: API Requests

Request HTTP Request KVRequest
Get GET type: GETREQ

/?key=<key> key: key
Put PUT type: PUTREQ

/?key=<key>&val=<value> key: key
val: value

Delete DELETE type: DELREQ
/?key=<key> key: key

Commit Transaction POST type: COMMIT
/commit

Abort Transaction POST type: ABORT
/abort

Register Follower POST type: REGISTER
/register?key=<addr>&val=<port> key: follower address

val: follower port

Table 2: API Responses

Response HTTP Code KVResponse
Successful Get 200 type: GETRESP

body: val
Successful PUT/DEL 201 type: SUCCESS
Vote Commit/Abort 202 type: VOTE

body: “commit”/“error: message”
ACK 204 type: ACK
Error 500 type: ERROR

body: “error: message”

2

CS 162 Fall 2014 HW 4: Two Phase Commit

3 Existing Code

This homework starts with a rather large codebase. The following subsections provide a detailed run-
through of what you’ll likely be working with.

In addition to reading this spec, we expect you to read through and understand the header (.h) files
for each section mentioned below. Struct definitions and functions are thoroughly commented within
the .h and .c files, respectively. The Appendix contains detailed information about the other files not
mentioned here.

3.1 KVMessage

kvmessage.h/c detail two message types: kvrequest_t and kvresponse_t. These types encapsulate
API calls to our key-value store. They provide a convenient abstraction for the actual HTTP messages
we recieve across our sockets, but are only useful internally.

• kvrequest_send/kvresponse_send
Marshalls the kvrequest/kvresponse into an HTTP message according to our API, then sends it
over the specified socket file descriptor.

• kvrequest_recieve/kvresponse_recieve
Recieves the HTTP message from the specified socket, unmarshalls and returns the message as a
kvrequest/kvresponse.

The formats for KVRequests and KVResponses are summarized in the API section above. It is up to
you to correctly populate and handle messages according to their type. (Fortunately, we’ve abstracted
most of the nitty-gritty HTTP and URL related things with the libraries mentioned in the appendix.)

3.2 KVConstants

This file defines some of the constants you will use throughout the homework. You should familiarize
yourself with all of them, as you will be using them extensively throughout the homework. In particular,
we’ve written a couple of convenient macros that you should definitely use.

• alloc_msg(buf, msg) will stuff msg into a malloc’d buffer and assign the specified buf pointer
to that malloc’d buffer. This should come in very handy when dealing with allocing/deallocing
KVMessages throughout your program—specifically, if you assign a KVMessage field to a not-
malloc’d, static string and later attempt to free that field, you will trip a SIGABRT; this macro can
be used to prevent said issue.

• fatal(msg, code) and fatal_malloc() macros will fatally exit your program with a stack trace
upon execution. The latter is a convenient shorthand for exiting your program if malloc fails.

Whenever you are returning an error, if there is a constant which corresponds to that error, be sure to
use that constant. Otherwise you may use -1 (when returning an integer status) or ERRMSG_GENERIC_ERROR
(when reporting a string error, i.e. in a KVResponse).

3.3 KVServer

KVServer defines a follower server which will be used to store (key, value) pairs.

In a real-world scenario, each KVServer would be running on its own machine with its own file stor-
age. Your final implementation should be able to support this.

3

CS 162 Fall 2014 HW 4: Two Phase Commit

A KVServer accepts incoming HTTP messages on a socket using the API described before, and re-
sponds accordingly on the same socket. There is one generic entrypoint, kvserver_handle, which takes
in a socket that has already been connected to a leader or client and handles all further communication.
We have provided the topmost level of this logic; you will need to fill in kvserver_handle_tpc, which
takes in a KVRequest, fills a provided KVResponse appropriately, and logs any necessary TPC transac-
tion steps.

You will also have to implement kvserver_rebuild_state, which rebuilds a follower server’s state
from a persistent log after a crash.

3.4 TPCLeader

TPCLeader defines a leader server which will coordinate two-phase commit logic among registered fol-
lowers.

The TPCLeader will become the main point of contact for the client. In the final product, all API
requests from the client are sent to the TPCLeader. Similarly to KVServer, there is one generic entry-
point at tpcleader_handle, which takes in a connected socket and handles all further communication.

You will need to implement tpcleader_handle_get and tpcleader_handle_tpc. These two func-
tions relay API requests to the appropriate followers. The TPCLeader maps keys to followers according
to a consistent hashing scheme, described in a Section 4.2 below.

4 Your Assignment

Your job is to implement two-phase commit in this distributed key-value store, so that multiple nodes
(KVServers) are coordinated by a single leader (TPCLeader). You will also implement logging on the
KVServers so that they can recover from crashes.

As you work on implementing the functionality described, you should not change the function sig-
natures of any of the functions which have been provided in the skeleton code, and you should not
remove or change any fields from the provided structs. You may, however, add as many additional
functions, structs, and additional fields to existing structs as you wish. We have added comments to
suggest places where you should be writing code.

Multiple clients will be communicating with a single leader server according to the given HTTP API.
The leader will forward client GET, PUT, and DELETE requests to multiple follower servers and follow
the TPC protocol to perform atomic operations across multiple follower servers. A basic non-distributed
thread-safe key-value data store has been implemented for you. Operations on this key-value store are
guaranteed to be atomic.

Data storage must be redundant, i.e. the system should not lose data if only a single KVServer fails.
You will use simple replication for fault tolerance.

The provided Makefile compiles binaries to the bin directory. You can run a TPCLeader using the
following command:

./bin/tpcleader [port (default=16200)] [followers (default=1)] [redundancy (default=1)]

You can start up a follower server using the following command:

./bin/kvfollower [follower_port (default=16201)] [leader_port (default=16200)]

4

CS 162 Fall 2014 HW 4: Two Phase Commit

follower_port is the port on which the follower will listen for requests from the leader (must be unique
for each follower), and leader_port is the port on which the leader is listening.

You can start up a full set of followers and a leader using the following commands:

./bin/tpcleader 16200 2 2 &

./bin/kvfollower 16201 16200 &

./bin/kvfollower 16202 16200 &

Using an & allows a program to run in the background so that you can run multiple programs simulta-
neously. To simplify this, we have created a script which runs all 3 above commands and also kills all 3
processes when you type Ctrl-C:

./bin/kvsystem

4.1 Tasks

Follower TPC handling. Implement kvserver_handle_tpc in kvserver.c to correctly handle two-
phase PUT and DELETE requests.

Leader GET handling. Implement tpcleader_handle_get in tpcleader.c to correctly handle GET
requests. Refer to Section 4.2 on Consistent Hashing to determine which followers to communicate
with.

Leader TPC handling. Implement tpcleader_handle_tpc in tpcleader.c to correctly handle PUT
and DELETE requests. Refer to Section 4.3 on Two-Phase Commit for details on the implemen-
tation of two-phase commit logic. Refer to Section 4.2 on Consistent Hashing to determine which
followers to communicate with. You do not need to support the concurrent execution of multiple
TPC transactions (they can occur serially).

Logs and Follower Durability Implement proper logic for logging the state of follower servers and
for rebuilding from the log after a follower server crashes and recovers. The logic to rebuild a server
from its log will be implemented in kvserver_rebuild_state.

A KVServer should log every action it receives that is relevant to TPC immediately upon receiving
the request. You can add entries into the log using tpclog_log, which will make the entry persistent
on disk (and thus durable through crashes). When a server starts back up after crashing, it
should be able to recover the state of any TPC transaction that was currently occurring when
it crashed. You may find the functions tpclog_iterate_begin, tpclog_iterate_has_next, and
tpclog_iterate_next useful, which help you to iterate over all entries of the log and determine
what state the server should be in.

Because the store is also durable, fully committed TPC transactions do not need to be recovered
from the log. You should use tpclog_clear_log to clear the log of entries when you are certain that
they will not be needed at a later time (e.g. all previous transactions have been fully committed).

4.2 Consistent Hashing

Each key will be stored in r follower servers (where r is less than the total number of followers N). The
value of r is available as a member of a TPCLeader (leader->redundancy). The first follower, a.k.a.
the “primary”, will be selected using consistent hashing. The second will be the successor of the primary,
and so on. Note that the hash function is provided for you in kvconstants.h. You may not change the
hash function.

Each key-value (follower) server will have a unique 64-bit ID. The leader will hash keys to the same
64-bit address space, and choose the follower with the nearest, higher ID than the key hash as the

5

CS 162 Fall 2014 HW 4: Two Phase Commit

primary, wrapping around in the case of overflow. The successors are chosen contiguously after the
primary. Please refer to the following image for a better explanation. In the following image, the
redundancy index is 2. Each circle corresponds to the hash value of a particular key. Each cylinder
corresponds to the hash value of a KVServer.

4.3 Two-Phase Commit

Only a single two-phase commit operation (PUT, DELETE) can be executed at a time. You do not have
to support concurrent update operations across different keys (i.e. TPC PUT and DELETE operations
are performed one after another), but retrieval operations (i.e. GET) of different keys must be concurrent.

When sending Phase-1 requests, the leader must contact all (relevant) followers for PUT and DELETE,
even if one of the followers sends an abort. The leader can access the primary and successive followers
with the following functions, respectively: tpcleader_get_primary, tpcleader_get_successor.

A follower will send an “error: . . . ” VOTE to the leader if the key doesn’t exist for DELETE or an
oversized key/value is specified for PUT, and a “commit” VOTE otherwise. If the leader doesn’t receive
a response from its follower before some timeout, the follower should be counted as casting an abort
vote. If there is no commit consensus (that is, if there is at least one abort), the leader must send an
ABORT request in Phase-2. Otherwise, the leader must send a COMMIT. Furthermore, COMMIT and ABORT

requests are always valid: the follower should always respond with an ACK.

If the leader receives any response from a follower in Phase-2, it should be an ACK. If no response
is received (timeout), the leader must keep sending its Phase-2 message to the follower, which upon

6

CS 162 Fall 2014 HW 4: Two Phase Commit

recovery will be able to send an ACK back.

The types and formats of KVRequests and KVResponses unique to TPC are detailed in the API
section above. Again, it is up to you to correctly handle messages according to their type.

4.4 Using the API

We’ve provided you with a fancy web client to interact with your KVServers using our HTTP API.
Once you spin up a server (TPCLeader or KVFollower), open your web browser and navigate to
the root path of your server’s address (e.g. http://192.168.162.162:16200 for TPCMaster and
http://192.168.162.162:16201 (or 16202, 16203, etc.) for KVFollowers). Voila! Hopefully the inter-
face is self-explanatory.

If you prefer, you can also interact with your server via command line. The curl command line tool
can easily make HTTP requests to your server:

$ curl -i "192.168.162.162:16200/?key=cs162&val=bar" -X PUT

HTTP/1.1 201 Created

Content-Length: 0

Note: curl uses GET by default. Check out man curl or curl --help for more info.

5 Appendix

5.1 Follower Server Registration

The leader will keep information about its followers in a list of tpc_follower_t. Each follower server
will have 64-bit globally unique ID (a uint64_t) assigned to them by the leader as they register using
their hostname and port number. You should not serve API requests until all followers are registered.
Furthermore, there will not be any followers that magically appear after registration completes, and
any follower that dies will revive itself. A follower has successfully registered if it receives a successful
response from the leader.

The leader will listen for registration requests on the same port that it listens for client requests.
When a follower starts, it should start listening on its given port for TPC requests and register that
port number with the leader so that the leader can send requests to it. This is already handled in
src/main/kvfollower.c.

5.2 libhttp and liburl

libhttp.h/c together are a modified version of the library we provided for you in HW2. libhttp pro-
vides some helper functions and structs to deal with the details of the HTTP protocol.

Similarly, liburl.h/c provide helper functions and structs for dealing with marshalling and unmar-
shalling parameters present in HTTP request URLs. In other words, liburl helps unpack
“PUT /?key=foo&val=bar”, into a convenient kvrequest_t, and vice versa.

5.3 KVStore

KVStore defines the persistent storage used by a server to store (key, value) entries.

7

http://192.168.162.162:16200
http://192.168.162.162:16201

CS 162 Fall 2014 HW 4: Two Phase Commit

Each entry is stored as an individual file, all collected within the directory name which is passed in
upon initialization.

The files which store entries are simple binary dumps of a kventry_t struct. Note that this means
entry files are NOT portable, and results will vary if an entry created on one machine is accessed on an-
other machine, or even by a program compiled by a different compiler. The LENGTH field of kventry_t
is used to determine how large an entry and its associated file are.

The name of the file that stores an entry is determined by the hash of the entry’s key, which can
be found using the strhash64() function. To resolve collisions, hash chaining is used, thus the file
names of entries within the store directory should have the format: hash(key)-chainpos.entry or
sprintf(filename, "%llu-%u.entry", hash(key), chainpos). chainpos represents the entry’s po-
sition within its hash chain, which should start from 0. If a collision is found when storing an entry,
the new entry will have a chainpos of 1, and so on. Chains should always be complete; that is, you may
never have a chain which has entries with a chainpos of 0 and 2 but not 1.

All state is stored in persistent file storage, so it is valid to initialize a KVStore using a directory
name which was previously used for a KVStore, and the new store will be an exact clone of the old store.

5.4 Work Queue

wq.c/h define a synchronized work queue which will be used to store jobs which are waiting to be pro-
cessed.

For each item added to the queue, exactly one thread can receive the item. When the queue is empty,
there is no busy waiting.

5.5 Socket Server

Socket Server defines helper functions and structs that abstract communication over sockets.

• connect_to

Used to make a request to a listening host.

• server_run

Can be used to start a server (containing a KVServer or a TPCLeader) listening on a given port. It
will run the given server such that it indefinitely (until server_stop is called) listens for incoming
requests at a given host and port.

• server_t

This struct stores extra information on top of the stored TPCLeader or KVServer for use by
server_run.

5.6 UTHash, UTList

UTHash and UTList are two header-only libraries which have been supplied for your use. They help to
make creating linked-lists and hash tables in C easy.

For UTHash, a simple pointer of the type of the struct you will be storing in the table will represent
the table itself. The structs you insert into the hash table must have a member of type UT_hash_handle

with name hh, and of course you’ll want a field to use as a key as well. The macros we find most
useful are HASH_ADD_STR, HASH_FIND_STR, and HASH_DEL. You can read more about their usage at

8

CS 162 Fall 2014 HW 4: Two Phase Commit

https://troydhanson.github.io/uthash/.

For UTList, again a simple pointer of the type of the struct you will be storing in the list will represent
the list itself. The structs you insert into the list, to keep a doubly-linked list (which we recommend),
must have prev and next pointers of the same type as the structs you are storing. The macros we find
most useful are DL_APPEND, DL_DELETE, and DL_FOREACH_SAFE. You can read more about their usage at
https://troydhanson.github.io/uthash/utlist.html.

9

https://troydhanson.github.io/uthash/
https://troydhanson.github.io/uthash/utlist.html

	Overview
	API
	Existing Code
	KVMessage
	KVConstants
	KVServer
	TPCLeader

	Your Assignment
	Tasks
	Consistent Hashing
	Two-Phase Commit
	Using the API

	Appendix
	Follower Server Registration
	libhttp and liburl
	KVStore
	Work Queue
	Socket Server
	UTHash, UTList

