
CS162
Operating Systems and
Systems Programming

Lecture 16

Page Allocation and
Replacement (con’t)

I/O Systems
October 26, 2009

Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Lec 16.210/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Page Replacement Policies
• FIFO (First In, First Out)

– Throw out oldest page. Be fair – let every page live in
memory for same amount of time.

– Bad, because throws out heavily used pages instead of
infrequently used pages

• MIN (Minimum):
– Replace page that won’t be used for the longest time
– Great, but can’t really know future…
– Makes good comparison case, however

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s. Simple hardware
– Pretty unpredictable – makes it hard to make real-time
guarantees

• LRU (Least Recently Used):
– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a
while, unlikely to be used in the near future.

– Seems like LRU should be a good approximation to MIN.

Lec 16.310/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Clock Algorithm: Not Recently Used

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Clock Algorithm: pages arranged in a ring
– Hardware “use” bit per physical page:

» Hardware sets use bit on each reference
» If use bit isn’t set, means not referenced in a long time
» Nachos hardware sets use bit in the TLB; you have to copy

this back to page table when TLB entry gets replaced
– On page fault:

» Advance clock hand (not real time)
» Check use bit: 1used recently; clear and leave alone

0selected candidate for replacement
Lec 16.410/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances

– OS keeps counter per page: # sweeps
– On page fault, OS checks use bit:

» 1clear use and also clear counter (used in last sweep)
» 0increment counter; if count=N, replace page

– Means that clock hand has to sweep by N times without
page being used before page is replaced

• How do we pick N?
– Why pick large N? Better approx to LRU

» If N ~ 1K, really good approximation
– Why pick small N? More efficient

» Otherwise might have to look a long way to find free page
• What about dirty pages?

– Takes extra overhead to replace a dirty page, so give
dirty pages an extra chance before replacing?

– Common approach:
» Clean pages, use N=1
» Dirty pages, use N=2 (and write back to disk when N=1)

Lec 16.510/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Goals for Today

• Finish Page Allocation Policies
• Working Set/Thrashing
• I/O Systems

– Hardware Access
– Device Drivers

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 16.610/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to
front of Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list,
mark RW

– Not on SC list: page in to front of Active list, mark RW;
page out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

Ac
ce
ss

New
SC

Victims

Overflow

Lec 16.710/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Second-Chance List Algorithm (con’t)
• How many pages for second chance list?

– If 0 FIFO
– If all LRU, but page fault on every page reference

• Pick intermediate value. Result is:
– Pro: Few disk accesses (page only goes to disk if unused
for a long time)

– Con: Increased overhead trapping to OS (software /
hardware tradeoff)

• With page translation, we can adapt to any kind of
access the program makes
– Later, we will show how to use page translation /
protection to share memory between threads on widely
separated machines

• Question: why didn’t VAX include “use” bit?
– Strecker (architect) asked OS people, they said they
didn’t need it, so didn’t implement it

– He later got blamed, but VAX did OK anyway
Lec 16.810/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Free List

• Keep set of free pages ready for use in demand paging
– Freelist filled in background by Clock algorithm or other
technique (“Pageout demon”)

– Dirty pages start copying back to disk when enter list
• Like VAX second-chance list

– If page needed before reused, just return to active set
• Advantage: Faster for page fault

– Can always use page (or pages) immediately on fault

Set of all pages
in Memory

Single Clock Hand:
Advances as needed to keep
freelist full (“background”)

D

D

Free Pages
For Processes

Lec 16.910/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Demand Paging (more details)

• Does software-loaded TLB need use bit?
Two Options:
– Hardware sets use bit in TLB; when TLB entry is
replaced, software copies use bit back to page table

– Software manages TLB entries as FIFO list; everything
not in TLB is Second-Chance list, managed as strict LRU

• Core Map
– Page tables map virtual page physical page
– Do we need a reverse mapping (i.e. physical page
virtual page)?
» Yes. Clock algorithm runs through page frames. If sharing,

then multiple virtual-pages per physical page
» Can’t push page out to disk without invalidating all PTEs

Lec 16.1010/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes?

– Does every process get the same fraction of memory?
Different fractions?

– Should we completely swap some processes out of memory?
• Each process needs minimum number of pages

– Want to make sure that all processes that are loaded into
memory can make forward progress

– Example: IBM 370 – 6 pages to handle SS MOVE
instruction:
» instruction is 6 bytes, might span 2 pages
» 2 pages to handle from
» 2 pages to handle to

• Possible Replacement Scopes:
– Global replacement – process selects replacement frame
from set of all frames; one process can take a frame
from another

– Local replacement – each process selects from only its own
set of allocated frames

Lec 16.1110/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):

– Every process gets same amount of memory
– Example: 100 frames, 5 processesprocess gets 20 frames

• Proportional allocation (Fixed Scheme)
– Allocate according to the size of process
– Computation proceeds as follows:

si = size of process pi and S = si
m = total number of frames

ai = allocation for pi =

• Priority Allocation:
– Proportional scheme using priorities rather than size

» Same type of computation as previous scheme
– Possible behavior: If process pi generates a page fault,
select for replacement a frame from a process with lower
priority number

• Perhaps we should use an adaptive scheme instead???
– What if some application just needs more memory?

m
S
si

Lec 16.1210/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Administrivia

• Still Grading Midterms
– Hope to hand them out tomorrow – almost done
– Solutions have been posted

» Just go to handouts page
• Would you like an extra 5% for your course grade?

– Attend lectures and sections! 5% of grade is
participation

– Midterm 1 was only 20%
• We have an anonymous feedback link on the course

homepage
– Please use to give feedback on course
– Soon: We will have a survey to fill out

• Should be working on Project 3 now.
– Autograder is intentionally running intermittently!
– You must rely on your tests, not the autograder

Lec 16.1310/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Review from Test: Monitors
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads
can proceed

– Remarkably – people didn’t get this basic structure!
• Basic structure of monitor-based program:

lockwhile (need to wait) {condvar.wait();}unlock
do something so no need to wait
lock
condvar.signal();
unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

Lec 16.1410/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Page-Fault Frequency Allocation
• Can we reduce Capacity misses by dynamically

changing the number of pages/application?

• Establish “acceptable” page-fault rate
– If actual rate too low, process loses frame
– If actual rate too high, process gains frame

• Question: What if we just don’t have enough memory?

Lec 16.1510/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high. This leads to:
– low CPU utilization
– operating system spends most of its time swapping to disk

• Thrashing a process is busy swapping pages in and out
• Questions:

– How do we detect Thrashing?
– What is best response to Thrashing?

Lec 16.1610/26/09 Kubiatowicz CS162 ©UCB Fall 2009

• Program Memory Access
Patterns have temporal
and spatial locality
– Group of Pages accessed
along a given time slice
called the “Working Set”

– Working Set defines
minimum number of pages
needed for process to
behave well

• Not enough memory for
Working SetThrashing
– Better to swap out
process?

Locality In A Memory-Reference Pattern

Lec 16.1710/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Working-Set Model

• working-set window fixed number of page
references
– Example: 10,000 instructions

• WSi (working set of Process Pi) = total set of pages
referenced in the most recent (varies in time)
– if too small will not encompass entire locality
– if too large will encompass several localities
– if = will encompass entire program

• D = |WSi| total demand frames
• if D > m Thrashing

– Policy: if D > m, then suspend/swap out processes
– This can improve overall system behavior by a lot!

Lec 16.1810/26/09 Kubiatowicz CS162 ©UCB Fall 2009

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur
the first time that a page is seen
– Pages that are touched for the first time
– Pages that are touched after process is swapped
out/swapped back in

• Clustering:
– On a page-fault, bring in multiple pages “around” the
faulting page

– Since efficiency of disk reads increases with sequential
reads, makes sense to read several sequential pages

• Working Set Tracking:
– Use algorithm to try to track working set of application
– When swapping process back in, swap in working set

Lec 16.1910/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Demand Paging Summary
• Replacement policies

– FIFO: Place pages on queue, replace page at end
– MIN: Replace page that will be used farthest in future
– LRU: Replace page used farthest in past

• Clock Algorithm: Approximation to LRU
– Arrange all pages in circular list
– Sweep through them, marking as not “in use”
– If page not “in use” for one pass, than can replace

• Nth-chance clock algorithm: Another approx LRU
– Give pages multiple passes of clock hand before replacing

• Second-Chance List algorithm: Yet another approx LRU
– Divide pages into two groups, one of which is truly LRU
and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

Lec 16.2010/26/09 Kubiatowicz CS162 ©UCB Fall 2009

The Requirements of I/O
• So far in this course:

– We have learned how to manage CPU, memory
• What about I/O?

– Without I/O, computers are useless (disembodied brains?)
– But… thousands of devices, each slightly different

» How can we standardize the interfaces to these devices?
– Devices unreliable: media failures and transmission errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will do
or how they will perform?

• Some operational parameters:
– Byte/Block

» Some devices provide single byte at a time (e.g. keyboard)
» Others provide whole blocks (e.g. disks, networks, etc)

– Sequential/Random
» Some devices must be accessed sequentially (e.g. tape)
» Others can be accessed randomly (e.g. disk, cd, etc.)

– Polling/Interrupts
» Some devices require continual monitoring
» Others generate interrupts when they need service

Lec 16.2110/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Modern I/O Systems

Lec 16.2210/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Example Device-Transfer Rates (Sun Enterprise 6000)

• Device Rates vary over many orders of magnitude
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

Lec 16.2310/26/09 Kubiatowicz CS162 ©UCB Fall 2009

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of
Different Devices
– This code works on many different devices:

FILE fd = fopen(“/dev/something”,”rw”);
for (int i = 0; i < 10; i++) {

fprintf(fd,”Count %d\n”,i);
}
close(fd);

– Why? Because code that controls devices (“device
driver”) implements standard interface.

• We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture
– Can only scratch surface!

Lec 16.2410/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Want Standard Interfaces to Devices
• Block Devices: e.g. disk drives, tape drives, DVD-ROM

– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own
interface

– Unix and Windows include socket interface
» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

Lec 16.2510/26/09 Kubiatowicz CS162 ©UCB Fall 2009

How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put
process to sleep until data is ready

– When write data (e.g. write() system call), put process
to sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of
bytes successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

Lec 16.2610/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Main components of Intel Chipset: Pentium 4

• Northbridge:
– Handles memory
– Graphics

• Southbridge: I/O
– PCI bus
– Disk controllers
– USB controllers
– Audio
– Serial I/O
– Interrupt controller
– Timers

Lec 16.2710/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

How does the processor actually talk to the device?

• CPU interacts with a Controller
– Contains a set of registers that
can be read and written

– May contain memory for request
queues or bit-mapped images

• Regardless of the complexity of the connections and
buses, processor accesses registers in two ways:
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

Lec 16.2810/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Example: Memory-Mapped Display Controller
• Memory-Mapped:

– Hardware maps control registers
and display memory into physical
address space
» Addresses set by hardware jumpers

or programming at boot time
– Simply writing to display memory
(also called the “frame buffer”)
changes image on screen
» Addr: 0x8000F000—0x8000FFFF

– Writing graphics description to
command-queue area
» Say enter a set of triangles that

describe some scene
» Addr: 0x80010000—0x8001FFFF

– Writing to the command register
may cause on-board graphics
hardware to do something
» Say render the above scene
» Addr: 0x0007F004

• Can protect with page tables

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

Lec 16.2910/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Transfering Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data to/from memory directly

• Sample interaction with DMA controller (from book):

Lec 16.3010/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Summary
• Second-Chance List algorithm: Yet another approx LRU

– Divide pages into two groups, one of which is truly LRU
and managed on page faults.

• Working Set:
– Set of pages touched by a process recently

• Thrashing: a process is busy swapping pages in and out
– Process will thrash if working set doesn’t fit in memory
– Need to swap out a process

• I/O Devices Types:
– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store
to special physical memory

– Report their results through either interrupts or a status
register that processor looks at occasionally (polling)

