Cs162
Operating Systems and
Systems Programming

Lecture 12

Protection (continued)
Address Translation

October 7, 2009
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Important Aspects of Memory Multiplexing
+ Controlled overlap:

- Separate state of threads should not collide in physical
memory. Obviously, unexpected overlap causes chaos!

- Converselz, would like the ability to overlap when
desired (for communication)

+ Translation:

- Ability to translate accesses from one address space
(virtual) to a different one (physical)
- When translation exists, processor uses virtual
addresses, physical memory uses physical addresses
- Side effects:
» Can be used to avoid overlap

» Can be used to give uniform view of memory to programs
* Protection:

- Prevent access to private memory of other processes

» Different pages of memory can be given special behavior
(Read Only, Invisible to user programs, etc).
» Kernel data protected from User programs

» Programs protected from themselves
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009

Lec 12.2

Review: General Address Translation

Data 2
Code Code
Data Stack 1 Data
Heap Heap 1 Heap
Stack Code 1 Stack
Stack 2
Prog 1 Prog 2
Virtual Data 1 Virtual
Address Heap 2 Address
Space 1 Code 2 Space 2
l OS code \
Translation Map 1 OS data | Translation Map 2
OS heap &
Stacks
1077700 Pb‘xsical Address Space

iatowicz 5162 ©UCB Fall 2009 Lec 12.3

Review: Simple Segmentation: Base and Bounds (CRAY-1)

Base
Virtual !
p— Address >® >/ DRAM
Physical
Limit Address
Yes: Error!

+ Can use base & bounds/limit for dynamic address
translation (Simple form of “segmentation”):

- Alter every address by adding "base”
- Generate error if address bigger than limit
* This gives program the illusion that it is running on its
own dedicated machine, with memory starting at O
- Program gets continuous region of memory

- Addresses within program do not have to be relocated
when program placed in different region of DRAM

10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.4

Review: Cons for Simple Segmentation Method
* Fragmentafion problem (complex memory ailocafion)
- Not every process is the same size
- Over time, memory space becomes fragmented
- Really bad if want space to grow dynamically (e.g. heap)

process 6 process 6 process 6 process 6

process 5 process 5 process 5 process 5

process 9 process 9

process 2 |C—> [—>| process 10
oS 0s oS oS

* Other problems for process maintenance
- Doesn't allow heap and stack to grow independently

- Want to ru‘r these as far apart in virtual memory space
as possible so that they can grow as needed

* Hard to do inter-process sharing
- Want to share code segments when possible

- Want to share memory between processes
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.5

Goals for Today

* Address Translation Schemes

- Segmentation

- Paging

- Multi-level translation

- Paged page tables

- Inverted page tables
- Discussion of Dual-Mode operation
- Comparison among options

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
10/7/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.6

More Flexible Segmentation

1

subroutine stack 4
symbaol
table

| 2

Ssqrt
main
program 3
: user view of physical
logical address : memory space memory space :

* Logical View: multiple separate segments
- Typical: Code, Data, Stack
- Others: memory sharing, etc

+ Each segment is given region of contiguous memory
- Has a base and limit

10/7/3 €an reside anywhere in physjcal memory Lec 12.7

Implementation of Multi-Segment Model

il B orrer ;&—erer
BaseO|Limit0 [V

Basel | Limit1

Base2..LimitZ |V .
Base3 | Limit3 N[> Physical
Base4|Limit4 V| Address
Baseb | Limith [N

Base6 | Limit6 [N
Base7 | Limit7 [V

- Segment map resides in processor
- Segment number mapped into base/limit pair
- Base added to offset to generate physical address
- Error check catches offset out of range
*+ As many chunks of physical memory as entries
- Segment addressed by portion of virtual address

- However, could be included in instruction instead:
» x86 Example: mov [es:bx],.ax.

* What is "V/N"?

- Can mark segments as invalid; requires check as well
10/7/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.8

Intel x86 Special Registers

Example: Four Segments (16 bit addresses)

80386 Special Registers Seg ID # | Base | Limit
S Offset] [0 (code) |0x4000 | 0x0800
L Jewess [Jous 151413 0 |1 (data) |Ox4800 | Ox1400
15 CE o] 15 [0 o] .
Virtual Address Format 2 (shared) | 0xFO0O0 | 0x1000
Stack Seg. Exlia Scg. 3 (STGCk) 0x0 0x3
15 35 Q 15 ES o]
- [lemese [ewese 0x0000 0x0000
15 = o] 13 Gs o]
x |88 (2|R|k|E|E|E]x 2 |x|2|x|¢ 0x4000 gx4000 }bM‘g‘hfd
RPL = Requeslol Privilege Level 1514131211109 8 7 & 5 4 3 2 1 @ 0x5$00 e share
TIL =Table Ihdicator X
Wi e 08000
e Space for
oS oxcono Gher Appe
Typical Segment Register sémw Sple ETRS;‘;‘:EM? ’
Current Priority is RPL ISRASL e Lt 0xF000 Shared with
BBl e Cop) ; DE=Dritection Flag
Of Code Segment (CS) B e s R =i bl - - Other Apps
SESign tlag Virtual Physical
fEay Bl " Address Space Address Space
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 e Lec 12.9 10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.10
Example of segment translation Administrivia

0x240 main: la $a0, varx

0x244 jal strlen Seg ID # | Base Limit
0 560 1 T S 0 " 0 (code) |0x4000 | Ox0800
X strilen: Ii VO, ;coun

0x364 loop: Ib $t0, ($al0) 1 (data) |0x4800 | 0x1400
0x368 beq $r0,$tl, done 2 (shared) | 0xFOOO | 0x1000

3 (stack) | 0x0000 | 0x3000

0x4050 varx dw 0x314159

Lefs simulate a bit of this code to see what happens (PC=0x240):
Fetch 0x240. Virtual segment #? 0; Offset? 0x240
Physical address? Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Ge'r “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

2. Fetch Ox244. Translated to Physical=0x4244. Get "jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

3. Fetch 0x360. Translated to Physical=0x4360. Get "li $v0,0"
Move 0x0000 — $vO, Move PC+4—PC

4. Fetch 0x364. Translated to Physical=-0x4364. Get “Ib $10,($a0)"
Since $a0 is 0x4050, try to load byte from 0x4050
Translate 0x4050. Virtual segment #? 1. Offset? 0x50
Physical address? Base=0x4800, Physical addr = 0x4850,

Load Byte from 0x4850—%$10, Move PC+4—PC
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.11

Midterm I coming up in 1 3 weeks:

- Monday, 10/19, 6:00-9:00pm, 145 Dwinelle

- Should be 2 hour exam with extra time

- Closed book, one page of hand-written notes (both sides)
* No class on day of Midterm

- Extra Office Hours: Mon 2:00-5:00. Perhaps.
Midterm Topics

- Topics: Everything up to Wednesday 10/14

- History, Concurrency, Multithreading, Synchronization,
Protection/Address Spaces, TLBs

* Make sure to fill out Group Evaluations!
* Project 2
- Initial Design Document due Tuesday 10/13

- Look at the lecture schedule to keep up with due dates!
10/7/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.12

Observations about Segmentation

Virtual address space has holes
- Segmentation efficient for sparse address spaces

- A correct program should never address gaps (except
as mentioned in moment)

» If it does, trap to kernel and dump core
* When it is OK to address outside valid range:
- This is how the stack and heap are allowed to grow

- For instance, stack takes fault, system automatically
increases size of stack

* Need protection mode in segment table
- For example, code segment would be read-only
- Data and stack would be read-write (stores allowed)
- Shared segment could be read-only or read-write

* What must be saved/restored on context switch?
- Segment table stored in CPU, not in memory (small)

- Might store all of processes memory onto disk when
switched (called “swapping™)

10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.13

Schematic View of Swapping

operating —— ——
system

"1) swap oul
e ———————————

o~ process P,
|_3/ swap in

user T— |
space

backing store

main memaory

+ Extreme form of Context Switch: Swapping

- In order to make room for next process, some or all
of the previous process is moved to disk

» Likely need to send out complete segments
- This greatly increases the cost of context-switching
* Desirable alternative?

- Some way to keep only active portions of a process in
memory at any one time

- Need finer granularity control over physical memory
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.14

Paging: Physical Memory in Fixed Size Chunks

+ Problems with segmentafion?

- Must fit variable-sized chunks into physical memory

- May move processes multiple times to fit everything

- Limited options for swapping to disk
+ Fragmentation: wasted space

- External: free gaps between allocated chunks

- Internal: don't need all memory within allocated chunks
+ Solution to fragmentation from segments?

- Allocate physical memory in fixed size chunks (“pages”)

- Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1=allocated, O=free

+ Should pages be as big as our previous segments?
- No: Can lead to lots of internal fragmentation
» Typically have small pages (1K-16K)

- Consequently: need mulﬁPIe Bages/segmen‘r
10/7/09 Kubiatowicz €S5162 ©UCB Fall 200

Lec 12.15

How to Implement Paging?

Virtual Address:

PageTablePtr

bage 710} V.F Offset

page #2 |V W Physical Address
page #3 V.R.W ‘fheck Pern)

PageTableSize
M #4| N
page |
Aéﬁ;is page #5 [V.R.W Access
Error

* Page Table (One per process)
- Resides in physical memor
- Contains physical page ancr permission for each virtual page
» Permissions include: Valid bits, Read, Write, etc
* Virtual address mapping
- Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = 1024-byte pages
- Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

- Check Page Table bounds and permissions
10/7/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 12.16

What about Sharing?
Virtual Address —
(Process A):
Ea§eTabIePfrAF

PageTablePtrB
page #1 . .
page #2 VAW This phy§|cal page
appears in address
age #3 ¥ N
space of both processes
page #5 VR
Virtual Address:
Process B
10/7/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.17

Simple Page Table Discussion
* What needs to be switched on

;--......--------......--------......--------......-: Qa Con-l-ex-l- SWitCh?

0x00 . 0x00 i - Page table pointer and limit
. o 0x04 Anglysis
i -Pros
0x04 =85 3 i'(» Simple memory allocation
f 11 oxos |- » Easy to Share
7 i - Con: What if address space is
0x08 |-& Page oxoc o SPGI"SC?
j | Table fl ¢ » E.g. on UNIX, code starts at
k g : 0, stack starts at (23!-1).
] : » With 1K pages, need 4 million
Virtual Ox10 -4 page tablg ontries)
Memory b - Con: What if table really big?
q » Not all pages used all the
Physical time = would be nice to have
ysical : working set of page table in
Memory : memory

"+ How about combining paging
and segmentation?
10/7/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.18

Example (4 byte pages)

Multi-level Translation

+ What abouf a free of Tables?
- Lowest level page table=>memory still allocated with bitmap
- Higher levels often segmented

* Could have any number of levels. Example (top segment):

Virtual

Address: l

page #0 | V,R

BaseO][Limi page #1 | V.R

Basel | Linfit1 [V -
page #3 Physical Address

Base3 | Limit: page #4 | N

Base4 | Limit4

Base5| Limit5 page #5 V.R,W

Base6 | Limit6 N‘(Access Access

Base7 | Limit7 |V — Erron Eoes:

* What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)

- Pointer to top-level table (page table)
10/7/09 Kubiatowicz 5162 ©UCB Fall 2009 Lec 12.19

What about Sharing (Complete Segment)?

Process
i CoFIReR] offer | page #O VR
page #1 | V.R
page #2 |V,R,W
page #3 |V,R,W
page #4 | N
Limit3 page #5 V.R,W

Limit4
Baseb | Limith
Base6 | Limit6
Base7 | Limit7

Shared Segment

Limit0
Limit1

Limit3
Base4 | Limit4
Baseb | Limith
Baseb | Limit6
Base7 | Limit7

<|Z|Z|<|Zzl<s|<][<

Process
B

10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.20

Another common example: T\s/:-!evel page table
\ViNTelal
10 bits 10 bits 12 bits Address:

Virtual

Address:

PageTablePtr

— 4 bytes «—

* Tree of Page Tables i
* Tables fixed size (1024 entries)
- On context-switch: save single
PageTablePtr register
* Valid bits on Page Table Entries
- Don't need every 2"-|evel table
- Even when exist, 2™-level tables_, 4 o5 «—

can reside on disk if not in use
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.21

Multi-level Translation Analysis

* Pros:
- Only need to allocate as many page table entries as we
need for application
» In other wards, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing
» Share at segment or page level (need additional reference
counting)
* Cons:
- One pointer per page (typically 4K - 16K pages today)
- Page tables need to be contiguous
» However, previous example keeps tables to exactly one
page in size
- Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.22

Inverted Page Table

* With all previous examples (Forward Page Tables")
- Size of page table is at least as large as amount of
virtual memory allocated to processes
- Physical memory may be much less
» Much of process space may be out on disk or not in use

Hash
Table

+ Answer: use a hash table

- Called an "Inverted Page Table”

- Size is independent of virtual address space

- Directly related to amount of physical memory

- Very attractive option for 64-bit address spaces
+ Cons: Complexity of managing hash changes

- i |
10/7/09 Of1'en n hardul!t%ﬁ?c;wicz €S162 ©UCB Fall 2009 Lec 12.23

Dual-Mode Operation

* Can Application Modify its own translation tables?
- If it could, could get access to all of physical memory
- Has to be restricted somehow
+ To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
- "Kernel” mode (or “supervisor” or “protected”)
- "User” mode (Normal program mode)
- Mode set with bits in special control register only
accessible in kernel-mode
+ Intel processor actually has four “rings” of
protection:
- PL (Priviledge Level) from O - 3
» PLO has full access, PL3 has least
- Privilege Level set in code segment descriptor (CS)
- Mirrored "IOPL" bits in condition register gives
permission to programs to use the I/O insfructions
- Typical OS kernels on Intel processors only use PLO
("user”) and PL3 (“kernel”)

10/7/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 12.24

For Protection, Lock User-Programs in Asylum
+ Idea: Lock user programs in padded cell
with no exit or sﬁarp objects
- Cannot change mode to kernel mode
- User cannot modify page table mapping

- Limited access to memory: cannot
adversely effect other processes

» Side-effect: Limited access to
memorK-mapped I/0 operations % 2N
(I/0 that occurs by reading/writing memory locations)

- Limited access to interrupt controller
- What else needs to be protected?
* A couple of issues
- How to share CPU between kernel and user programs?

» Kinda like both the inmates and the warden in asylum are
the same person. How do you manage this???

- How do programs interact?
- How does one switch between kernel and user modes?
» OS — user (kernel — user mode): getting into cell

» User— OS (user — kernel mode): getting out of cell
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.25

How to get from Kernel-User

+ What does the kernel do to create a new user
process?

- Allocate and initialize address-space control block
- Read program off disk and store in memory
- Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program
* How does kernel switch between processes?
- Same saving/restoring of registers as before

- Save/restore PSL (hardware pointer to translation table)
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.26

User—Kernel (System Call)

* Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

User process
user mode

(mode bit = 1)

T
user process executing : calls system call | | return from system call |

\ i

Y Fi
13 7

K | trap returm
sl mode bit=0 mode hit = 1

kemel mode

execute system call ({mode bit = 0)

 System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition
- Can any kernel routine be called?
» No! Only specific ones.
- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel

10/7/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 12.27

System Call Continued

* What are some system calls?
- I/0: open, close, read, write, Iseek
- Files: delete, mkdir, rmdir, truncate, chown, chgrp, ..
- Process: fork, exit, wait (like join)
- Network: socket create, set options
* Are system calls constant across operating systems?
- Not entirely, but there are lots of commonalities
- Also some standardization attempts (POSIX)
* What happens at beginning of system call?
» On entry to kernel, sets system to kernel mode
» Handler address fetched from table/Handler started
- System Call argument passing:
- In registers (not very much can be passed)
- Write into user memory, kernel copies into kernel mem
» User addresses must be translatediw
» Kernel has different view of memory than user
- Every Argument must be explicitly checked!
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.28

User—Kernel (Exceptions: Traps and Interrupts)
+ A system call insfruction causes a synchronous
exception (or “trap”)
- In fact, often called a software “trap” instruction
+ Other sources of Synchronous Exceptions:

- Divide by zero, Illegal instruction, Bus error (bad
address, e.g. unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
+ Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
+ On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel

- For some processors (x86), processor also saves
registers, changes stack, etc.

* Actual handler typically saves registers, other CPU

10/7%301'3, Gnd SW"" u?a ochg Jé?&%'CBsfj;ﬂ§589 Lec 12.29

Additions to MIPS ISA to support Exceptions?

- Exception state is kept in "Coprocessor 0"

- Use mfcO read contents of these registers:

» BadVAddr #regisfer 8): contains memory address at which
memory reference error occurred

» Status (register 12): interrupt mask and enable bits
» Cause (register 13): the cause of the exception
» EPC (register 14): address of the affected instruction

15 8 543210

Status Mask klek|e|k|e
old prev cur

- Status Register fields:
- Mask: Interrupt enable
» 1 bit for each of 5 hardware and 3 software interrupts
- k = kernel/user: O=kernel mode
- e = interrupt enable: O=interrupts disabled
- Exception=6 LSB shifted left 2 bits, setting 2 LSB to O:
» run in kernel mode with interrupts disabled
10/7/09 Kubiatowicz €S5162 ©UCB Fall 2009 Lec 12.30

Closing thought: Protection without Hardware

* Does protection require hardware support for
translation and dual-mode behavior?
- No: Normally use hardware, but anyfhinq you can do in
hardware can also do in software (possibly expensive)
* Protection via Strong Typing
- Restrict pro ramming language so that you can't express
program that would trash another program
- Loader needs to make sure that program produced by
valid compiler or all bets are off
- Example languages: LISP, Ada, Modula-3 and Java
* Protection via software fault isolation:
- Language independent approach: have compiler generate
object code that provably can't step out of bounds
» Compiler puts in checks for every “dangerous” operation
(loads, stores, efc). Again, need special loader.
» Alternative, compiler generates “proof” that code cannot
do certain things (Proof Carrying Code)
- Or: use virtual machine to guarantee safe behavior

(loads and stores recompiled on flg to check bounds
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec’12.31

Summary (1/2)

* Memory is a resource that must be shared
- Controlled Overlap: only shared when appropriate

- Translation: Change Virtual Addresses into Physical
Addresses

- Protection: Prevent unauthorized Sharing of resources
* Dual-Mode

- Kernel/User distinction: User restricted

- User—Kernel: System calls, Traps, or Interrupts

- Inter-process communication: shared memory, or
through kernel (system calls)

+ Exceptions
- Synchronous Exceptions: Traps (including system calls)
- Asynchronous Exceptions: Interrupts

10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.32

Summary (2/2)

+ Segment Mapping
- Segment registers within processor
- Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)
- Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
* Page Tables
- Memory divided into fixed-sized chunks of memory

- Virtual page number from virtual address mapped
through page table to physical page number

- Offset of virtual address same as physical address
- Large page tables can be placed into virtual memory
* Multi-Level Tables
- Virtual address mapped to series of tables
- Permit sparse population of address space
+ Inverted page table

- Size of page table related to physical memory size
10/7/09 Kubiatowicz €S162 ©UCB Fall 2009 Lec 12.33

