
CS162
Operating Systems and
Systems Programming

Lecture 9

Tips for Working in a Project Team/ 
Cooperating Processes and Deadlock

September 28, 2009
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 9.29/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Definition of Monitor
• Semaphores are confusing because dual purpose:

– Both mutual exclusion and scheduling constraints
– Cleaner idea: Use locks for mutual exclusion and 
condition variables for scheduling constraints

• Monitor: a lock and zero or more condition variables 
for managing concurrent access to shared data
– Use of Monitors is a programming paradigm

• Lock: provides mutual exclusion to shared data:
– Always acquire before accessing shared data structure
– Always release after finishing with shared data

• Condition Variable: a queue of threads waiting for 
something inside a critical section
– Key idea: allow sleeping inside critical section by 
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical 
section

Lec 9.39/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Review: Programming with Monitors
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads 
can proceed

• Basic structure of monitor-based program:
lockwhile (need to wait) {condvar.wait();}unlock
do something so no need to wait
lock
condvar.signal();
unlock

Check and/or update
state variables

Wait if necessary

Check and/or update
state variables

Lec 9.49/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Goals for Today

• Tips for Programming in a Project Team
• Language Support for Synchronization
• Discussion of Deadlocks

– Conditions for its occurrence
– Solutions for breaking and avoiding deadlock

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.



Lec 9.59/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Tips for Programming in a Project Team
• Big projects require more than one 

person (or long, long, long time)
– Big OS: thousands of person-years!

• It’s very hard to make software 
project teams work correctly
– Doesn’t seem to be as true of big 
construction projects
» Empire state building finished in 

one year: staging iron production 
thousands of miles away

» Or the Hoover dam: built towns to 
hold workers

– Is it OK to miss deadlines? 
» We make it free (slip days)
» Reality: they’re very expensive as 

time-to-market is one of the most 
important things!

“You just have 
to get your 

synchronization right!”

Lec 9.69/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Big Projects
• What is a big project?

– Time/work estimation is hard
– Programmers are eternal optimistics
(it will only take two days)!
» This is why we bug you about 

starting the project early
» Had a grad student who used to say he just needed 

“10 minutes” to fix something. Two hours later…
• Can a project be efficiently partitioned?

– Partitionable task decreases in time as
you add people

– But, if you require communication:
» Time reaches a minimum bound
» With complex interactions, time increases!

– Mythical person-month problem:
» You estimate how long a project will take
» Starts to fall behind, so you add more people
» Project takes even more time!

Lec 9.79/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Techniques for Partitioning Tasks
• Functional

– Person A implements threads, Person B implements 
semaphores, Person C implements locks…

– Problem: Lots of communication across APIs
» If B changes the API, A may need to make changes
» Story: Large airline company spent $200 million on a new 

scheduling and booking system. Two teams “working 
together.” After two years, went to merge software. 
Failed! Interfaces had changed (documented, but no one 
noticed). Result: would cost another $200 million to fix. 

• Task
– Person A designs, Person B writes code, Person C tests
– May be difficult to find right balance, but can focus on 
each person’s strengths (Theory vs systems hacker)

– Since Debugging is hard, Microsoft has two testers for 
each programmer

• Most CS162 project teams are functional, but people 
have had success with task-based divisions

Lec 9.89/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Communication
• More people mean more communication

– Changes have to be propagated to more people
– Think about person writing code for most 
fundamental component of system: everyone depends 
on them!

• Miscommunication is common
– “Index starts at 0?  I thought you said 1!”

• Who makes decisions?
– Individual decisions are fast but trouble
– Group decisions take time
– Centralized decisions require a big picture view (someone 
who can be the “system architect”)

• Often designating someone as the system architect 
can be a good thing
– Better not be clueless
– Better have good people skills
– Better let other people do work 



Lec 9.99/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Coordination
• More people  no one can make all meetings!

– They miss decisions and associated discussion
– Example from earlier class: one person missed 
meetings and did something group had rejected

– Why do we limit groups to 5 people? 
» You would never be able to schedule meetings otherwise

– Why do we require 4 people minimum?
» You need to experience groups to get ready for real world

• People have different work styles
– Some people work in the morning, some at night
– How do you decide when to meet or work together?

• What about project slippage?
– It will happen, guaranteed!
– Ex: phase 4, everyone busy but not talking.  One person 
way behind.  No one knew until very end – too late!

• Hard to add people to existing group
– Members have already figured out how to work together

Lec 9.109/28/09 Kubiatowicz CS162 ©UCB Fall 2009

How to Make it Work?
• People are human.  Get over it.

– People will make mistakes, miss meetings, miss 
deadlines, etc.  You need to live with it and adapt

– It is better to anticipate problems than clean up 
afterwards. 

• Document, document, document
– Why Document?

» Expose decisions and communicate to others
» Easier to spot mistakes early
» Easier to estimate progress

– What to document?
» Everything (but don’t overwhelm people or no one will read)

– Standardize!
» One programming format: variable naming conventions, tab 

indents,etc.
» Comments (Requires, effects, modifies)—javadoc?

Lec 9.119/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Suggested Documents for You to Maintain

• Project objectives: goals, constraints, and priorities
• Specifications: the manual plus performance specs

– This should be the first document generated and the 
last one finished

• Meeting notes
– Document all decisions
– You can often cut & paste for the design documents

• Schedule: What is your anticipated timing?
– This document is critical!

• Organizational Chart
– Who is responsible for what task?

Lec 9.129/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Use Software Tools

• Source revision control software 
– (Subversion, CVS, others…)
– Easy to go back and see history/undo mistakes
– Figure out where and why a bug got introduced
– Communicates changes to everyone (use CVS’s features)

• Use automated testing tools
– Write scripts for non-interactive software
– Use “expect” for interactive software
– JUnit: automate unit testing
– Microsoft rebuilds the Vista kernel every night with the 
day’s changes. Everyone is running/testing the latest 
software

• Use E-mail and instant messaging consistently to 
leave a history trail



Lec 9.139/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Test Continuously

• Integration tests all the time, not at 11pm
on due date!
– Write dummy stubs with simple functionality

» Let’s people test continuously, but more work
– Schedule periodic integration tests

» Get everyone in the same room, check out code, build, 
and test.

» Don’t wait until it is too late!
• Testing types:

– Unit tests: check each module in isolation (use JUnit?)
– Daemons: subject code to exceptional cases 
– Random testing: Subject code to random timing changes

• Test early, test later, test again
– Tendency is to test once and forget; what if something 
changes in some other part of the code?

Lec 9.149/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Administrivia
• Project 1 Code (and final design document)

– Due Friday 10/2 (this Friday!), Document Saturday
– Project 2 starts after you are done with Project 1

• Autograder issues
– Autograder not intended to run frequently at beginning

» Assume running every 4 hours or so at beginning of week
– We did have problems over the weekend

» Hopefully fixed by now
• Midterm I coming up in three weeks:

– Monday, 10/19, Location TBA still
– Will be 3 hour exam in evening (5:30-8:30 or 6:00-9:00)

» Should be 2 hour exam with extra time
– Closed book, one page of hand-written notes (both sides)
– Topics: Everything up to previous Wednesday

• No class on day of Midterm 
• I will post extra office hours for people who have questions about 

the material (or life, whatever)

Lec 9.159/28/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 9.169/28/09 Kubiatowicz CS162 ©UCB Fall 2009

• Resources – passive entities needed by threads to do 
their work
– CPU time, disk space, memory

• Two types of resources:
– Preemptable – can take it away

» CPU, Embedded security chip
– Non-preemptable – must leave it with the thread

» Disk space, plotter, chunk of virtual address space
» Mutual exclusion – the right to enter a critical section 

• Resources may require exclusive access or may be 
sharable
– Read-only files are typically sharable
– Printers are not sharable during time of printing

• One of the major tasks of an operating system is to 
manage resources

Resources



Lec 9.179/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Starvation vs Deadlock
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
» Example, low-priority thread waiting for resources 

constantly in use by high-priority threads
– Deadlock: circular waiting for resources

» Thread A owns Res 1 and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res 1

– Deadlock  Starvation but not vice versa
» Starvation can end (but doesn’t have to)
» Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

Lec 9.189/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Conditions for Deadlock
• Deadlock not always deterministic – Example 2 mutexes:

Thread A Thread B
x.P(); y.P();
y.P(); x.P();
y.V(); x.V();
x.V(); y.V();

– Deadlock won’t always happen with this code
» Have to have exactly the right timing (“wrong” timing?)
» So you release a piece of software, and you tested it, and 

there it is, controlling a nuclear power plant…
• Deadlocks occur with multiple resources

– Means you can’t decompose the problem
– Can’t solve deadlock for each resource independently

• Example: System with 2 disk drives and two threads
– Each thread needs 2 disk drives to function
– Each thread gets one disk and waits for another one

Lec 9.199/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves 
– Traffic only in one direction at a time 
– Problem occurs when two cars in opposite directions on 
bridge: each acquires one segment and needs next

• If a deadlock occurs, it can be resolved if one car 
backs up (preempt resources and rollback)
– Several cars may have to be backed up 

• Starvation is possible
– East-going traffic really fast  no one goes west

Lec 9.209/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Disallowed

By Rule



Lec 9.219/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry 
lawyer has two chopsticks afterwards

Lec 9.229/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Four requirements for Deadlock

• Mutual exclusion
– Only one thread at a time can use a resource.

• Hold and wait
– Thread holding at least one resource is waiting to 
acquire additional resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread 
holding the resource, after thread is finished with it

• Circular wait
– There exists a set {T1, …, Tn} of waiting threads

» T1 is waiting for a resource that is held by T2
» T2 is waiting for a resource that is held by T3
» …
» Tn is waiting for a resource that is held by T1

Lec 9.239/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Symbols
Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn
– Resource types R1, R2, . . ., Rm

CPU cycles, memory space, I/O devices
– Each resource type Ri has Wi instances.
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()
• Resource-Allocation Graph:

– V is partitioned into two types:
» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1  Rj
– assignment edge – directed edge Rj  Ti

R1
R2

T1 T2

Lec 9.249/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Resource Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph
With Cycle, but
No Deadlock

• Recall:
– request edge – directed edge T1  Rj
– assignment edge – directed edge Rj  Ti



Lec 9.259/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Methods for Handling Deadlocks

• Allow system to enter deadlock and then recover
– Requires deadlock detection algorithm
– Some technique for forcibly preempting resources 
and/or terminating tasks

• Ensure that system will never enter a deadlock
– Need to monitor all lock acquisitions
– Selectively deny those that might lead to deadlock

• Ignore the problem and pretend that deadlocks 
never occur in the system
– Used by most operating systems, including UNIX

Lec 9.269/28/09 Kubiatowicz CS162 ©UCB Fall 2009

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Only one of each type of resource  look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative 
integers (quantities of resources of each type):
[FreeResources]: Current free resources each type[RequestX]: Current requests from thread X[AllocX]: Current resources held by thread X

– See if tasks can eventually terminate on their own
[Avail] = [FreeResources] Add all nodes to UNFINISHED do {

done = trueForeach node in UNFINISHED {if ([Requestnode] <= [Avail]) {remove node from UNFINISHED[Avail] = [Avail] + [Allocnode]done = false}}
} until(done)

– Nodes left in UNFINISHED  deadlocked

Lec 9.279/28/09 Kubiatowicz CS162 ©UCB Fall 2009

What to do when detect deadlock?
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into 
the river.  Deadlock solved!

– Shoot a dining lawyer
– But, not always possible – killing a thread holding a 
mutex leaves world inconsistent

• Preempt resources without killing off thread 
– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads 
– Hit the rewind button on TiVo, pretend last few 
minutes never happened

– For bridge example, make one car roll backwards (may 
require others behind him)

– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may 
reenter deadlock once again

• Many operating systems use other options
Lec 9.289/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Summary
• Suggestions for dealing with Project Partners

– Start Early, Meet Often
– Develop Good Organizational Plan, Document Everything, 
Use the right tools, Develop Comprehensive Testing Plan

– (Oh, and add 2 years to every deadline!)
• Starvation vs. Deadlock

– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion

» Only one thread at a time can use a resource
– Hold and wait

» Thread holding at least one resource is waiting to acquire 
additional resources held by other threads

– No preemption
» Resources are released only voluntarily by the threads

– Circular wait
»  set {T1, …, Tn} of threads with a cyclic waiting pattern



Lec 9.299/28/09 Kubiatowicz CS162 ©UCB Fall 2009

Summary (2) 

• Techniques for addressing Deadlock
– Allow system to enter deadlock and then recover
– Ensure that system will never enter a deadlock
– Ignore the problem and pretend that deadlocks never 
occur in the system

• Deadlock detection 
– Attempts to assess whether waiting graph can ever 
make progress

• Next Time: Deadlock prevention
– Assess, for each allocation, whether it has the 
potential to lead to deadlock

– Banker’s algorithm gives one way to assess this


