
CS162
Operating Systems and
Systems Programming

Lecture 1

What is an Operating System?

August 26th, 2009
Prof. John Kubiatowicz

http://inst.eecs.berkeley.edu/~cs162

Lec 1.28/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Who am I?
• Professor John Kubiatowicz (Prof “Kubi”)

– Background in Hardware Design
» Alewife project at MIT
» Designed CMMU, Modified SPAR C processor
» Helped to write operating system

– Background in Operating Systems
» Worked for Project Athena (MIT)
» OS Developer (device drivers,

network file systems)
» Worked on Clustered High-Availability systems

(CLAM Associates)
» OS lead researcher for the new Berkeley PARLab

(Tessellation OS). More later.
– Peer-to-Peer

» OceanStore project –
Store your data for 1000 years

» Tapestry and Bamboo –
Find you data around globe

– Quantum Computing
» Well, this is just cool, but probably not apropos

Tessellation
A
lewife

O
ceanStore

Lec 1.38/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Goals for Today

• What is an Operating System?
– And – what is it not?

• Examples of Operating Systems design
• Why study Operating Systems?
• Oh, and “How does this class operate?”

Interactive is important!
Ask Questions!

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Slides
courtesy of Kubiatowicz, AJ Shankar, George Necula, Alex Aiken,
Eric Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.

Lec 1.48/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Technology Trends: Moore’s Law

2X transistors/Chip Every 1.5 years
Called “Moore’s Law”

Moore’s Law

Microprocessors have
become smaller, denser,
and more powerful.

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of
semiconductor chips would
double roughly every 18
months.

Lec 1.58/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet
Connectivity

Clusters

Massive Cluster

Gigabit Ethernet

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large parallel system
– Microprocessors in everything
– Vast infrastructure behind them

Lec 1.68/26/09 Kubiatowicz CS162 ©UCB Fall 2009

People-to-Computer Ratio Over Time

• Today: Multiple CPUs/person!
– Approaching 100s?

From David Culler

Lec 1.78/26/09 Kubiatowicz CS162 ©UCB Fall 2009

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

AX
-1

1/
78

0)

25%/year

52%/year

??%/year

New Challenge: Slowdown in Joy’s law of Performance

• VAX : 25%/year 1978 to 1986
• RISC + x86: 52%/year 1986 to 2002
• RISC + x86: ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

 Sea change in chip
design: multiple “cores” or
processors per chip

3X

Lec 1.88/26/09 Kubiatowicz CS162 ©UCB Fall 2009

ManyCore Chips: The future is here

• “ManyCore” refers to many processors/chip
– 64? 128? Hard to say exact boundary

• How to program these?
– Use 2 CPUs for video/audio
– Use 1 for word processor, 1 for browser
– 76 for virus checking???

• Parallelism must be exploited at all levels

• Intel 80-core multicore chip (Feb 2007)
– 80 simple cores
– Two floating point engines /core
– Mesh-like "network-on-a-chip“
– 100 million transistors
– 65nm feature size

Frequency Voltage Power Bandwidth Performance
3.16 GHz 0.95 V 62W 1.62 Terabits/s 1.01 Teraflops
5.1 GHz 1.2 V 175W 2.61 Terabits/s 1.63 Teraflops
5.7 GHz 1.35 V 265W 2.92 Terabits/s 1.81 Teraflops

Lec 1.98/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Another Challenge: Power Density

• Moore’s Law Extrapolation
– Potential power density reaching amazing levels!

• Flip side: Battery life very important
– Moore’s law can yield more functionality at equivalent
(or less) total energy consumption

Lec 1.108/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Computer System Organization

• Computer-system operation
– One or more CPUs, device controllers connect
through common bus providing access to shared
memory

– Concurrent execution of CPUs and devices
competing for memory cycles

Lec 1.118/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Functionality comes with great complexity!

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards

Networks

Pentium IV Chipset

Lec 1.128/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Sample of Computer Architecture Topics

Instruction Set Architecture

Pipelining, Hazard Resolution,
Superscalar, Reordering,
Prediction, Speculation,
Vector, Dynamic Compilation

Addressing,
Protection,
Exception Handling

L1 Cache

L2 Cache

DRAM

Disks, WORM, Tape

Coherence,
Bandwidth,
Latency

Emerging Technologies
Interleaving
Bus protocols

RAID

VLSI

Input/Output and Storage

Memory
Hierarchy

Pipelining and Instruction
Level Parallelism

Network
Communication

O
th

er
 P

ro
ce

ss
or

s

Lec 1.138/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Increasing Software Complexity

From MIT’s 6.033 course

Lec 1.148/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Example: Some Mars Rover (“Pathfinder”) Requirements
• Pathfinder hardware limitations/complexity:

– 20Mhz processor, 128MB of DRAM, VxWorks OS
– cameras, scientific instruments, batteries,

solar panels, and locomotion equipment
– Many independent processes work together

• Can’t hit reset button very easily!
– Must reboot itself if necessary
– Must always be able to receive commands from Earth

• Individual Programs must not interfere
– Suppose the MUT (Martian Universal Translator Module) buggy
– Better not crash antenna positioning software!

• Further, all software may crash occasionally
– Automatic restart with diagnostics sent to Earth
– Periodic checkpoint of results saved?

• Certain functions time critical:
– Need to stop before hitting something
– Must track orbit of Earth for communication

Lec 1.158/26/09 Kubiatowicz CS162 ©UCB Fall 2009

How do we tame complexity?

• Every piece of computer hardware different
– Different CPU

» Pentium, PowerPC, ColdFire, ARM, MIPS
– Different amounts of memory, disk, …
– Different types of devices

» Mice, Keyboards, Sensors, Cameras, Fingerprint
readers

– Different networking environment
» Cable, DSL, Wireless, Firewalls,…

• Questions:
– Does the programmer need to write a single program
that performs many independent activities?

– Does every program have to be altered for every
piece of hardware?

– Does a faulty program crash everything?
– Does every program have access to all hardware?

Lec 1.168/26/09 Kubiatowicz CS162 ©UCB Fall 2009

OS Tool: Virtual Machine Abstraction

• Software Engineering Problem:
– Turn hardware/software quirks

what programmers want/need
– Optimize for convenience, utilization, security,
reliability, etc…

• For Any OS area (e.g. file systems, virtual memory,
networking, scheduling):

– What’s the hardware interface? (physical reality)
– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

Lec 1.178/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Interfaces Provide Important Boundaries

• Why do interfaces look the way that they do?
– History, Functionality, Stupidity, Bugs, Management
– CS152 Machine interface
– CS160 Human interface
– CS169 Software engineering/management

• Should responsibilities be pushed across boundaries?
– RISC architectures, Graphical Pipeline Architectures

instruction set

software

hardware

Lec 1.188/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Virtual Machines
• Software emulation of an abstract machine

– Make it look like hardware has features you want
– Programs from one hardware & OS on another one

• Programming simplicity
– Each process thinks it has all memory/CPU time
– Each process thinks it owns all devices
– Different Devices appear to have same interface
– Device Interfaces more powerful than raw hardware

» Bitmapped display windowing system
» Ethernet card reliable, ordered, networking (TCP/IP)

• Fault Isolation
– Processes unable to directly impact other processes
– Bugs cannot crash whole machine

• Protection and Portability
– Java interface safe and stable across many platforms

Lec 1.198/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Virtual Machines (con’t): Layers of OSs

• Useful for OS development
– When OS crashes, restricted to one VM
– Can aid testing programs on other OSs

Lec 1.208/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Course Administration

• Instructor: John Kubiatowicz (kubitron@cs.berkeley.edu)
673 Soda Hall
Office Hours(Tentative): M/W 2:30pm-3:30pm

• TAs: Jingtao Wang (cs162-ta@cory)
Gunho Lee (cs162-tb@cory)
Alex Smolen (cs162-tc@cory)

• Labs: Second floor of Soda Hall
• Website: http://inst.eecs.berkeley.edu/~cs162

Mirror: http://www.cs.berkeley.edu/~kubitron/cs162
• Webcast: http://webcast.berkeley.edu/courses/index.php
• Newsgroup: ucb.class.cs162 (use news.csua.berkeley.edu)
• Course Email: cs162@cory.cs.berkeley.edu
• Reader: TBA (Stay tuned!)

Lec 1.218/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Class Schedule
• Class Time: M/W 4:00-5:30 PM, 277 Cory Hall

– Please come to class. Lecture notes do not have everything
in them. The best part of class is the interaction!

– Also: 10% of the grade is from class participation (section
and class)

• Sections:
– Important information is in the sections
– The sections assigned to you by Telebears are temporary!
– Every member of a project group must be in same section
– No sections this week (obviously); start next week

Jingtao Wang75 EvansTu 3:00P-4:00P 104
4 Evans
4 Evans
4 Evans
6 Evans
Location

Jingtao WangTu 2:00P-3:00P 103
Alex SmolenTu 1:00P-2:00P 105 (New)
Gunho LeeTu 11:00A-12:00P 102
Gunho LeeTu 10:00A-11:00A 101

TATimeSection

Lec 1.228/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Textbook

• Text: Operating Systems Concepts,
8th Edition Silbershatz, Galvin, Gagne

• Online supplements
– See “Information” link on course website
– Includes Appendices, sample problems, etc

• Question: need 8th edition?
– No, but has new material that we may cover
– Completely reorganized
– Will try to give readings from both the 7th and 8th

editions on the lecture page

Lec 1.238/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Topic Coverage

Textbook: Silberschatz, Galvin, and Gagne,
Operating Systems Concepts, 8th Ed., 2008

• 1 week: Fundamentals (Operating Systems Structures)
• 1.5 weeks: Process Control and Threads
• 2.5 weeks: Synchronization and scheduling
• 2 week: Protection, Address translation, Caching
• 1 week: Demand Paging
• 1 week: File Systems
• 2.5 weeks: Networking and Distributed Systems
• 1 week: Protection and Security
• ??: Advanced topics

Lec 1.248/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Grading

• Rough Grade Breakdown
– One Midterm: 20% each
One Final: 25%
Four Projects: 50% (i.e. 12.5% each)
Participation: 5%

• Four Projects:
– Phase I: Build a thread system
– Phase II: Implement Multithreading
– Phase III: Caching and Virtual Memory
– Phase IV: Networking and Distributed Systems

• Late Policy:
– Each group has 5 “slip” days.
– For Projects, slip days deducted from all partners
– 10% off per day after slip days exhausted

Lec 1.258/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Group Project Simulates Industrial Environment

• Project teams have 4 or 5 members in same
discussion section

– Must work in groups in “the real world”
• Communicate with colleagues (team members)

– Communication problems are natural
– What have you done?
– What answers you need from others?
– You must document your work!!!
– Everyone must keep an on-line notebook

• Communicate with supervisor (TAs)
– How is the team’s plan?
– Short progress reports are required:

» What is the team’s game plan?
» What is each member’s responsibility?

Lec 1.268/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Typical Lecture Format

• 1-Minute Review
• 20-Minute Lecture
• 5- Minute Administrative Matters
• 25-Minute Lecture
• 5-Minute Break (water, stretch)
• 25-Minute Lecture
• Instructor will come to class early & stay after to answer

questions

Attention

Time

20 min. Break “In Conclusion, ...”25 min. Break 25 min.

Lec 1.278/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Lecture Goal

Interactive!!!

Lec 1.288/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Computing Facilities

• Every student who is enrolled should get an
account form at end of lecture

– Gives you an account of form cs162-xx@cory
– This account is required

» Most of your debugging can be done on other EECS
accounts, however…

» All of the final runs must be done on your cs162-xx
account and must run on the x86 Solaris machines

• Make sure to log into your new account this week
and fill out the questions

• Project Information:
– See the “Projects and Nachos” link off the course
home page

• Newsgroup (ucb.class.cs162):
– Read this regularly!

Lec 1.298/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Academic Dishonesty Policy
• Copying all or part of another person's work, or using reference

material not specifically allowed, are forms of cheating and will
not be tolerated. A student involved in an incident of cheating will
be notified by the instructor and the following policy will apply:

http://www.eecs.berkeley.edu/Policies/acad.dis.shtml
• The instructor may take actions such as:

– require repetition of the subject work,
– assign an F grade or a 'zero' grade to the subject work,
– for serious offenses, assign an F grade for the course.

• The instructor must inform the student and the Department Chair
in writing of the incident, the action taken, if any, and the
student's right to appeal to the Chair of the Department
Grievance Committee or to the Director of the Office of Student
Conduct.

• The Office of Student Conduct may choose to conduct a formal
hearing on the incident and to assess a penalty for misconduct.

• The Department will recommend that students involved in a second
incident of cheating be dismissed from the University.

Lec 1.308/26/09 Kubiatowicz CS162 ©UCB Fall 2009

What does an Operating System do?
• Silerschatz and Gavin:

“An OS is Similar to a government”
– Begs the question: does a government do anything useful by

itself?
• Coordinator and Traffic Cop:

– Manages all resources
– Settles conflicting requests for resources
– Prevent errors and improper use of the computer

• Facilitator:
– Provides facilities that everyone needs
– Standard Libraries, Windowing systems
– Make application programming easier, faster, less error-prone

• Some features reflect both tasks:
– E.g. File system is needed by everyone (Facilitator)
– But File system must be Protected (Traffic Cop)

Lec 1.318/26/09 Kubiatowicz CS162 ©UCB Fall 2009

What is an Operating System,… Really?

• Most Likely:
– Memory Management
– I/O Management
– CPU Scheduling
– Communications? (Does Email belong in OS?)
– Multitasking/multiprogramming?

• What about?
– File System?
– Multimedia Support?
– User Interface?
– Internet Browser?

• Is this only interesting to Academics??

Lec 1.328/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Operating System Definition (Cont.)

• No universally accepted definition
• “Everything a vendor ships when you order an

operating system” is good approximation
– But varies wildly

• “The one program running at all times on the
computer” is the kernel.

– Everything else is either a system program (ships
with the operating system) or an application
program

Lec 1.338/26/09 Kubiatowicz CS162 ©UCB Fall 2009

What if we didn’t have an Operating System?

• Source CodeCompilerObject CodeHardware
• How do you get object code onto the hardware?
• How do you print out the answer?
• Once upon a time, had to Toggle in program in

binary and read out answer from LED’s!

Altair 8080
Lec 1.348/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Simple OS: What if only one application?

• Examples:
– Very early computers
– Early PCs
– Embedded controllers (elevators, cars, etc)

• OS becomes just a library of standard services
– Standard device drivers
– Interrupt handlers
– Math libraries

Lec 1.358/26/09 Kubiatowicz CS162 ©UCB Fall 2009

MS-DOS Layer Structure

Lec 1.368/26/09 Kubiatowicz CS162 ©UCB Fall 2009

More thoughts on Simple OS

• What about Cell-phones, Xboxes, etc?
– Is this organization enough?

• Can OS be encoded in ROM/Flash ROM?
• Does OS have to be software?

– Can it be Hardware?
– Custom Chip with predefined behavior
– Are these even OSs?

Lec 1.378/26/09 Kubiatowicz CS162 ©UCB Fall 2009

More complex OS: Multiple Apps

• Full Coordination and Protection
– Manage interactions between different users
– Multiple programs running simultaneously
– Multiplex and protect Hardware Resources

» CPU, Memory, I/O devices like disks, printers, etc
• Facilitator

– Still provides Standard libraries, facilities

• Would this complexity make sense if there were
only one application that you cared about?

Lec 1.388/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Example: Protecting Processes from Each Other

• Problem: Run multiple applications in such a way
that they are protected from one another

• Goal:
– Keep User Programs from Crashing OS
– Keep User Programs from Crashing each other
– [Keep Parts of OS from crashing other parts?]

• (Some of the required) Mechanisms:
– Address Translation
– Dual Mode Operation

• Simple Policy:
– Programs are not allowed to read/write memory of
other Programs or of Operating System

Lec 1.398/26/09 Kubiatowicz CS162 ©UCB Fall 2009

CPU MMU

Virtual
Addresses

Physical
Addresses

Address Translation
• Address Space

– A group of memory addresses usable by something
– Each program (process) and kernel has potentially
different address spaces.

• Address Translation:
– Translate from Virtual Addresses (emitted by CPU)
into Physical Addresses (of memory)

– Mapping often performed in Hardware by Memory
Management Unit (MMU)

Lec 1.408/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Example of Address Translation

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

Lec 1.418/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Address Translation Details

• For now, assume translation happens with table
(called a Page Table):

• Translation helps protection:
– Control translations, control access
– Should Users be able to change Page Table???

Virtual
Address

Page Table

index
into
page
table

V Access
Rights PA

V page no. offset
10

table located
in physical
memory

P page no. offset
10

Physical
Address

Lec 1.428/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• Some instructions/ops prohibited in user mode:
– Example: cannot modify page tables in user mode

» Attempt to modify Exception generated
• Transitions from user mode to kernel mode:

– System Calls, Interrupts, Other exceptions

Lec 1.438/26/09 Kubiatowicz CS162 ©UCB Fall 2009

UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

Lec 1.448/26/09 Kubiatowicz CS162 ©UCB Fall 2009

New Structures for Multicore chips?
Tessellation: The Exploded OS

• Normal Components split
into pieces

– Device drivers
(Security/Reliability)

– Network Services
(Performance)

» TCP/IP stack
» Firewall
» Virus Checking
» Intrusion Detection

– Persistent Storage
(Performance,
Security, Reliability)

– Monitoring services
» Performance counters
» Introspection

– Identity/Environment
services (Security)

» Biometric, GPS,
Possession Tracking

• Applications Given
Larger Partitions

– Freedom to use
resources arbitrarily

DeviceDevice
DriversDrivers

Video &Video &
WindowWindow
DriversDrivers

FirewallFirewall
VirusVirus

IntrusionIntrusion

MonitorMonitor
AndAnd

AdaptAdapt

PersistentPersistent
Storage &Storage &

File SystemFile System

HCI/HCI/
VoiceVoice
RecRec

Large ComputeLarge Compute--BoundBound
ApplicationApplication

RealReal--TimeTime
ApplicationApplication

Iden
tity

Iden
tity

Lec 1.458/26/09 Kubiatowicz CS162 ©UCB Fall 2009

OS Systems Principles

• OS as illusionist:
– Make hardware limitations go away
– Provide illusion of dedicated machine with infinite
memory and infinite processors

• OS as government:
– Protect users from each other
– Allocate resources efficiently and fairly

• OS as complex system:
– Constant tension between simplicity and
functionality or performance

• OS as history teacher
– Learn from past
– Adapt as hardware tradeoffs change

Lec 1.468/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Why Study Operating Systems?
• Learn how to build complex systems:

– How can you manage complexity for future projects?
• Engineering issues:

– Why is the web so slow sometimes? Can you fix it?
– What features should be in the next mars Rover?
– How do large distributed systems work? (Kazaa, etc)

• Buying and using a personal computer:
– Why different PCs with same CPU behave differently
– How to choose a processor (Opteron, Itanium, Celeron,
Pentium, Hexium)? [Ok, made last one up]

– Should you get Windows XP, 2000, Linux, Mac OS …?
– Why does Microsoft have such a bad name?

• Business issues:
– Should your division buy thin-clients vs PC?

• Security, viruses, and worms
– What exposure do you have to worry about?

Lec 1.478/26/09 Kubiatowicz CS162 ©UCB Fall 2009

“In conclusion…”

• Operating systems provide a virtual machine
abstraction to handle diverse hardware

• Operating systems coordinate resources and
protect users from each other

• Operating systems simplify application
development by providing standard services

• Operating systems can provide an array of fault
containment, fault tolerance, and fault recovery

• CS162 combines things from many other areas of
computer science –

– Languages, data structures, hardware, and
algorithms

