CS162 Operating Systems and Systems Programming Lecture 1

What is an Operating System?

August 26th, 2009 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs162

Who am I? Professor John Kubiatowicz (Prof "Kubi") - Background in Hardware Design » Alewife project at MIT » Designed CMMU, Modified SPAR C processor » Helped to write operating system - Background in Operating Systems » Worked for Project Athena (MIT) » OS Developer (device drivers, network file systems) » Worked on Clustered High-Availability systems (CLAM Associates) » OS lead researcher for the new Berkeley PARLab (Tessellation OS). More later. - Peer-to-Peer » OceanStore project -Store your data for 1000 years » Tapestry and Bamboo -Find you data around globe - Quantum Computing » Well, this is just cool, but probably not apropos 8/26/09 Kubiatowicz CS162 ©UCB Fall 2009

Goals for Today

- What is an Operating System? - And - what is it not?
- Examples of Operating Systems design
- Why study Operating Systems?
- Oh, and "How does this class operate?"

Interactive is important!

Ask Questions!

Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Slides courtesy of Kubiatowicz, AJ Shankar, George Necula, Alex Aiken, Eric Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David Wagner.

8/26/09

Lec 1.3

Technology Trends: Moore's Law

transistor density of

months.

8/26/09

semiconductor chips would

double roughly every 18

Gordon Moore (co-founder of Intel) predicted in 1965 that the

Microprocessors have become smaller, denser, and more powerful.

Kubiatowicz CS162 ©UCB Fall 2009

New Challenge: Slowdown in Joy's law of Performance

ManyCore Chips: The future is here

Intel 80-core multicore chip (Feb 2007)

- 80 simple cores
- Two floating point engines /core
- Mesh-like "network-on-a-chip"
- 100 million transistors
- 65nm feature size

Frequency	Voltage	Power	Bandwidth	Performance
3.16 GHz	0.95 V	62W	1.62 Terabits/s	1.01 Teraflops
5.1 GHz	1.2 V	175W	2.61 Terabits/s	1.63 Teraflops
5.7 GHz	1.35 V	265W	2.92 Terabits/s	1.81 Teraflops

- "ManyCore" refers to many processors/chip
 - 64? 128? Hard to say exact boundary
- How to program these?
 - Use 2 CPUs for video/audio
 - Use 1 for word processor, 1 for browser
 - 76 for virus checking???

Parallelism must be exploited all levels

Interfaces Provide Important Boundaries software

hardware

- Why do interfaces look the way that they do?
 - History, Functionality, Stupidity, Bugs, Management

instruction set

- $CS152 \Rightarrow$ Machine interface
- CS160 \Rightarrow Human interface
- CS169 \Rightarrow Software engineering/management
- Should responsibilities be pushed across boundaries?
- RISC architectures, Graphical Pipeline Architectures 8/26/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 1.17

Virtual Machines

8/26/09

Lec 1.18

Virtual Machines (con't): Layers of OSs

Useful for OS development

8/26/09

- When OS crashes, restricted to one VM
- Can aid testing programs on other OSs

Course Administration

• Instructor:	John Kubiatowicz (kubitron@cs.berkeley.edu) 673 Soda Hall Office Hours(Tentative): M/W 2:30pm-3:30pm			
• TAs:	Jingtao Wang Gunho Lee Alex Smolen	(cs162-ta@cory) (cs162-tb@cory) (cs162-tc@cory)		
• Labs:	Second floor of Soda Hall			
• Website: Mirror:	<u>http://inst.eecs.berkeley.edu/~cs162</u> http://www.cs.berkeley.edu/~kubitron/cs162			
• Webcast:	http://webcast.berkeley.edu/courses/index.php			
 Newsgroup: ucb.class.cs162 (use news.csua.berkeley.edu) Course Email: cs162@cory.cs.berkeley.edu Reader: TBA (Stay tuned!) 				

Class Schedule

- · Class Time: M/W 4:00-5:30 PM, 277 Cory Hall
 - Please come to class. Lecture notes do not have everything in them. The best part of class is the interaction!
 - Also: 10% of the grade is from class participation (section and class)
- Sections:
 - Important information is in the sections
 - The sections assigned to you by Telebears are temporary!
 - Every member of a project group must be in same section
 - No sections this week (obviously); start next week

Section	Time	Location	TA
101	Tu 10:00A-11:00A	6 Evans	Gunho Lee
102	Tu 11:00A-12:00P	4 Evans	Gunho Lee
105 (New)	Tu 1:00P-2:00P	4 Evans	Alex Smolen
103	Tu 2:00P-3:00P	4 Evans	Jingtao Wang
104	Tu 3:00P-4:00P	75 Evans	Jingtao Wang
8/26/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 1.21			

Textbook

 Text: Operating Systems Concepts, 8th Edition Silbershatz, Galvin, Gagne

- Online supplements
 - See "Information" link on course website
 - Includes Appendices, sample problems, etc
- Question: need 8th edition?
 - No, but has new material that we may cover
 - Completely reorganized
 - Will try to give readings from both the 7th and 8th editions on the lecture page

```
8/26/09
```

Kubiatowicz CS162 ©UCB Fall 2009

Lec 1.22

Topic Coverage

Textbook: Silberschatz, Galvin, and Gagne, Operating Systems Concepts, 8th Ed., 2008

- 1 week: Fundamentals (Operating Systems Structures)
- 1.5 weeks: Process Control and Threads
- 2.5 weeks: Synchronization and scheduling
- 2 week: Protection, Address translation, Caching
- 1 week: Demand Paging
- 1 week: File Systems
- 2.5 weeks: Networking and Distributed Systems
- 1 week: Protection and Security
- ??: Advanced topics

Grading

- · Rough Grade Breakdown
 - One Midterm: 20% each One Final: 25% Four Projects: 50% (i.e. 12.5% each) Participation: 5%
- Four Projects:
 - Phase I: Build a thread system
 - Phase II: Implement Multithreading
 - Phase III: Caching and Virtual Memory
 - Phase IV: Networking and Distributed Systems
- Late Policy:
 - Each group has 5 "slip" days.
 - For Projects, slip days deducted from *all* partners
 - 10% off per day after slip days exhausted

Lec 1.23

Broup Project Simulates Industrial Charo					
Project teams have 4 or 5 members in sam discussion section	e	Attention			
- Must work in groups in "the real world"	Attention				
Communicate with colleagues (team member					
- Communication problems are natural		2	0 min. <mark>Break</mark> 25 min. <mark>Break</mark> 25 min. "In Con	clusion,"	
- What have you done?			Time		
- What answers you need from others?		 1-Minute Re 	eview		
- You must document your work!!!		• 20-Minute L	lecture		
- Everyone must keep an on-line notebook		• 5- Minute A	Idministrative Matters		
Communicate with supervisor (TAs)		• 25-Minute L	ecture		
- How is the team's plan?		 5-Minute Break (water, stretch) 			
- Short progress reports are required:		• 25-Minute L	ecture		
» What is the team's game plan?		 Instructor will come to class early & stay after to answer questions 			
» What is each member's responsibility?	1 1 25				
Lecture Goal			Computing Facilities		
		• Every st account	rudent who is enrolled should get form at end of lecture	an	
		- Gives	you an account of form cs162-xx@	cory	
		- This a	ccount is required	•	
		» Mo acc	st of your debugging can be done on of counts, however	ther EECS	
Interactive !!!		» All of the final runs must be done on your cs162-xx account and must run on the x86 Solaris machines			
		 Make sure to log into your new account this week and fill out the questions Project Information: 			
					- See th home
		 Newsgro 	up (ucb.class.cs162):		
		- Read t	this regularly!		

Academic Dishonesty Policy

 Copying all or material not not be tolera be notified b http:/// The instructa - require re assign an for seriou The instructa in writing of student's rig Grievance Co Conduct. The Office a hearing on th The Departm incident of cl 	r part of another person's work, or us specifically allowed, are forms of che thed. A student involved in an incident by the instructor and the following poli www.eecs.berkeley.edu/Policies/acad.d or may take actions such as: epetition of the subject work, F grade or a 'zero' grade to the subj as offenses, assign an F grade for the or must inform the student and the De the incident, the action taken, if any ht to appeal to the Chair of the Depa mmittee or to the Director of the Off of Student Conduct may choose to com- te incident and to assess a penalty for ent will recommend that students invo heating be dismissed from the Univers	sing reference ating and will of cheating will icy will apply: dis.shtml ject work, course. epartment Chair , and the urtment fice of Student duct a formal r misconduct. olved in a second sity.	 Silerschat: "An C Begs th itself? Coordinato Manage Settles Prevent Facilitator Provide Standa Make a Some feat E.g. Fi But File 	z and Gavin: DS is Similar to a government" ne question: does a government do anything or and Traffic Cop: es all resources conflicting requests for resources rerrors and improper use of the computer : s facilities that everyone needs rd Libraries, Windowing systems upplication programming easier, faster, les ures reflect both tasks: le system is needed by everyone (Facilitat e system must be Protected (Traffic Cop)	g useful by s error-prone or)
8/26/09	Kubiatowicz C5162 ©UCB Fall 2009	Lec 1.29	8/26/09	Kubiatowicz CS162 ©UCB Fall 2009	Lec 1.30

What is an Operating System,... Really?

- Most Likely:
 - Memory Management
 - I/O Management
 - CPU Scheduling
 - Communications? (Does Email belong in OS?)
 - Multitasking/multiprogramming?
- What about?
 - File System?
 - Multimedia Support?
 - User Interface?
 - Internet Browser? 😊
- \cdot Is this only interesting to Academics??

Operating System Definition (Cont.)

What does an Operating System do?

- No universally accepted definition
- "Everything a vendor ships when you order an operating system" is good approximation
 - But varies wildly
- "The one program running at all times on the computer" is the kernel.
 - Everything else is either a system program (ships with the operating system) or an application program

More complex OS: Multiple Apps **Example: Protecting Processes from Each Other** Full Coordination and Protection • Problem: Run multiple applications in such a way that they are protected from one another - Manage interactions between different users • Goal: - Multiple programs running simultaneously - Keep User Programs from Crashing OS - Multiplex and protect Hardware Resources - Keep User Programs from Crashing each other » CPU, Memory, I/O devices like disks, printers, etc - [Keep Parts of OS from crashing other parts?] Facilitator • (Some of the required) Mechanisms: - Still provides Standard libraries, facilities - Address Translation • Would this complexity make sense if there were - Dual Mode Operation only one application that you cared about? • Simple Policy: - Programs are not allowed to read/write memory of other Programs or of Operating System 8/26/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 1.37 8/26/09 Kubiatowicz CS162 ©UCB Fall 2009 Lec 1.38

Address Translation

• Address Space

- A group of memory addresses usable by something
- Each program (process) and kernel has potentially different address spaces.
- Address Translation:
 - Translate from Virtual Addresses (emitted by CPU) into Physical Addresses (of memory)
 - Mapping *often* performed in Hardware by Memory Management Unit (MMU)

Example of Address Translation

Lec 1.39

Address Translation Details

Usen Mode		Applications	(the users)		
USEI MODE		Standard Libs _{co}	shells and commands mpilers and interpreters system libraries		
	ſ	system-call interface to the kernel			
Kernel Mode	Kernel	signals terminal handling character I/O system terminal drivers	file system swapping block I/O system disk and tape drivers	CPU scheduling page replacement demand paging virtual memory	
		kernel interface to the hardware			
Hardware		terminal controllers terminals	device controllers disks and tapes	memory controllers physical memory	

8/26/09

OS Systems Principles

OS Systems Principles	Why Study Operating Systems?		
 OS as illusionist: Make hardware limitations go away Provide illusion of dedicated machine with infinite memory and infinite processors OS as government: Protect users from each other Allocate resources efficiently and fairly OS as complex system: Constant tension between simplicity and functionality or performance OS as history teacher Learn from past Adapt as hardware tradeoffs change 	 • Learn how to build complex systems: • How can you manage complexity for future projects? • Engineering issues: • Why is the web so slow sometimes? Can you fix it? • What features should be in the next mars Rover? • How do large distributed systems work? (Kazaa, etc) • Buying and using a personal computer: • Why different PCs with same CPU behave differently • How to choose a processor (Opteron, Itanium, Celeron, Pentium, Hexium)? [Ok, made last one up] • Should you get Windows XP, 2000, Linux, Mac OS? • Why does Microsoft have such a bad name? • Business issues: • Should your division buy thin-clients vs PC? • Security, viruses, and worms • What exposure do you have to worry about? 		
/26/09 Kubiatowicz C5162 ©UCB Fall 2009 Lec 1.45	 Should your division buy thin-clients vs PC? Security, viruses, and worms What exposure do you have to worry about? 8/26/09 Kubiatowicz C5162 ©UCB Fall 2009 Lec 1.46 		
 "In conclusion" Operating systems provide a virtual machine 			
 abstraction to handle diverse hardware Operating systems coordinate resources and protect users from each other 			
 Operating systems simplify application development by providing standard services 			
 Operating systems can provide an array of fault containment, fault tolerance, and fault recovery 			
 CS162 combines things from many other areas of computer science – Languages, data structures, hardware, and algorithms 			

Lec 1.47