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Review: Reliable Networking
• Layering: building complex services from simpler ones
• Datagram: an independent, self-contained network 

message whose arrival, arrival time, and content are 
not guaranteed

• Performance metrics
– Overhead: CPU time to put packet on wire
– Throughput: Maximum number of bytes per second
– Latency: time until first bit of packet arrives at receiver

• Arbitrary Sized messages:
– Fragment into multiple packets; reassemble at destination

• Ordered messages:
– Use sequence numbers and reorder at destination

• Reliable messages:
– Use Acknowledgements
– Want a window larger than 1 in order to increase 
throughput
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Review: TCP Windows and Sequence Numbers
• TCP provides a stream abstraction:

– Reliable byte stream between two processes on different 
machines over Internet (read, write, flush)

– Input is an unbounded stream of bytes
– Output is identical stream of bytes (same order)

• Sender has three regions: 

– Window (colored region) adjusted by sender
• Receiver has three regions: 

– Maximum size of window advertised to sender at setup
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Review: Congestion Avoidance
• Two issues

– Choose appropriate message timeout value
» Too long→wastes time if message lost
» Too short→retransmit even though ack will arrive shortly

– Choose appropriate sender’s window
» Try to match the rate of sending packets with the rate 

that the slowest link can accommodate
» Max is receiver’s advertised window size

• TCP solution: “slow start” (start sending slowly)
– Measure/estimate Round-Trip Time
– Use adaptive algorithm to fill network (compute win size)

» Basic technique: slowly increase size of window until 
acknowledgements start being delayed/lost

– Set window size to one packet
– If no timeout, slowly increase window size (throughput)

» 1 packet per ACK, up to receiver’s advertised buffer size
– Timeout ⇒ congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”



Lec 23.511/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Messages
– Send/receive
– One vs. two-way communication

• Distributed Decision Making
– Two-phase commit/Byzantine Commit

• Remote Procedure Call

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne 
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne. 
Many slides generated from my lecture notes by Kubiatowicz.
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Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote 

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming 

connection request
» Each successful accept() returns a new socket for a new  

connection; can pass this off to handler thread
– On client: 

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server
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• Things to remember:
– Connection requires 5 values:
[ Src Addr, Src Port, Dst Addr, Dst Port, Protocol ]

– Often, Src Port “randomly” assigned
» Done by OS during client socket setup

– Dst Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023 
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Socket Example (Java)
server:

//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013);
while(true) {

Socket client = sock.accept();
PrintWriter pout = new

PrintWriter(client.getOutputStream(),true);

pout.println(“Here is data sent to client!”);
…

client.close();
}

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(“169.229.60.38”,6018);
BufferedReader bin = 

new BufferedReader(
new InputStreamReader(sock.getInputStream));

String line;
while ((line = bin.readLine())!=null)

System.out.println(line);
sock.close();
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Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on 
different machines 
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and 

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive
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Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receive actually 
received the message?

– When can sender reuse the memory containing message?
• Mailbox provides 1-way communication from T1→T2

– T1→buffer→T2
– Very similar to producer/consumer 

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!
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Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];
while(1) {

prepare message; 
send(msg1,mbox);

}

Consumer:
int buffer[1000];
while(1) {

receive(buffer,mbox);
process message;

}

• No need for producer/consumer to keep track of space 
in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of 
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message
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Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client ≡ requester, Server ≡ responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)

char response[1000];

send(“read rutabaga”, server_mbox);
receive(response, client_mbox);

Server: (responding with the file)
char command[1000], answer[1000];

receive(command, server_mbox);
decode command;
read file into answer;
send(answer, client_mbox);
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Administrivia
• Anonymous Comments

– Great, but…
– If you want us to do something, may need to be more 
explicit/send one of us email non-anonymously.

• Projects:
– Project 4 design document due November 28th

– No sections this Thursday (obviously), but – TAs will be 
using their office hours for project-related information

• Testing Lecture
– This Wednesday (11/22)

• MIDTERM II: Dec 4th

» All material from last midterm and up to Wednesday 11/29
» Lectures #13 – 26

• Final Exam 
» Sat Dec 16th, 8:00am-11:00am, Bechtel Auditorium
» All Material

• Final Topics: Any suggestions?
– Please send them to me…
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• General’s paradox: 
– Constraints of problem: 

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because 
he arrived a couple of days too early

• Can messages over an unreliable network be used to 
guarantee two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

Yeah, but what if you
Don’t get this ack?

General’s Paradox

11 am ok?

So, 11 it is?
Yes, 11 works
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Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e. 

simultaneous action), let’s solve a related problem
– Distributed transaction: Two machines agree to do 
something, or not do it, atomically 

• Two-Phase Commit protocol does this
– Use a persistent, stable log on each machine to keep track 
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its 

log to recover state of world at time of crash
– Prepare Phase:

» The global coordinator requests that all participants will 
promise to commit or rollback the transaction

» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its 

log and tells everyone to abort; each records “Abort” in log
– Commit Phase:

» After all participants respond that they are prepared, then 
the coordinator writes “Commit” to its log

» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “Got Commit” to log

– Log can be used to complete this process such that all 
machines either commit or don’t commit
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Two phase commit example
• Simple Example: A≡WellsFargo Bank, B≡Bank of America

– Phase 1: Prepare Phase
» A writes “Begin transaction” to log

A→B: OK to transfer funds to me?
» Not enough funds:

B→A: transaction aborted; A writes “Abort” to log
» Enough funds:

B: Write new account balance & promise to commit to log
B→A: OK, I can commit

– Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to log

• What if B crashes at beginning? 
– Wakes up, does nothing; A will timeout, abort and retry

• What if A crashes at beginning of phase 2?
– Wakes up, sees that there is a transaction in progress; 
sends “Abort” to B

• What if B crashes at beginning of phase 2?
– B comes back up, looks at log; when A sends it “Commit”
message, it will say, “oh, ok, commit”
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Distributed Decision Making Discussion
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one or 
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)

– After decision made, result recorded in multiple places
• Undesirable feature of Two-Phase Commit: Blocking

– One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log, 

sends a “yes” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has 

voted “yes” on the update. It sends a message to site A 
asking what happened. At this point, B cannot decide to 
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items, 
pages pinned in memory, etc) until learns fate of update

• Alternative: There are alternatives such as “Three 
Phase Commit” which don’t have this blocking problem

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making
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Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1 
lieutenants such that:
– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal 
lieutenants obey the order he sends
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Attack!

Attack!Attack!

Lieutenant

Lieutenant

LieutenantMalicious!

Lec 23.1911/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision 
even if some subset of them (< n/3 ) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 23.2011/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Remote Procedure Call
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls: 

remoteFileSystem→Read(“rutabaga”);
– Translated automatically into call on server:

fileSys→Read(“rutabaga”);
• Implementation:

– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

» Client stub is responsible for “marshalling” arguments and 
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing 
objects, copying arguments passed by reference, etc. 
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RPC Information Flow
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RPC Details
• Equivalence with regular procedure call

– Parameters ⇔ Request Message
– Result ⇔ Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box) 

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition 
language (IDL)”
» Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for 

result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack 

results, send them off
• Cross-platform issues:

– What if client/server machines are different 
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded 

(avoids unnecessary conversions).
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RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network 
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name 
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynmaic translation of service→mbox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request
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Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a 
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same 

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while 
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free 

» Caching can help, but may make failure handling complex
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Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address 
spaces on different machines or the same machine
– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)
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Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces 
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can 

be on a separate machine from X server; Neither has to run 
on the machine with the frame buffer.
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Conclusion
• TCP: Reliable byte stream between two processes on 

different machines over Internet (read, write, flush)
– Uses window-based acknowledgement protocol
– Congestion-avoidance dynamically adapts sender window to 
account for congestion in network

• Two-phase commit: distributed decision making
– First, make sure everyone guarantees that they will 
commit if asked (prepare)

– Next, ask everyone to commit
• Byzantine General’s Problem: distributed decision making 

with malicious failures
– One general, n-1 lieutenants: some number of them may 
be malicious (often “f” of them)

– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n ≥ 3f+1

• Remote Procedure Call (RPC): Call procedure on remote 
machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without 
user programming (in stub)


