
CS162
Operating Systems and
Systems Programming

Lecture 23

Network Communication
Abstractions /

Remote Procedure Call
November 20, 2006

Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Lec 23.211/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Reliable Networking
• Layering: building complex services from simpler ones
• Datagram: an independent, self-contained network

message whose arrival, arrival time, and content are
not guaranteed

• Performance metrics
– Overhead: CPU time to put packet on wire
– Throughput: Maximum number of bytes per second
– Latency: time until first bit of packet arrives at receiver

• Arbitrary Sized messages:
– Fragment into multiple packets; reassemble at destination

• Ordered messages:
– Use sequence numbers and reorder at destination

• Reliable messages:
– Use Acknowledgements
– Want a window larger than 1 in order to increase
throughput

Lec 23.311/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: TCP Windows and Sequence Numbers
• TCP provides a stream abstraction:

– Reliable byte stream between two processes on different
machines over Internet (read, write, flush)

– Input is an unbounded stream of bytes
– Output is identical stream of bytes (same order)

• Sender has three regions:

– Window (colored region) adjusted by sender
• Receiver has three regions:

– Maximum size of window advertised to sender at setup

Sent
not acked

Sent
acked

Not yet
sent Sender

Not yet
received

Received
Given to app

Received
Buffered Receiver

Router Router..zyxwvuts gfedcba

Lec 23.411/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Review: Congestion Avoidance
• Two issues

– Choose appropriate message timeout value
» Too long→wastes time if message lost
» Too short→retransmit even though ack will arrive shortly

– Choose appropriate sender’s window
» Try to match the rate of sending packets with the rate

that the slowest link can accommodate
» Max is receiver’s advertised window size

• TCP solution: “slow start” (start sending slowly)
– Measure/estimate Round-Trip Time
– Use adaptive algorithm to fill network (compute win size)

» Basic technique: slowly increase size of window until
acknowledgements start being delayed/lost

– Set window size to one packet
– If no timeout, slowly increase window size (throughput)

» 1 packet per ACK, up to receiver’s advertised buffer size
– Timeout ⇒ congestion, so cut window size in half
– “Additive Increase, Multiplicative Decrease”

Lec 23.511/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Goals for Today

• Messages
– Send/receive
– One vs. two-way communication

• Distributed Decision Making
– Two-phase commit/Byzantine Commit

• Remote Procedure Call

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

Lec 23.611/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue

– Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called “UNIX socket”) or remote

machine (called “network socket”)
– First introduced in 4.2 BSD UNIX: big innovation at time

» Now most operating systems provide some notion of socket
• Using Sockets for Client-Server (C/C++ interface):

– On server: set up “server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» call listen(): tells server socket to accept incoming requests
» Perform multiple accept() calls on socket to accept incoming

connection request
» Each successful accept() returns a new socket for a new

connection; can pass this off to handler thread
– On client:

» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

Lec 23.711/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Server
Socket

socket socketconnection

Reque
st Co

nnect
ion

new
socket

ServerClient

Socket Setup (Con’t)

• Things to remember:
– Connection requires 5 values:
[Src Addr, Src Port, Dst Addr, Dst Port, Protocol]

– Often, Src Port “randomly” assigned
» Done by OS during client socket setup

– Dst Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

Lec 23.811/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Socket Example (Java)
server:

//Makes socket, binds addr/port, calls listen()
ServerSocket sock = new ServerSocket(6013);
while(true) {

Socket client = sock.accept();
PrintWriter pout = new

PrintWriter(client.getOutputStream(),true);

pout.println(“Here is data sent to client!”);
…

client.close();
}

client:
// Makes socket, binds addr/port, calls connect()
Socket sock = new Socket(“169.229.60.38”,6018);
BufferedReader bin =

new BufferedReader(
new InputStreamReader(sock.getInputStream));

String line;
while ((line = bin.readLine())!=null)

System.out.println(line);
sock.close();

Lec 23.911/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Distributed Applications
• How do you actually program a distributed application?

– Need to synchronize multiple threads, running on
different machines
» No shared memory, so cannot use test&set

– One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and

two receivers cannot get same message
• Interface:

– Mailbox (mbox): temporary holding area for messages
» Includes both destination location and queue

– Send(message,mbox)
» Send message to remote mailbox identified by mbox

– Receive(buffer,mbox)
» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive

Lec 23.1011/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Using Messages: Send/Receive behavior
• When should send(message,mbox) return?

– When receiver gets message? (i.e. ack received)
– When message is safely buffered on destination?
– Right away, if message is buffered on source node?

• Actually two questions here:
– When can the sender be sure that receive actually
received the message?

– When can sender reuse the memory containing message?
• Mailbox provides 1-way communication from T1→T2

– T1→buffer→T2
– Very similar to producer/consumer

» Send = V, Receive = P
» However, can’t tell if sender/receiver is local or not!

Lec 23.1111/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Messaging for Producer-Consumer Style
• Using send/receive for producer-consumer style:

Producer:
int msg1[1000];
while(1) {

prepare message;
send(msg1,mbox);

}

Consumer:
int buffer[1000];
while(1) {

receive(buffer,mbox);
process message;

}

• No need for producer/consumer to keep track of space
in mailbox: handled by send/receive
– One of the roles of the window in TCP: window is size of
buffer on far end

– Restricts sender to forward only what will fit in buffer

Send
Message

Receive
Message

Lec 23.1211/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Messaging for Request/Response communication
• What about two-way communication?

– Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server

– Also called: client-server
» Client ≡ requester, Server ≡ responder
» Server provides “service” (file storage) to the client

• Example: File service
Client: (requesting the file)

char response[1000];

send(“read rutabaga”, server_mbox);
receive(response, client_mbox);

Server: (responding with the file)
char command[1000], answer[1000];

receive(command, server_mbox);
decode command;
read file into answer;
send(answer, client_mbox);

Request
File

Get
Response

Receive
Request

Send
Response

Lec 23.1311/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Administrivia
• Anonymous Comments

– Great, but…
– If you want us to do something, may need to be more
explicit/send one of us email non-anonymously.

• Projects:
– Project 4 design document due November 28th

– No sections this Thursday (obviously), but – TAs will be
using their office hours for project-related information

• Testing Lecture
– This Wednesday (11/22)

• MIDTERM II: Dec 4th

» All material from last midterm and up to Wednesday 11/29
» Lectures #13 – 26

• Final Exam
» Sat Dec 16th, 8:00am-11:00am, Bechtel Auditorium
» All Material

• Final Topics: Any suggestions?
– Please send them to me…

Lec 23.1411/20/06 Kubiatowicz CS162 ©UCB Fall 2006

• General’s paradox:
– Constraints of problem:

» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

– Problem: need to coordinate attack
» If they attack at different times, they all die
» If they attack at same time, they win

– Named after Custer, who died at Little Big Horn because
he arrived a couple of days too early

• Can messages over an unreliable network be used to
guarantee two entities do something simultaneously?
– Remarkably, “no”, even if all messages get through

– No way to be sure last message gets through!

Yeah, but what if you
Don’t get this ack?

General’s Paradox

11 am ok?

So, 11 it is?
Yes, 11 works

Lec 23.1511/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e.

simultaneous action), let’s solve a related problem
– Distributed transaction: Two machines agree to do
something, or not do it, atomically

• Two-Phase Commit protocol does this
– Use a persistent, stable log on each machine to keep track
of whether commit has happened
» If a machine crashes, when it wakes up it first checks its

log to recover state of world at time of crash
– Prepare Phase:

» The global coordinator requests that all participants will
promise to commit or rollback the transaction

» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its

log and tells everyone to abort; each records “Abort” in log
– Commit Phase:

» After all participants respond that they are prepared, then
the coordinator writes “Commit” to its log

» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “Got Commit” to log

– Log can be used to complete this process such that all
machines either commit or don’t commit

Lec 23.1611/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Two phase commit example
• Simple Example: A≡WellsFargo Bank, B≡Bank of America

– Phase 1: Prepare Phase
» A writes “Begin transaction” to log

A→B: OK to transfer funds to me?
» Not enough funds:

B→A: transaction aborted; A writes “Abort” to log
» Enough funds:

B: Write new account balance & promise to commit to log
B→A: OK, I can commit

– Phase 2: A can decide for both whether they will commit
» A: write new account balance to log
» Write “Commit” to log
» Send message to B that commit occurred; wait for ack
» Write “Got Commit” to log

• What if B crashes at beginning?
– Wakes up, does nothing; A will timeout, abort and retry

• What if A crashes at beginning of phase 2?
– Wakes up, sees that there is a transaction in progress;
sends “Abort” to B

• What if B crashes at beginning of phase 2?
– B comes back up, looks at log; when A sends it “Commit”
message, it will say, “oh, ok, commit”

Lec 23.1711/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Distributed Decision Making Discussion
• Why is distributed decision making desirable?

– Fault Tolerance!
– A group of machines can come to a decision even if one or
more of them fail during the process
» Simple failure mode called “failstop” (different modes later)

– After decision made, result recorded in multiple places
• Undesirable feature of Two-Phase Commit: Blocking

– One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log,

sends a “yes” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has

voted “yes” on the update. It sends a message to site A
asking what happened. At this point, B cannot decide to
abort, because update may have committed

» B is blocked until A comes back
– A blocked site holds resources (locks on updated items,
pages pinned in memory, etc) until learns fate of update

• Alternative: There are alternatives such as “Three
Phase Commit” which don’t have this blocking problem

• What happens if one or more of the nodes is malicious?
– Malicious: attempting to compromise the decision making

Lec 23.1811/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Byzantine General’s Problem

• Byazantine General’s Problem (n players):
– One General
– n-1 Lieutenants
– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1
lieutenants such that:
– IC1: All loyal lieutenants obey the same order
– IC2: If the commanding general is loyal, then all loyal
lieutenants obey the order he sends

General

Attack!

Attac
k!

Attack!
Retrea

t!

Attack!

Retreat!
Attack!

Attack!Attack!

Lieutenant

Lieutenant

LieutenantMalicious!

Lec 23.1911/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3
because one malicious player can mess up things

– With f faults, need n > 3f to solve problem
• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n
– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)
• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision
even if some subset of them (< n/3) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed
Decision

Lec 23.2011/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Remote Procedure Call
• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source
– Must decide what to do with message at destination
– May need to sit and wait for multiple messages to arrive

• Better option: Remote Procedure Call (RPC)
– Calls a procedure on a remote machine
– Client calls:

remoteFileSystem→Read(“rutabaga”);
– Translated automatically into call on server:

fileSys→Read(“rutabaga”);
• Implementation:

– Request-response message passing (under covers!)
– “Stub” provides glue on client/server

» Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

» Server-side stub is responsible for “unmarshalling”
arguments and “marshalling” the return values.

• Marshalling involves (depending on system)
– Converting values to a canonical form, serializing
objects, copying arguments passed by reference, etc.

Lec 23.2111/20/06 Kubiatowicz CS162 ©UCB Fall 2006

RPC Information Flow

Client
(caller)

Server
(callee)

Packet
Handler

Packet
Handler

call

return

send

receive

send

receive

return

call

N
etworkN

et
wo

rk

Client
Stub

bundle
args

bundle
ret vals

unbundle
ret vals

Server
Stub

unbundle
args

Machine A

Machine B
mbox1

mbox2

Lec 23.2211/20/06 Kubiatowicz CS162 ©UCB Fall 2006

RPC Details
• Equivalence with regular procedure call

– Parameters ⇔ Request Message
– Result ⇔ Reply message
– Name of Procedure: Passed in request message
– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs
– Input: interface definitions in an “interface definition
language (IDL)”
» Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for

result, unpack result and return to caller
» Code for server to unpack message, call procedure, pack

results, send them off
• Cross-platform issues:

– What if client/server machines are different
architectures or in different languages?
» Convert everything to/from some canonical form
» Tag every item with an indication of how it is encoded

(avoids unnecessary conversions).

Lec 23.2311/20/06 Kubiatowicz CS162 ©UCB Fall 2006

RPC Details (continued)
• How does client know which mbox to send to?

– Need to translate name of remote service into network
endpoint (Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name
into a network endpoint
» This is another word for “naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime

• Dynamic Binding
– Most RPC systems use dynamic binding via name service

» Name service provides dynmaic translation of service→mbox
– Why dynamic binding?

» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one

• What if there are multiple servers?
– Could give flexibility at binding time

» Choose unloaded server for each new client
– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

• What if multiple clients?
– Pass pointer to client-specific return mbox in request

Lec 23.2411/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Problems with RPC
• Non-Atomic failures

– Different failure modes in distributed system than on a
single machine

– Consider many different types of failures
» User-level bug causes address space to crash
» Machine failure, kernel bug causes all processes on same

machine to fail
» Some machine is compromised by malicious party

– Before RPC: whole system would crash/die
– After RPC: One machine crashes/compromised while
others keep working

– Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

– Answer? Distributed transactions/Byzantine Commit
• Performance

– Cost of Procedure call « same-machine RPC « network RPC
– Means programmers must be aware that RPC is not free

» Caching can help, but may make failure handling complex

Lec 23.2511/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…
– File System
– Pipes (1-way communication)
– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address
spaces on different machines or the same machine
– Services can be run wherever it’s most appropriate
– Access to local and remote services looks the same

• Examples of modern RPC systems:
– CORBA (Common Object Request Broker Architecture)
– DCOM (Distributed COM)
– RMI (Java Remote Method Invocation)

Lec 23.2611/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?
– Fault isolation: bugs are more isolated (build a firewall)
– Enforces modularity: allows incremental upgrades of pieces
of software (client or server)

– Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can

be on a separate machine from X server; Neither has to run
on the machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File
sys windows

RPC address
spaces

threads

Microkernel Structure

Lec 23.2711/20/06 Kubiatowicz CS162 ©UCB Fall 2006

Conclusion
• TCP: Reliable byte stream between two processes on

different machines over Internet (read, write, flush)
– Uses window-based acknowledgement protocol
– Congestion-avoidance dynamically adapts sender window to
account for congestion in network

• Two-phase commit: distributed decision making
– First, make sure everyone guarantees that they will
commit if asked (prepare)

– Next, ask everyone to commit
• Byzantine General’s Problem: distributed decision making

with malicious failures
– One general, n-1 lieutenants: some number of them may
be malicious (often “f” of them)

– All non-malicious lieutenants must come to same decision
– If general not malicious, lieutenants must follow general
– Only solvable if n ≥ 3f+1

• Remote Procedure Call (RPC): Call procedure on remote
machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments without
user programming (in stub)

