Cs162
Operating Systems and
Systems Programming
Lecture 20

Reliability and Access Control /
Distributed Systems

November 8, 2006
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: UNIX BSD 4.2

+ Inode Structure Same as BSD 4.1 (same file header
and triply indirect blocks), except incorporated ideas
from DEMOS:

- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning
- BSD 4.2 Fast File System (FFS)
- File Allocation and placement policies
» Put each new file at front of different range of blocks

» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks

- Inode for file stored in same “cylinder group” as parent
directory of the file
- Store files from same directory near each other
* Note: I put up the original FFS paper as reading for

last lecture (and on Handouts page).
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.2

Review: File System Caching (writes)

* Delayed Writes: Writes to files not immediately sent
out to disk
- Instead, write () copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other a|::¢plica'l'ion tries to read data before
written to disk, file system will read from cache

- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests

»]L)isk a]ICI_ci:caﬂon algorithm can be run with correct size value
or a file

» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)

- Disadvantages
» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inodel)

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.3

Review: Important “ilities”

* Availability: the pr‘obabili'f¥ that the system can
accept and process requests
- Often measured in "nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”
- Key idea here is independence of failures
* Durability: the ability of a system to recover data
despite faults
- This idea is fault tolerance applied to data
- Doesn't necessarily implg availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone
* Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
- Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly
- Includes availability, security, fault tolerance/durability
- Must make sure data survives system crashes, disk

crashes, other problems
11/08/06 ubiatowicz €5162 ©UCB Fall 2006 Lec 20.4

Goals for Today

* Durability
* Authorization
- Distributed Systems

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.5

Log Structured and Journaled File Systems
+ Betfer reliabilify Through use of log

- All changes are treated as fransactions.
» A transaction either happens completely or not at all
- A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM
- Although File system may not be updated immediately,
data preserved in the log
- Difference between “Log Structured” and “Journaled”
- Log Structured Filesystem (LFS): data stays in log form
- Journaled Filesystem: Log used for recovery
* For Journaled system:
- Log used to asynchronously update filesystem
» Log entries removed after used
- After crash:
» Remaining transactions in the log performed (“Redo”)
+ Examples of Journaled File Systems:

- Ext3 (Linux ix), efc.
11/08/06 T (L nu)’ xﬁ(?bisgur/lilcz 251621. guca Fall 2006 Lec 20.6

Hardware RAID: Subsystem Organization

N
single board —
cPU host [_[array disk
adapter| [controller controller
A
N
manages in'rerchl / single board
to hogs‘r, DMA // 9disk
controller
control, buffering, P—
parity logic Singtl'.le Board N———
is
physical device con';r'oller
control ~——
N
single board —
- Some systems duplicate .
all hardware, namely : —
controllers, busses, etc. often piagy- backed.
in small format devices

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.7

RAID 1: Disk Mirroring/Shadowing

o8- 0dg

“——_recovery
group
+ Each disk is fully duplicated onto its "shadow"
- For high I/0 rate, high availability environments
- Most expensive solution: 100% capacity overhead
+ Bandwidth sacrificed on write:
- Logical write = two physical writes
- Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)
* Reads may be optimized
- Can have two independent reads to same data
* Recovery:
- Disk failure = replace disk and copy data to new disk
- Hot Spare: idle disk already attached to system to be
used for immediate replacement
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.8

RAID 5+: High I/0 Rate Parity .
Data s'rr':j)ped across e
multiple disks

- Successive blocks
stored on successive

DO D1 D2 D3 PO

. T Increasing
(non-parity) disks D4| |D5| |D6| |P1 D7 Lsgiﬁal
- Increased bandwidth Addresse

over single disk D8| [D9| | P2| |D10| |D11
* Parity block (in gr'een)

constructed by XORing ||p12| |pP3 |p13| |p14| [b15
data bocks in stripe

- PO=DO®D16D26D3 P4 | |p16| |D17] |D18| [D19
- garl\(dez‘l‘roy"any one

isk and sti

reconstruct data D20| |b21) |D22| |D23| | P5

- Suppose D3 fails,
then can reconstruct:
D3=D0®D1®D2®PO

* Later in term: talk about spreading information widely
across internet for durability.
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.9

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Remote File Systems: Virtual File System (VFS)

| bio-system intartace ‘
VFS interface

local file system local file system remote file system
pe 1
sk

Type 1 fype 2 typs

T T T

* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the API) to
be used for different types of file systems

- The API is to the VFS interface, rather than any specific

type of file system
11/08/0 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.10

Network File System (NFS)

Three Layers for NFS system

- UNIX file-system interface: open, read, write, close

calls + file descriptors
- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

NFS Protocol: remote procedure calls (RPC) for file
operations on server

- Reading/searching a directory

- manipulating links and directories

- accessing file attributes/reading and writing files
NFS servers are stateless; each request provides all
arguments require for execution
Modified data must be committed to the server's disk
before results are returned to the client

- lose some of the advantages of caching

- Can lead to weird results: write file on one client, read

on other, get old data

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.11

Schematic View of NFS Architecture

client server

system-calls interface

VFS interface

—* VFS interface

other types of UNIX file NFS NFS UNIX file
file systems system client server system

—— 3 —
[diﬂ | [diﬂ
N [network ‘ - ~

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.12

Administrivia

* My office hours
- New office hour: Thursday 3:00-4:00
» Starting next week
- Keeping Wednesday 2:00-3:00
- Removing Monday 2:00-3:00
* MIDTERM II: Monday December 4th
- 4:00—7:00pm, 10 Evans

- All material from last midterm and up to previous
Wednesday (11/29)

- Includes virtual memory
* Final Exam
- December 16™, 8:00-11:00am, Bechtel Auditorium

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.13

Authorization: Who Can Do What?

+ How do we decide who is y
authorized to do actions in the
system?
« Access Control Matrix: contains
all permissions in the system
- Resources across top
» Files, Devices, etc..

- Domains in columns cbjoc

Fy Fy Fy | printer
» A domain H'\lghf be a user or a | ®mn

group of permissions D road road

» E.g. above: User D3 can read 0, print

F2 or execute F3

- In practice, table would be
huge and sparse!

0 read | execute

read road
writs write

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.14

Authorization: Two Implementation Choices

* Access Control Lists: store permissions with object
- Still might be lots of users!
- UNIX limits each file to: r,w,x for owner, group, world

- More recent systems allow definition of groups of users
and permissions for each group

- ACLs allow easy changing of an object's permissions
» Example: add Users C, D, and F with rw permissions

* Capability List: each process tracks which objects has
permission to touch

- Popular in the past, idea out of favor today

- Consider page table: Each process has list of pages it
has access to, not each page has list of processes ..
- Capability lists allow easy changing of a domain's
permissions
» Example: you are promoted to system administrator and

should be given access to all system files
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.15

Authorization: Combination Approach

- Users bave capabil‘i‘ﬂes,"
called “groups” or “roles

- Objects have ACLs

- ACLs can refer to users or
- Everyone with particular groups

group access is “equivalent”
when accessing group
resource

- Like passport (which gives
access to country of origin)

- Change object permissions
object by modifying ACL

- Change broad user
permissions via changes in
group membership

- Possessors of proper
credentials get access

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.16

Authorization: How to Revoke?

 How does one revoke someone's access rights to
a particular object?
- Easy with ACLs: just remove entry from the list
- Takes effect immediately since the ACL is checked
on each object access

* Harder to do with capabilities since they aren't
stored with the object being controlled:
- Not so bad in a single machine: could keep all

capability lists in a well-known place (e.g., the OS
capability table).

- Very hard in distributed system, where remote
hosts may have crashed or may not cooperate
(more in a future lecture)

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.17

Revoking Capabilities

* Various approaches to revoking capabilities:

- Put expiration dates on capabilities and force
reacquisition

- Put epoch numbers on capabilities and revoke all
capabilities by bumping the epoch number (which
gets checked on each access attempt)

- Maintain back pointers to all capabilities that have
been handed out (Tough if capabilities can be
copied)

- Maintain a revocation list that gets checked on
every access attempt

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.18

Centralized vs Distributed System

=
Client/Server Model
Peer-to-Peer Model

* Centralized System: System in which major functions
are performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model
+ Distributed System: physicaIIK separate computers
working together on some tas
- Early model: multiple servers working together
» Probably in the same room or building
» Often called a “cluster”

- Later models: peer‘-To-Lpeer'/wide-s read collaboration
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.19

Distributed Systems: Motivation/Issues

WP}'y do we want distributed s¥sTems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: Much easier for users to collaborate through
network resources (such as network file systems)
The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure
Reality has been discc\rpointing
- Worse availability: e?end on every machine being :F
» Lamport: “a distributed system is one where I cant do work
because some machine I've never heard of isn't working!”
- Worse reliability: can lose data if ang machine crashes
- Worse security: anyone in world can break into system
Coordination is more difficult
- Must coordinate multiple copies of shared state information
(using only a network)
- What would be easy in a centralized system becomes a lot
more difficult
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.20

Distributed Systems: Goals/Requirements

* Transparency: the ability of the system to mask its
complexity behind a simple interface
* Possible transparencies:
- Location: Can't tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can't tell how many copies of resource exist
- Concurrency: Can't tell how many users there are
- Parallelism: System may speed up large jobs by spliting
them into smaller pieces
- Fault Tolerance: System may hide varoius things that go
wrong in the system
* Transparency and collaboration require some way for
different processors to communicate with one another

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.21

Networking Definitions

- Network: physical connection that allows two computers
to communicate

* Packet: unit of transfer, sequence of bits carried over
the network

- Network carries packets from one CPU to another
- Destination gets interrupt when packet arrives

* Protocol: agreement between two parties as to how
information is to be transmitted

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.22

Broadcast Networks %
+ Broadcast Network: Shared Communication Medium \Eﬁ

A 4 4 3]L v

\4 y

I/0 I/0 I/0
Processor Device | [Device | | Device Memory

- Shared Medium can be a set of wires
» Inside a computer, this is called a bus
» All devices simultaneously connected to devic.t_»:'s

I r’"“%@g’

3
o®

=+
) (wh)

- Originally, Ethernet was a broadcast network
» All computers on local subnet connected to one another

- More examples (wireless: medium is air): cellular phones,
GSM GPRS, EDGE, CDMA 1xRTT, and 1EvDO

11/08/06 Kubiatowicz €S5162 ©UCB Fall 2006 Lec 20.23

* Delivery: When you

Broadcast Netw

Body rlea
(Data)

Message

(ignore) ID:2

(receive)
broadcast a packet, how does a
receiver know who it is for? (packet goes to everyonel!)
- Put header on front of packet: [Destination | Packet]
- Everyone gets packet, discards if not the target
- In Ethernet, this check is done in hardware
» No OS interrupt if not for particular destination

- This is layering: we're going to build complex network
protocols by layering on top of the packet
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.24

Broadcast Network Arbitration

* Arbitration: Act of negotiating use of shared medium
- What if two senders try to broadcast at same time?

- Concurrent activity but can't use shared memory to
coordinate!

+ Aloha network (70's): packet radio within Ha@

- Blind broadcast, with checksum at end of
packet. If received correctly (not fqarbled), 7
send back an acknowledgement. If not
received correctly, discard.

» Need checksum anyway - in case airplane
flies overhead

- Sender waits for a while, and if doesn't
get an acknowledgement, re-transmits.

- If two senders try to send at same time, both get
garbled, both simply re-send later.

- Problem: Stability: what if load increases?

» More collisions = less gets through =>more resent = more
load.. = More collisions...
» Unfortunately: some sender may have started in clear, get

scrambled without finishing
11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.25

Carrier Sense, Multiple Access/Collision Detection

+ Ethernet (early 80's): first practical local area network

- It is the most common LAN for UNIX, PC, and Mac

- Use wire instead of radio, but still broadcast medium

+ Key advance was in arbitration called CSMA/CD:
Carrier sense, multiple access/collision detection
- Carrier Sense: don't send unless idle
» Don't mess up communications already in process
- Collision Detect: sender checks if packet trampled.
» If so, abort, wait, and retry.
- Backoff Scheme: Choose wait time before trying again
* How long to wait after trying to send and failing:

- What'if everyone waits the same length of time? Then,
they all collide again at some timel!

- Must find way to break up shared behavior with nothing
more than shared communication channel

* Adaptive randomized wamng strategy:

- Adaptive and Random: First time, pick random wait time
with some initial mean. If collide again, pick random value
from bigger mean wait time. Etc.

- Randomness is important to decouple colliding senders

- Scheme figures out how many people are trying to send!
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.26

Point-to-point networks

‘ a“)

Jaudalug
Y

‘ E " > -
- Why have a shared bus at all? Why not simplify and
only have point-to-point links + routers/switches?
- Didn't used to be cost-effective
- Now, easy to make high-speed switches and routers that
can forward packets from a sender to a receiver.
* Point-to-point network: a network in which every
physical wire is connected to only two computers
+ Switch: a bridge that transforms a shared-bus
configuration into a point-to-point network.
* Router: a device that acts as a junction between two

networks to transfer data gacke s among them.
11/08/06 Kubiatowicz CS5162 ©UCB Fall 2006 Lec 20.27

Point-to-Point Networks Discussion

+ Advantages:
- Higher link performance
» Can drive point-to-point link faster than broadcast link
since less capacitance/less echoes (from impedance
mismatches)
- 6reater aggregate bandwidth than broadcast link
» Can have multiple senders at once
- Can add capacity incrementally
» Add more links/switches to get more capacity
- Better fault tolerance (as in the Internet)
- Lower La‘l'enc¥
_ » No arbitration to send, although need buffer in the switch
- Disadvantages:
- More expensive than having everyone share broadcast link
- However, technology costs now much cheaper
. Exar_r‘_ples
- ATM (asynchronous transfer mode)
» The first commercial point-to-point LAN
» Inspiration taken from telephone network
- Switched Ethernet
» Same racke‘l’ format and signaling as broadcast Ethernet,

but only two machines on each efhernet.
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.28

Point-to-Point Network design

Outputs

e

e

Control |
(processor
- Switches look like computers: inputs, memory, outputs

- In fact probably contains a processor

* Function of switch is to forward packet to output that
gets it closer to destination

* Can build big crossbar by combining smaller switches

Flow control options
AB L 1A
C B.CD
D ;
What if everyone sends to the same output?
- Congestion—packets don't flow at full rate
- In general, what if buffers fill up?
- Need flow control policy
Option 1: no flow control. Packets get dropped if

they arrive and there's no space

- If someone sends a lot, they are given buffers and
packets from other senders are dropped

- Internet actually works this way

= = + Option 2: Flow control between switches
T @ z | - When buffer fills, stop inflow of packets
m) — U\ / N = w _-','
s - o = F 3 - Problem: what if path from source to destination is
F \ > \ = completely unused, but 1c!oes through some switch that
£ has buffers filled up with unrelated traffic?
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.29 11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.30
Flow Control (con't) Conclusion

- Opfion 37 Per-flow flow control.

- Allocate a separate set of buffers to each end-to-
end stream and use separate “don't send me more”
control on each end-to-end stream

aaagq, ababab, _acbcac | | dadcdhdc
bbbb _cccc,| -dddd|

* Problem: fairness
- Throughput of each stream is entirely dependent on
topology, and relationship to bottleneck
* Automobile Analogy

- At traffic jam, one strategy is merge closest to the
bottleneck

» WhK people get off at one exit, drive 500 feet, merge
back into flow
» Ends up slowing everybody else a huge amount
- Also why have control lights at on-ramﬁs
» Try to keep from injecting more cars than capacity of
road (and thus avoid congestion)
11/08/06 Kubiatowicz 5162 ©UCB Fall 2006 Lec 20.31

Important system properties
- Availability: how often is the resource available?
- Durability: how well is data preserved against faults?
- Reliability: how often is resource performing correctly?
+ Use of Log to improve Reliability
- Journaled file systems such as ext3
RAID: Redundant Arrays of Inexpensive Disks
- RAID1: mirroring, RAID5: Parity block
* Authorization
- Controlling access to resources using
» Access Control Lists
» Capabilities
* Network: physical connection that allows two
computers to communicate

- Packet: unit of transfer, sequence of bits carried over
the network

11/08/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 20.32

