Cs162
Operating Systems and
Systems Programming
Lecture 19

File Systems continued
Distributed Systems

November 6, 2006
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: A Little Queuing Theory: Some Results

* Assumptions:
- System in equilibrium: No limit to the queue
- Time between successive arrivals is random and memoryless

Service Ra're.
H= I/Tser

* Parameters that describe our system:

—
Arrival Rate
A

-\ mean number of arriving customers/second

- T..: mean time to service a customer ("m1")

- C: squared coefficient of variance = 62/m12

- service rate = 1/T_,,

-u server utilization (Ou<1): u = A/py = A x T,
* Parameters we wish to compute:

- Ty Time spent in queue

-L Length of queue = A x T, (by Little's law)
- Results:

- Memoryless service distribution (C = 1):
» Called M/M/1 queue: T, = T, x u/(1 - u)

- General service distribution (no restrictions), 1 server:
» Called M/6/1 queue: T, = T, x $(1+C) x u/(1 - u))

11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.2

Review: Disk Scheduling

Disk can do ong/ one request af a fime;
you choose to do queued requests?

User N[O N Head
Requests NV LY P
FIFO Order
- Fair among requesters, but order of arrival may be to
random spots on the disk = Very long seeks
SSTF: Shortest seek time first
- Pick the request that's closest on the disk
- Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
- Con: SSTF good at reducing seeks, but
may lead to starvation
SCAN: Implements an Elevator Algorithm: take the
closest request in the direction of travel
- No starvation, but retains flavor of SSTF
C-SCAN: Circular-Scan: only goes in one direction
- Skips any reguesfs on the wcg back

girer than SCAN, not, bigses dowprds pages in middle, ,

1 1/02/66

at order do

-

N
N =

N
W)

poaH %siq

Review: Multilevel Indexed Files (UNIX 4.1)

. Mulﬁlevel_ Indexed Files: =
Like mul:rllevel address o @
transla"'lon timastamps (3)

(from UNIX 4.1 BSD)
- Key idea: efficient for small
files, but still allow big files

{data_
size block count :]
| data

:jf

direct blocks 7

1 data

[{data -
single indirect — . = | :‘- "|_E:1§_1_a_
L . data .. =
double indirect _ fia] 3 15— dala
friple indirect B ‘—:_@

* File hdr contains 13 pointers
- Fixed size table, pointers not all equivalent
- This header is called an “inode” in UNIX

* File Header format:
- First 10 pointers are to data blocks
- Ptr 11 points to "indirect block” containing 256 block ptrs
- Pointer 12 points to “doubly indirect block” containing 256

indirect block ptrs for total of 64K blocks

- Pointer 13 points to a Triglz indirect block (16M blocks)
11/06/06 Kubiatowicz C5162 ©UCB Fall 2006 Lec 19.4

Goals for Today

- Finish Discussion of File Systems
- Structure, Naming, Directories
* File Caching
- Data Durability
- Beginning of Distributed Systems Discussion

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.5

Review: File Allocation for Cray-1 DEMOS

basesize /.d'SH_ roup
N __%_g Basic Segmentation Structure:
5] Each segment contiguous on disk
3./
. 3.9
file header 39

- DEMOS: File system structure similar to segmentation
- Idea: reduce disk seeks by
» using contiguous allocation in normal case
» but allow flexibility to have non-contiguous allocation
- Cray-1 had 12ns cycle time, so CPU:disk speed ratio about
the same as today (a few million instructions per seek)
* Header: table of base & size (10 "block group” pointers)
- Each block chunk is a contiguous group of disk blocks
- Sequential reads within a block chunk can proceed at high
speed - similar to continuous allocation
* How do you find an available block group?

- Use freelist bitmap to find block of O's.
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.6

Large File Version of DEMOS

b i base size disk_group
ase s[ze/. sesize ~ $
\\ N
file heade indirect
ader block group

* What if need much bigger files?
- If need more than 107groups, set flag in header: BIGFILE
» Each table entry now points to an indirect block group
- Suppose 1000 blocks in a block group = 806B max file
» Assuming 8KB blocks, 8byte enfries=
) (10 ptrsx1024 goups/ﬁ*rrxlooo blocks/group)*8K =8068B
+ Discussion of DEMOS scheme
- Pros: Fast sequential access, Free areas merge simpl
Easy to find free block groups (when disk not f)Lllllg
- Cons: Disk full = No long runs of blocks (fragmentation),
so high overhead allocation/access
- Full disk = worst of 4.1BSD (lots of seeks) with worst of

continuous allocation (lots of recompaction needed)
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.7

How to keep DEMOS performing well?

+ In many systems, disks are always full
- CS department growth: 300 GB to 1TB in a year
» That's 26B/day! (Now at 3—4 TBI)

- How to fix? Announce that disk space is getting low, so
please delete files?

» Don't really work: people try to store their data faster
- Sidebar: Perhaps we are getting out of this mode with
new disks.. However, let's assume disks full for now
+ Solution:
- Don't let disks get completely full: reserve portion
» Free count = # blocks free in bitmap
» Scheme: Don't allocate data if count < reserve
- How much reserve do you need?
» In practice, 10% seems like enough
- Tradeoff: pay for more disk, get contiguous allocation

» Since seeks so expensive for performance, this is a very
good tradeoff

11/06/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 19.8

UNIX BSD 4.2
- Same as BSD 4.1 (same file header and friply indirect
blocks), except incorporated ideas from DEB\ES:
- Uses bitmap allocation in place of freelist
- Attempt to allocate files contiguously
- 10% reserved disk space
- Skip-sector positioning (mentioned next slide)
* Problem: When create a file, don't know how big it
will become (in UNIX, most writes are by appending)
- How much contiguous space do you allocate for a file?
- In Demos, power of 2 growth: once it grows past 1MB,
allocate 2MB, etc
- In BSD 4.2, just find some range of free blocks
» Put each new file at the front of different range
» To expand a file, you first try successive blocks in
bitmap, then choose new range of blocks
- Also in BSD 4.2: store files from same directory near
each other

* Fast File System (FFS)

- Allocation and placement policies for BSD 4.2
11/06/06 ubiatowicz €5162 ©UCB Fall 2006 Lec 19.9

Attack of the Rotational Delay

* Problem 2: Missingbblocks due to rotational delay
- Issue: Read one block, do processing, and read next
block. In meantime, disk has continued turning: missed
next block! Need 1 revolution/block!

Skip Secto
[) I—
@ Track Buffer
(Holds complete track)

- Solutionl: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a
track: give time for processing to overlap rotation
- Solution2: Read ahead: read next block right after first,
even if application hasn't asked for it yet.
» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have
internal RAM that allows them to read a complete track
* Important Aside: Modern disks+controllers do many
cor?plex things “under the covers”
- Track buffers, elevator algorithms, bad block filtering
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.10

Administrivia

+ New Office Hour: Thursday 3:00-4:00

- Starting next week

- Will get rid of my Monday 2:00-3:00 office hour.
* Project zero-sum game:

- In the end, we will evaluate how to distribute project

points to partners
» Normally, we are pretty even about this

» However, under extreme circumstances, can give many of
points to working members and take them away from non-
working members

- This is a zero-sum game!
* Make sure to do your project evaluations
- This is supposed to be an individual evaluation, not done
together as a group
- This is part of the information that we use to decide
how to distributed points
- We will give O (ZERO) to people who don't fill out evals
* Midterm II

- December 4'h
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.11

How do we actually access files?

- All information about a file contained in its file header
- UNIX calls this an “inode”
» Inodes are global resources identified by index (“inumber")
- Once you load the header structure, all the other blocks
of the file are locatable
* Question: how does the user ask for a particular file?
- One option: user specifies an inode by a number (index).
» Imagine: open('14553344")
- Better option: specify by textual name
» Have to map name—inumber
- Another option: Icon
» This is how Apple made its money. Graphical user
interfaces. Point to a file and click.
* Naming: The process by which a system translates from
user-visible names to system resources
- In the case of files, need to translate from strings
(textual names) or icons to inumbers/inodes
- For global file systems, data may be spread over
globe=>need to translate from strings or icons to some

combination of hysical server location and inumber
11/06/06 ubfatowicz €S162 ©UCB Fall 2006 Lec 19.12

Directories

- Directory: a relation used for naming
- Just a table of (file name, inumber) pairs

* How are directories constructed?
- Directories often stored in files
» Reuse of existing mechanism
» Directory named by inode/inumber like other files
- Needs to be quickly searchable
» Options: Simple list or Hashtable
» Can be cached into memory in easier form to search

* How are directories modified?
- Originally, direct read/write of special file
- System calls for manipulation: mkdir, rmdir
- Ties to file creation/destruction
» On creating a file by name, new inode grabbed and
associated with new file in particular directory

11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.13

Directory Organization

+ Directories organized into a hierarchical structure
- Seems standard, but in early 70's it wasn't
- Permits much easier organization of data structures

+ Entries in directory can be either files or
directories

* Files named by ordered set (e.g., /programs/p/list)

11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.14

Directory Structure

raot

avi

rc__]mrlm

il

o

| avi |coum| ||.rr.'hex| hex |

book

text | mail |Curmf| book unhexi hp

* Not really a hierarchy!
- Many systems allow directory structure to be organized
as an aclclic graph or even a (potentially) cgtclic graph
- Hard Links: different names for the same file
» Multiple directory entries point at the same file
- Soft Links: "shortcut” pointers to other files
» Implemented by storing the logical name of actual file
+ Name Resolution: The process of converting a logical
name into a physical resource (like a file)
- Traverse succession of directories until reach target file

- Global file system: May be spread across the network
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.15

Directory Structure (Con't)

* How many disk accesses to resolve “/my/book/count”?
- Read in file header for root (fixed spot on disk)
- Read in first data block for root

» Table of file name/index pairs. Search linearly - ok since
directories typically very small

- Read in file header for “my”

- Read in first data block for “"my”; search for "book”

- Read in file header for "book”

- Read in first data block for "book”; search for “count”
- Read in file header for “count”

* Current working directory: Per-address-space pointer
to a directory %inode) used for resolving file names

- Allows user to specify relative filename instead of
absolute path (say CWD="/my/book"” can resolve “count”)

11/06/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 19.16

Where are inodes stored?

* In early UNIX and DOS/Windows' FAT file
system, headers stored in special array in
outermost cylinders

- Header not stored near the data blocks. To read a
small file, seek to get header, seek back to data.

- Fixed size, set when disk is formatted. At
formatting time, a fixed number of inodes were
created (They were each given a unique number,
called an “inumber”)

11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.17

Where are inodes stored?

* Later versions of UNIX moved the header
information to be closer to the data blocks
- Often, inode for file stored in same “cylinder
group” as parent directory of the file (makes an Is
of that directory run fast).
- Pros:
» UNIX BSD 4.2 puts a portion of the file header

array on each cylinder. For small directories, can
fit all data, file headers, etc in same cylinder=no

seeks!
» File headers much smaller than whole block (a few
hundred bytes), so multiple headers fetched from

disk at same time
» Reliability: whatever happens to the disk, you can
find many of the files (even if directories
disconnected)
- Part of the Fast File System (FFS)
» General optimization to avoid seeks

Kubiatowicz €S162 ©UCB Fall 2006

11/06/06 Lec 19.18

In-Memory File System Structures

o block

directory structure
open (file name) 1
file-c: 2l

directory structure

" Kermel memary secondary storage

* Open system call:
- Resolves file name, finds file control block (inode)

- Makes entries in rer‘-Er‘ocess and system-wide tables
- Returns index (called “file handle™) in open-file table

index

N]
.—L‘- /"LI"..‘\ blocks
rend (ndex) . — |

per-process system-wide file-controd block

open-file table open-file lable

user space kermel mamory storage

* Read/write system calls:
- Use file handle to locate inode
- Perform appropriate reads or writes

11/06/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 19.19

File System Caching
+ Key Idea: txrloﬁ localify by caching dafa in memory
- Name translations: Mapping from paths—inodes
- Disk blocks: Mapping from block address—disk content
+ Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
- Can contain “dirty” blocks (blocks yet on disk)

* Replacement policy? LRU
- Can afford overhead of timestamps for each disk block

- Advantages:
» Works very well for name translation
» Works well in general as long as memor?l is big enough to
accommodate a host's working set of files.
- Disadvantages:
» Fails when some aﬁplicaﬁon scans through file system,
thereby flushing the cache with data used only once

» Example: find . -exec grep foo {} \;
* Other Replacement Policies?
- Some systems allow applications to request other policies

- Example, 'Use Once':

» File system can discard blocks as soon as they are used
Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.20

11/06/06

File System Caching (con't)

* Cache Size: How much memory should the OS allocate
to the buffer cache vs virtual memory?
- Too much memory to the file system cache = won't be
able to run many applications at once
- Too little memory to file system cache = man
applications may run slowly (disk caching not e¥fecﬂve)
- Solution: adjust boundary dynamically so that the disk
access rates for paging and file access are balanced
* Read Ahead Prefetching: fetch sequential blocks early

- Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

- Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

- How much to prefetch?

» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among
concurrent file requests

11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.21

File System Caching (con't)

* Delayed Writes: Writes to files not immediately sent
out fo disk
- Instead, write () copies data from user space buffer
to kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written
file blocks in cache for a while

» If some other a&plica‘l’ion tries to read data before
written to disk, file system will read from cache
- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value
for a file
» Some files need never get written to disk! (e..g temporary
scratch files written /fmp often don't exist for 30 sec)
- Disadvantages
» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file
has been written out? (lose pointer to inode!)

11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.22

Important “ilities”

* Availability: the pr'obabili1'¥ that the system can
accept and process requests
- Often measured in "nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”
- Key idea here is independence of failures
* Durability: the ability of a system to recover data
despite faults
- This idea is fault tolerance applied to data
- Doesn't necessarily implg availability: information on
pyramids was very durable, but could not be accessed
until discovery of Rosetta Stone
* Reliability: the ability of a system or component to
perform its required functions under stated conditions
for a specified period of time (IEEE definition)
- Usually stronger than simply availability: means that the
system is not only “up”, but also working correctly
- Includes availability, security, fault tolerance/durability
- Must make sure data survives system crashes, disk

crashes, other problems
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.23

How to make file system durable?

- Disk blocks contain Reed-Solomon error correcting
codes (ECC) to deal with small defects in disk drive
- Can allow recovery of data from small media defects
* Make sure writes survive in short term
- Either abandon delayed writes or
- use special, battery-backed RAM (called non-volatile RAM
or NVRAM) for dirty blocks in buffer cache.
* Make sure that data survives in long term
- Need to replicatel More than one copy of datal
- Important element: independence of failure
» Could put copies on one disk, but if disk head fails...
» Could put copies on different disks, but if server fails...
» Could put copies on different servers, but if building is
struck by lightning....
» Could put copies on servers in different continents...
* RAID: Redundant Arrays of Inexpensive Disks
- Data stored on multiple disks (redundancy)
- Either in software or hardware

» In hardware case, done by disk controller; file system may

not even know that there is more than one disk in use
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.24

Log Structured and Journaled File Systems Hardware RAID: Subsystem Organization
+ Betfer reliabilify Through use of log
- All changes are treated as fransactions single board ~—
- A transaction is committed once it is written to the log CPU dh°s: — disk
» Data forced to disk for reliability adapter = controller -
» Process can be accelerated with NVRAM _ _‘l 1 / A~
- Although File system may not be updated immediately, manages inferface / single board
data preserved in the log to host, DMA % o:"{s';"er
- Difference between “Log Structured” and "Journaled” control, buffering, cormm —
- In a Log Structured filesystem, data stays in log form parity logic Tl -
- In a Journaled filesystem, Log used for recovery _ . disk
- For Journaled system: physical device comclienly] D
- Log used to asynchronously update filesystem —
» Log entries removed after used single board —
- After crash: + Some systems duplicate Co:;f;';"er
» Remaining transactions in the log performed ("Redo”) all hardware, namely —
» Modifications done in way that can survive crashes controllers, busses, etc. Z’f ’;%’a/;’/ g’r;z#/;,zi/b s
+ Examples of Journaled File Systems:
11/02/53(1.3 (LIHUX), xﬁ(ﬁia logwrillzx)$16?2.r UCB Fall 2006 Lec 19.25 11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.26
RAID 1: Disk Mirroring/Shadowing RAID 5+: High I/0 Rate Parity .
* Data str'érped across o
multiple disks
@ @ ©o oo @ @ - Successive blocks DOj |b1] |b2] |b3] |Po
stored on successive Increasing
‘\regcr%‘ﬁy (non-parity) disks D4| [D5| [D6| | P1 D7 '-Slssiﬁd'
- Each disk is fully duplicated onto its "shadow" ﬁ(,‘ﬁ,fe;f,?,febcﬁgﬂw'd*h o] [o9] [Pz [oro] [oa] [/
- For high I/0 rate, high availgbili'ry environments - Parity block (in green)
- Most expensive solution: 100% capacity overhead constructed by gORing p12| [p3| [p13] [o14] [o15
. Barll—dwud':h sacrificed %n wr'l;re: data bocks in stripe
- Logical write = two sical writes - PO=
- Highest bandwidth vfhgn disk heads and rotation fully] Zgnzgfate[ﬁegze P4 [D16] [b17] [b1g] |b1s
synchronized (hard to do exactly) disk and sT):II Y
*+ Reads may be optimized reconstruct data D20| |p21| [D22| [D23| |P5
. Re f:ceta\:/e two independent reads to same data - fﬁ.‘f,'.’?fn ?-Zczg\giéucf; bk 1 Dick 2 Dick 3 Dk 4 Dick 5
- Disk failure = replace disk and copy data to new disk D3=DO®D1&D2®PO
- Hot Spare: idle disk already attached to system to be + Later in term: talk about spreading information widely
used for immediate replacement across internet for durability.
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.27 11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.28

Remote File Systems: Virtual File System (VFS)

Bo-system interlace ‘

VFS interface

J_ |

local fila system local file system remate file system
pe 2 1
sk

type 1 '5‘

T T

* VFS: Virtual abstraction similar to local file system
- Instead of “inodes” has “vnodes”
- Compatible with a variety of local and remote file systems
» provides object-oriented way of implementing file systems
* VFS allows the same system call interface (the APT) to
be used for different types of file systems

- The API is to the VFS interface, rather than any specific

type of file system
11/06/0 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.29

Network File System (NFS)

* Three Layers for NFS system
- UNIX file-system interface: open, read, write, close
calls + file descriptors
- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests
- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
* NFS Protocol: remote procedure calls (RPC) for file
operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
* NFS servers are stateless; each request provides all
arguments require for execution
* Modified data must be committed to the server's disk
before results are returned to the client
- lose some of the advantages of caching
- Can lead to weird results: write file on one client, read
on other, get old data
11/06/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 19.30

Schematic View of NFS Architecture

client server

system-calls interface

VFS interface —* VFS interface

v v |
other types of UNIX file NFS NFS UNIX file
file systems system client server system
[
K ‘ RPC/XDR ‘ ‘ RPC/XDR ‘ R
. . |
disk disk J
— [network ‘ —
11/06/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 19.31

Conclusion

+ Cray DEMOS: optimization for sequential access
- Inode holds set of disk ranges, similar to segmentation
4.2 BSD Multilevel index files
- Inode contains pointers to actual blocks, indirect blocks,
double indirect blocks, etc
- Optimizations for sequential access: start new files in
open ranges of free blocks
- Rotational Optimization
* Naming: act of translating from user-visible names to
actual system resources
- Directories used for naming for local file systems
* Important system properties
- Availability: how often is the resource available?
- Durability: how well is data preserved against faults?
- Reliability: how often is resource performing correctly?
RAID: Redundant Arrays of Inexpensive Disks
- RAID1: mirroring, RAID5: Parity block
VFS: Virtual File System layer
- NFS: An example use of the VFS layer

11/06/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 19.32

