Cs162
Operating Systems and
Systems Programming
Lecture 10

Deadlock (cont'd)
Thread Scheduling

October 2, 2006
Prof. John Kubiatowicz
http://inst.eecs.berkeley.edu/~cs162

Review: Deadlock

+ Starvation vs. Deadlock

- Starvation: thread waits indefinitely

- Deadlock: circular waiting for resources

- Deadlock=Starvation, but not other way around
* Four conditions for deadlocks

- Mutual exclusion

» Only one thread at a time can use a resource
- Hold and wait

» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads
- Circular wait

» There exists a set {T;, .., T.} of threads with a cyclic
waiting pattern

10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.2

Review: Resource Allocation Graph Examples
* Recall:
- request edge - directed edge T; — R;
- assignment edge - directed edge R, > T;

R, R, R, R,

AN A\ N '\

Q,

Al

Vi E VidE S
R 2 . =
: R, : R, R,

Simple Resource Allocation Graph Allocation Graph
Allocation Graph With Deadlock With Cycle, but
No Deadlock

10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.3

Review: Methods for Handling Deadlocks @

* Allow system to enter deadlock and then recover
- Requires deadlock detection algorithm

- Some technique for selectively preempting resources
and/or terminating tasks

* Ensure that system will never enter a deadlock
- Need to monitor all lock acquisitions
- Selectively deny those that might lead to deadlock

+ Ignore the problem and pretend that deadlocks
never occur in the system

- used by most operating systems, including UNIX

10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.4

Goals for Today

* Preventing Deadlock

* Scheduling Policy goals

* Policy Options

* Implementation Considerations

Note: Some slides and/or pictures in the following are

adapted from slides ©2005 Silberschatz, Galvin, and Gagne.

Many slides generated from my lecture notes by Kubiatowicz.
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.5

Deadlock Detection Algorithm

* Only one of each type of resource = look for loops
* More General Deadlock Detection Algorithm

- Let [X] represent an m-ary vector of non-negative
integers (quantities of resources of each type):

[FreeResources] : Current free resources each 'r%?e
[Request,] : Current requests from thread
[Alloc,] : Current resources held by thread X
- See if tasks can eventually terminate on their own
[Avail] = [FreeResources] R
Add all nodes to UNFINISHED 1 @
do { -
done = true A
Foreach node in UNFINISHED {
if ([Request,q] <= [Availl) { T T
remove node from UNFINISHED L g
[Avail]l = [Availl + [Alloc, 4] NS
done = false -~

} until (done)

3
- Nodes left in UNFINISHED = deadlocked

10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.6

What to do when detect deadlock?

+ Terminate thread, force it to give up resources

- In Bridge example, Godzilla picks up a car, hurls it into
the river. Deadlock solved!

- Shoot a dining lawyer

- But, not always possible - killing a thread holding a
mutex leaves world inconsistent

* Preempt resources without killing off thread

- Take away resources from thread temporarily

- Doesn't always fit with semantics of computation
* Roll back actions of deadlocked threads

- Hit the rewind button on TiVo, pretend last few
minutes never happened

- For bridge example, make one car roll backwards (may
require others behind him)

- Common technique in databases (transactions)

- Of course, if you restart in exactly the same way, may
reenter deadlock once again

* Many operating systems use other options
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.7

Techniques for Preventing Deadlock

+ Infinite resources

- Include enough resources so that no one ever runs out of
resources. Doesn't have to be infinite, just large

- Give illusion of infinite resources (e.g. virtual memory)
- Examples:
» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)
* No Sharing of resources (totally independent threads)
- Not very realistic
+ Don't allow waiting
- How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone
lines, but if blocked get busy signal.

- Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry
- Inefficient, since have to keep retrying

» Consider: driving to San Francisco: when hit traffic jam,
suddenly you're transported back home and told to retry!

10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.8

Techniques for Preventing Deadlock (con't)

* Make all threads request everything they'll need at
the beginning.
- Problem: Predicting future is hard, tend to over-
estimate resources
- Example:
» If need 2 chopsticks, request both at same time

» Don't leave home until we know no one is using any
intersection between here and where you want to go: only
one car on the Bay Bridge at a time

* Force all threads to request resources in a particular
order preventing any cyclic use of resources
- Thus, preventing deadlock
- Example (x.P, y.P, z.P,..)
» Make tasks request disk, then memory, then..

» Keep from deadlock on freeways around SF by requiring

everyone to go clockwise
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.9

Review: Train Example (Wormhole-Routed Network)

+ Circular dependency (Deadlock!)
- Each train wants to turn right
- Blocked by other trains
- Similar problem to multiprocessor networks
* Fix? Imagine grid extends in all four directions
- Force ordering of channels (tracks)
» Protocol: Always go east-west first, then north-south
- Called “dimension ordering” (X then Y)

10/2f06 Lec 10.10

Banker's Algorithm for Preventing Deadlock

+ Toward right idea:
- State maximum resource needs in advance
- Allow particular thread to proceed if: .
(available resources - #requested) > max i
remaining that might be needed by any thread
* Banker's algorithm (less conservative):
- Allocate resources dynamically

» Evaluate each request and grant if some
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run
deadlock detection algorithm, substituting

([Max,,q.]-[Alloc, 4] < [Avail]) for ([Request,,.] < [Avail])
Grant request if result is deadlock free (conservative!)

» Keeps system in a "SAFE"” state, i.e. there exists a
sequence {T,, T,, .. T,} with T, requesting all remaining
resources, #inishing, then T, requesting all remaining
resources, etc..

- Algorithm allows the sum of maximum resource needs of all

current threads to be greater than total resources
10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.11

¥
* Banker's algorithm with dining lawyers

- "Safe” (won't cause deadlock) if when try to grab
chopstick either:

» Not last chopstick

» Is last chopstick but someone will have
two afterwards

- What if k-handed lawyers? Don't allow if:
» It's the last one, no one would have k
» It's 2" to last, and no one would have k-1

» It's 3™ to last, and no one would have k-2
» ..

10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.12

Administrivia

* Project 1 code due this Thursday (10/5)
- Conserve your slip daysl!!!
- It's not worth it yet.
* Group Participation: Required!
- 6roup eval (with TA oversight) used in computing grades
- Zero-sum game!
* Midterm I coming up in < two weeks:
- Wednesday, 10/11, 5:30 - 8:30, Here
- Should be 2 hour exam with extra time
- Closed book, one page of hand-written notes (both sides)
* No class on day of Midterm
- I will post extra office hours for people who have
questions about the material (or Ii\ee, whatever)
* Midterm Topics
- Everything up to that Monday, 10/10

- History, Concurrency, Multithreading, Synchronization,

Protection/Address Spaces
10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.13

CPU Scheduling
:::| ready queus @—'[

—Qr‘?/ WO queus H /0 request I‘—
time slice
expired
child fork a
executes child

interrupt walt for an
occurs interrupt

+ Earlier, we talked about the life-cycle of a thread

- Active threads work their way from Ready queue to
Running to various waiting queues.
* Question: How is the OS to decide which of several
tasks to take off a queue?

- Obvious queue to worry about is ready queue
- Others can be scheduled as well, however

* Scheduling: deciding which threads are given access

to resources from moment to moment
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.14

te—1

Scheduling Assumptions

*+ CPU scheduling big area of research in early 70's
* Many implicit assumptions for CPU scheduling:
- One program per user
- One thread per program
- Programs are independent
* Clearly, these are unrealistic but they simplify the
problem so it can be solved

- For instance: is “fair” about fairness among users or
programs?
» If I run one compilation job and you run five, you get five
times as much CPU on many operating systems
* The high-level goal: Dole out CPU time to optimize
some desired parameters of system

USER1 USER2 USER3 USER1 USER2

10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.15

Assumption: CPU Bursts

B0 |- q
"

Weighted toward small bursts

1] B 16 24 32
burst duration (milliseconds)

- Execufion model: programs alternate between bursts of
CPU and I/0

- Program typically uses the CPU for some period of time,
then does 1/0, then uses CPU again

- Each scheduling decision is about which job to give to the
CPU for use by its next CPU burst

- With timeslicing, thread may be forced to give up CPU

before finishing current CPU burst

10/2/06 ubiatowicz CS162 ©UCB Fall 2006 Lec 10.16

Scheduling Policy Goals/Criteria

* Minimize Response Time
- Minimize elapsed time to do an operation (or job)
- Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
* Maximize Throughput
- Maximize operations (or jobs) per second
- Throughput related to response time, but not identical:

» Minimizing response time will lead to more context
switching than if you only maximized throughput

- Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
* Fairness
- Share CPU among users in some equitable way
- Fairness is not minimizing average response time:

» Better average response time by making system /ess fair
ubiatowicz €S162 ©UCB Fall 2006 Lec 10.17

10/2/06

First-Come, First-Served (FCFS) Scheduling

* First-Come, First-Served (FCFS)
- Also “"First In, First Out” (FIFO) or “"Run until done”

» In early systems, FCFS meant one program
scheduled until done (including I/0)

» Now, means keep CPU until thread blocks

+ Example: Process Burst Time
P 24
2 3
7, 3

- Suppose processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P, P, Ps

0 24 27 30
- Waiting time for P, = 0; P, = 24; P;= 27
- Average waiting time: (0 + 24 + 27)/3 = 17
- Average Completion time: (24 + 27 + 30)/3 = 27

* Convoy effect: short process behind long process
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.18

FCFS Scheduling (Cont.)

+ Example continued:

- Suppose that processes arrive in order: P, , P;, P,
Now, the Gantt chart for the schedule is:

P, Ps P,

- Waiﬂng time %or' P, (i_ 6.P,=0.P;=3 %
- Average waiting time: (6 + O + 3)/3 = 3
- Average Completion time: (3 + 6 + 30)/3 = 13
* In second case:
- average waiting time is much better (before it was 17)
- Average completion time is better (before it was 27)
+ FIFO Pros and Cons:
- Simple (+)
- Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of

small items. U'?SIdel get to read about space aliens!
Ui

10/2/06 biatowicz CS5162 ©UCB Fall 2006 Lec 10.19

Round Robin (RR)

* FCFS Scheme: Potentially bad for short jobs!
- Depends on submit order
- If you are first in line at supermarket with milk, you
don't care who is behind you, on the other hand..
* Round Robin Scheme

- Each process gets a small unit of CPU time
(time guantum), usually 10-100 milliseconds

- After quantum expires, the process is preempted
and added to the end of the ready queue.

- n processes in ready queue and time quantum is ¢ =
» Each process gets 1/n of the CPU time
» In chunks of at most ¢ time units
» No process waits more than (#-1)g time units
* Performance
- ¢ large = FCFS
- ¢ small = Interleaved (really small = hyperthreading?)

- g must be large with respect to context switch,
otherwise overhead is too high (all overhead)
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.20

Example of RR with Time Quantum = 20

* Example . Process Burst Time
P, 53
P, 8
Py 68
P, 24

- The Gantt chart is:

P, P, | Py | P | PPy | P, | P | PPy

0 20 28 48 68 88 108 112 125 145 153

- Waiting time for P,=(68-20)+(112-88)=72
P,=(20-0)=20
P,=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88

- Average waiting time = (72+20+85+88)/4=66%

- Average completion time = (125+28+153+112)/4 = 1043

« Thus, Round-Robin Pros and Cons:
- Better for short jobs, Fair (+)

- Context-switching time adds up for long jobs (-)
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.21

Round-Robin Discussion

* How do you choose time slice?
- What if too big?
» Response time suffers
- What if infinite (c0)?
» Get back FIFO
- What if time slice too small?
» Throughput suffers!
* Actual choices of timeslice:
- Initially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.
» What if three compilations going on? 3 seconds to echo
each keystrokel!
- In practice, need to balance short-job performance
and long-job throughput:
» Typical time slice today is between 10ms - 100ms
» Typical context-switching overhead is 0.1ms - 1ms
» Roughly 1% overhead due to context-switching

10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.22

Comparisons between FCFS and Round Robin

* Assuming zero-cost context-switching time, is RR
always better than FCFS?
+ Simple example: 10 jobs, each take 100s of CPU time

RR scheduler quantum of 1s
All jobs start at the same time

+ Completion Times: | Job # | FIFO RR

1 100 991
2 200 992
9 900 999

10 1000 1000

- Both RR and FCFS finish at the same time

- Average response time is much worse under RR!
» Bad when all jobs same length

* Also: Cache state must be shared between all jobs with
RR but can be devoted to each job with FIFO

- Total time for RR longer even for zero-cost switch!
10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.23

Earlier Example with Different Time Quantum

P P P P
Best FCFS: | [g] | [24] [53] [68]
0 8 32 85 153
Quantum P, P, Py P, Average
Best FCFS | 32 0 85 8 312
Q-1 84 | 22 85 57 62
: Q-5 82 | 20 85 58 612
¥ffn';‘ Q-8 80 8 85 56 573
Q-10 | 8 | 10 85 68 612
Q=20 | 72 | 20 85 88 663
Worst FCFS| 68 | 145 0 121 | 83k
Best FCFS | 85 8 53 | 32 69%
Q-1 137 | 30 | 153 | 81 | 100%
, Q=5 | 135 | 28 | 153 | 82 991
Completion| Q-3 | 133 | 16 | 153 | 80 958
Q-10 | 135 | 18 | 153 | 92 991
Q-20 | 125 | 28 | 153 | 11z | 104}
L Worst FCFS | 121 | 153 | 68 145 | 1213

What if we Knew the Future?

+ Could we always mirror best FCFS? &

+ Shortest Job First (SJF): r

- Run whatever job has the least amount of
computation to do

- Sometimes called “"Shortest Time to
Completion First” (STCF)

- Shortest Remaining Time First (SRTF):

- Preemptive version of SJF: if job arrives and has a
shorter time to completion than the remaining time on
the current job, immediately preempt CPU

- Sometimes called "Shortest Remaining Time to
Completion First” (SRTCF)

* These can be applied either to a whole program or
the current CPU burst of each program
- Idea is to get short jobs out of the system
- Big effect on short jobs, only small effect on long ones

- Result is better average response time
10/2/06 Kubiatowicz €S5162 ©UCB Fall 2006 Lec 10.25

Discussion

+ SIF/SRTF are the best you can do at minimizing
average response time

- Provably optimal (SJF among non-preemptive, SRTF
among preemptive)

- Since SRTF is always at least as good as SJF, focus
on SRTF

+ Comparison of SRTF with FCFS and RR

- What if all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can
do if all jobs the same length)

- What if jobs have varying length?
» SRTF (and RR): short jobs not stuck behind long ones

10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.26

Example to illustrate benefits of SRTF

AorB c
I I " " "
I I
Cs Cs C's

. I/0 I/0 1/0
* Three jobs: /0 o

- A,B: both CPU bound, run for week
C: I/0 bound, loop 1ms CPU, 9ms disk I/0

- If only one at a time, C uses 90% of the disk, A or B
could use 100% of the CPU

+ With FIFO:

- Once A or B get in, keep CPU for two weeks
* What about RR or SRTF?

- Easier to see with a timeline

10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.27

SRTF Example continued:

(Disk
Utilization:
Il |
|

l
Cs RR 100ms time slice Disk Utilization:
1/0 ~90% but lots
of wakeups!

CABAB.. C

(i 1l . .
—_— RR 1ms time slice
C's C's

I/0 1/0 Disk

c A & A Z Utilization: j
90%

| -

I SRTF

Cs C's
I/0 I/0
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.28

SRTF Further discussion

- Starvafion
- SRTF can lead to starvation if many small jobs!
- Large jobs never get to run
+ Somehow need to predict future
- How can we do this?
- Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

- But: Even non-malicious users have trouble predicting
runtime of their jobs

* Bottom line, can't really know how long job will take

- However, can use SRTF as a yardstick
for measuring other policies

- Optimal, so can't do any better
SRTF Pros & Cons
- Optimal (average response time) (+)
- Hard to predict future (-)
- Unfair (-)

10/2/06

Kubiatowicz €S162 ©UCB Fall 2006

Predicting the Length of the Next CPU Burst

* Adaptive: Changing policy based on past behavior
- CPU scheduling, in virtual memory, in file systems, etc
- Works because programs have predictable behavior
» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help
+ Example: SRTF with estimated burst length

- Use an estimator function on previous bursts:
Let t,_4, t,.2, T,.3. etc. be previous CPU burst lengths.
Estimate next Burst 1, = f(f,.1, 1, to.s.)

- Function f could be one of many different time series
estimation schemes (Kalman filters, etc)

- For instance,
exponential averaging
T, = ot +(1-a)t
with (O<a<1)

n-1

o

10/2/06 Kubiatowicz c£ "™ = ' ° ™" ® 10,30

Multi-Level Feedback Scheduling

quantum = 8
_li:Flg-Running Compute

| e ——— asks Demoted to
quantum = 16 |

/—l// Low Priority

* Another method for exploiting past behavior
- First used in CTSS
- Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks
- Each queue has its own scheduling algorithm
» e.g. foreground - RR, background - FCFS

» Sometimes multiple RR priorities with quantum increasing
exponentially (highest:1ms, next:2ms, next: 4ms, etc)

* Adjust each job's priority as follows (details vary)
- Job starts in highest priority queue
- If timeout expires, drop one level

- If timeout doesn't expire, push up one level (or to top)
10/2/06 Kubiatowicz €S5162 ©UCB Fall 2006 Lec 10.31

ﬂ

Scheduling Details

* Result approximates SRTF:
- CPU bound jobs drop like a rock
- Short-running I/0 bound jobs stay near top
+ Scheduling must be done between the queues
- Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
- Time slice:
» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest
- Countermeasure: user action that can foil intent of
the OS designer
- For multilevel feedback, put in a bunch of meaningless
I/0 to keep job's priority high
- Of course, if everyone did this, wouldn't work!
+ Example of Othello program:

- Playing against comﬂeﬁ'ror, so key was to do computing
at higher priority the competitors.

» Put in printf's, ran much faster!
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.32

What about Fairness?

* What about fairness?
- Strict fixed-priority scheduling between queues is unfair
(run highest, then next, etc):
» long running jobs may never get CPU
» In Multics, shut down machine, found 10-year-old job
- Must give long-running jobs a fraction of the CPU even
when there are shorter jobs to run
- Tradeoff: fairness gained by hurting avg response timel
* How to implement fairness?
- Could give each queue some fraction of the CPU
» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express
lanes get so long, get better service by going into one of
the ofher lines
- Could increase priority of jobs that don't get service
» What is done in UNIX
» This is ad hoc—what rate should you increase priorities?

» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priority = Interactive jobs suffer
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.33

Lottery Scheduling

* Yet another alternative: Lottery Scheduling
- Give each job some number of lottery tickets
- On each time slice, randomly pick a winning ticket

- On average, CPU time is proportional to number of
tickets given to each job
* How to assign tickets?
- To approximate SRTF, short running jobs get more,
long running jobs get fewer
- To avoid starvation, every job gets at least one
ticket (everyone makes progress)

+ Advantage over strict priority scheduling: behaves
gracefully as load changes

- Adding or deleting a job affects all jobs
proportionally, independent of how many tickets each
Job possesses

10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.34

Lottery Scheduling Example

* Lottery Scheduling Example
- Assume short jobs get 10 tickets, long jobs get 1 ticket

short jobs/ | % of CPU each | % of CPU each
long jobs short jobs gets long jobs gets
1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A
10/1 9.9% 0.99%
1/10 50% 5%

- What if too many short jobs to give reasonable
response time?

» In UNIX, if load average is 100, hard to make progress
» One approach: log some user out

10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.35

How to Evaluate a Scheduling algorithm?

+ Deterministic modeling

- takes a predetermined workload and compute the
performance of each algorithm for that workload

* Queuing models
- Mathematical approach for handling stochastic workloads
+ Implementation/Simulation:

- Build system which allows actual algorithms to be run
against actual data. Most flexible/general.

performance
simulation $ statistics
/ | for FCFS
A FCFS |
CPU 10F
1o 213
actual CPU 12 performance
process —p VO 112 m—p SimMulation =P sialistics
eecution CPU 2 for SJF
Vo 147
F
CPU 173 = 2
trace tape s 0
gy el
performance
\ﬁ simulation = statistics
[for RR (g = 14
AR (g = 14}

10/2/06 —___ Kubiarowicz C5162 ©UCB Fail 2006 Lec 10.36

A Final Word on Scheduling

* When do the details of the scheduling policy and

fairness really matter?
- When there aren't enough resources to go around

* When should you simply buy a faster computer?
- (Or network link, or expanded highway, or ..)

- One approach: Buy it when it will pay
for itself in improved response time

» Assuming you're paying for worse
response time in reduced productivity,
customer angst, etc..

» Might think that you should bug a
faster X when X is utilized 100%,
but usually, response time goes
to infinity as ufilization=100% Utilization

* An interesting implication of this curve:
- Most scheduling algorithms work fine in the “linear”
portion of the Toad curve, fail otherwise

- Argues for buying a faster X when hit “knee” of curve
Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.37

LV]I
asuodsay

g
B

10/2/06

Summary (Deadlock)

* Four conditions required for deadlocks

- Mutual exclusion
» Only one thread at a time can use a resource

- Hold and wait
» Thread holding at least one resource is waiting to acquire
additional resources held by other threads

- No preemption
» Resources are released only voluntarily by the threads

- Circular wait
» 3 set {T;, .., T} of threads with a cyclic waiting pattern

+ Deadlock detection
- Attempts to assess whether waiting graph can ever

make progress

+ Deadlock prevention
- Assess, for each allocation, whether it has the potential

to lead to deadlock
- Banker's algorithm gives one way to assess this
10/2/06 Kubiatowicz €S162 ©UCB Fall 2006 Lec 10.38

Summary (Scheduling)

* Scheduling: selecting a waiting process from the ready
queue and allocating the CPU to it

+ FCFS Scheduling:
- Run threads to completion in order of submission

- Pros: Simple
- Cons: Short jobs get stuck behind long ones

* Round-Robin Scheduling:
- Give each thread a small amount of CPU time when it
executes; cycle between all ready threads
- Pros: Better for short jobs
- Cons: Poor when jobs are same length

10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.39

Summary (Scheduling 2)

+ Shortest Job First (SJF)/Shortest Remaining Time
First (SRTF):
- Run whatever job has the least amount of computation
to do/least remaining amount of computation to do
- Pros: Optimal (average response time)
- Cons: Hard to predict future, Unfair
* Multi-Level Feedback Scheduling:
- Multiple queues of different priorities
- Automatic promotion/demotion of process priority in
order to approximate SJF/SRTF
* Lottery Scheduling:
- Give each thread a priority-de end)errr number of

tokens (short tasks = more tokens
- Reserve a minimum number of tokens for every thread

to ensure forward progress/fairness

10/2/06 Kubiatowicz CS162 ©UCB Fall 2006 Lec 10.40

