
CS152 Spring ‘03 Midterm II Page 1

University of California, Berkeley

College of Engineering

Computer Science Division  EECS

Spring 2003

John Kubiatowicz

Midterm II
May 7th, 2003

CS152 Computer Architecture and Engineering

Your Name:

SID Number:

Discussion
Section:

Problem Possible Score

1 20

2 25

3 30

4 25

Total

CS152 Spring ‘03 Midterm II Page 2

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

CS152 Spring ‘03 Midterm II Page 3

Problem 1: Short Answers

Problem 1a[2pts]: Give a simple definition of precise interrupts/exceptions. Why is this
important?

Problem 1b[3pts]: Explain why exceptions can occur out of order (in time) in an in-order, 5-
stage pipeline. Give an example and explain how to achieve a precise exception point anyway.

Problem 1c[3pts]: Name and define 3 types of pipeline data hazards. For each hazard, explain
how it is prevented in the 5-stage pipeline:

CS152 Spring ‘03 Midterm II Page 4

Problem 1d[2pts]: How do you refresh a DRAM, and why does this work (i.e. what is
happening internally)?

Problem 1e[2pts]: What are load-delay slots? Does the programmer need to know about them
(explain carefully):

Problem 1f[2pts]: Why is it important for Tomasulo to issue instructions in-order?

CS152 Spring ‘03 Midterm II Page 5

Problem 1g[2pts]: What is a victim cache? What is it good for?

Problem 1h[2pts]: Name and describe the structure that permits an out-of-order processor to
achieve precise interrupts. How does this work?

Problem 1i[2pts]: Suppose you have a processor with a 4K page size, 16K first-level data cache
with 128-bit cache lines. Assume that you want to overlap TLB lookup with cache lookup. What
is the required associativity of the first-level cache?

CS152 Spring ‘03 Midterm II Page 6

[This page intentionally left blank]

CS152 Spring ‘03 Midterm II Page 7

Problem 2: Memory Hierarchy
Problem 2a[2pts]: Assume that we have a byte-addressed 64-bit processor with 64-bit words.
Suppose that this processor has a 48-word, three-way, set-associative cache (LRU replacement)
with 2-word cache lines. Split the 64-bit address into “tag”, “index”, and “cache-line offset”
pieces. Which address bits comprise each piece (one is given)?

tag:
index:
cache-line offset: bits 3 – 0

Problem 2b[2pts]: How many sets does this cache have? Explain.

Problem 2c[7pts]: Assume that the processor makes the following byte accesses. Label each
reference address as a Hit (H) or a Miss (M). Also, identify each cache miss as a compulsory,
conflict, or capacity miss.

Byte Address Hit/Miss? Miss Type

38(0x026) Miss Compulsory

172(0x0AC)

144(0x090)

85(0x055)

424(0x1A8)

111(0x06F)

174(0x0AE)

551(0x227)

90(0x05A)

32(0x020)

428(0x1AC)

544(0x220)

96(0x060)

422(0x1A6)

170(0x0AA)

Problem 2d[2pts]: Calculate the cache hit rate (you can leave as a fraction).

CS152 Spring ‘03 Midterm II Page 8

[This page intentionally left blank]

CS152 Spring ‘03 Midterm II Page 9

Problem 2e[7pts]: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM,
and a DISK for virtual memory. Assume that it has a unified first-level cache. Assume that the
memory system has the following parameters:

Component Hit Time Miss Rate Block Size

First-Level
Cache

1 cycle
5% Data

1% Instructions
64 bytes

Second-Level
Cache

20 cycles +
1 cycle/64bits

2% 128 bytes

DRAM
50ns+

25ns/8 bytes
0.1% (Page Fault)

16K bytes
 (Page Size)

Disk Parameters: 50 Mbytes/sec transfer, 10ms average seek, 6000 RPM, 5ms controller time.
Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on
instructions) and which has a fill penalty of 100 cycles. What is the average memory access time
(AMAT) for Instructions? For Data (assume all reads)? [1M = 1K × 1K = 1024×1024]

Problem 2f[5pts]: Suppose that we measure the following instruction mix for benchmark “X”:

Loads: 20%, Stores: 10%, Integer: 30%, Floating-Point: 20% Branches: 20%
Assume we have a single-issue processor with minimum CPI of 1.0. Assume we have a branch
predictor that is correct 90% of the time, and that an incorrect prediction costs 3 cycles. Finally,
assume that data hazards cause an average penalty of 2 cycles for floating point operations.
Integer operations run at maximum throughput. What is the average CPI of Benchmark X,
including memory misses (from part a)? [hint: don’t forget structural memory hazards]

CS152 Spring ‘03 Midterm II Page 10

Problem #3: Two-way superscalar processors

Consider a dual-issue, in-order pipeline with one fetch stage, one decode stage, multiple
execution stages (which include memory access) and a single write-back stage. Assume that the
execution stages are organized into two parallel execution pipelines (call them even and odd) that
support all possible simultaneous combinations of two instructions. Instructions wait in the
decode stage until all of their dependencies have been satisfied. Further, since this is an in-order
pipeline, new instructions will be forced to wait behind stalled instructions.

On each cycle, the decode stage takes zero, one, or two ready instructions from the fetch stage,
gathers operands from the register file or the forwarding network, then dispatch them to
execution stages. If less than 2 instructions are dispatched on a particular cycle, then “NOPs” are
sent to the execution stages. When two instructions are dispatched, the even pipeline receives
the earlier instruction. When only one instruction is dispatched, it is placed in the even pipeline.

Assume that each of the execution pipelines consist of a single linear sequence of stages in
which later stages serve as no-ops for shorter operations (or: every instruction takes the same
number of stages to “execute”, but results of shorter operations are available for forwarding
sooner). All operations are fully pipelined and results are forwarded as soon as they are
complete. Assume that the execution pipelines have the following execution latencies: addf (2
cycles), multf (3 cycles), divf (4 cycles), integer ops (1 cycle). Assume that memory
instructions take 3 cycles of execution: one for address calculation – done by the integer
execution stage, and two unbreakable cycles for the actual memory access. Finally, assume that
branch-conditions are computed by integer execution units.

Problem 3a[2pts]: Explain why we would be unable to pick a single optimum number of branch
delay slots for the above processor.

Problem 3b[3pts]: Can we tell the programmer that the number of branch delay slots varies by
circumstances? If so, explain the programmer specification for branches. If not, explain why not
and (1) indicate how we would “fix” the hardware to have only a specific number of branch
delay slots and (2) indicate what that number would be.

CS152 Spring ‘03 Midterm II Page 11

Problem 3c[15pts]: Below is a start at a simple diagram for the pipelines of this processor.

a)[3pts] Finish the diagram. Stages are boxes with letters inside: Use “F” for a fetch stage, “D”
for a decode stage, EX1 through EX4 for the execution stages of each of the pipelines (including
memory accesses), and “W” for a writeback stage. Clearly label which is the even pipeline.
Include arrows for forward information flow if this is not obvious.

b)[2pts] Next, describe what is being computed in each EX stage (including partial results).

c)[10pts] Show all bypass paths (as arrows). Your pipeline should never stall unless a value is
not ready. Label each bypass arrow with the types of instructions that will forward their results
along that path (i.e. use “M” for multf, “D” for divf, “A” for addf, “I” for integer operations,
and “Ld” for load results). [Hint: think carefully about inputs to store instructions!]

 EX2 EX3
 EX1   EX4
 MEM1 MEM2

 EX2 EX3
 EX1   EX4
 MEM1 MEM2

CS152 Spring ‘03 Midterm II Page 12

Problem 3d[2pts]: Does this processor have WAW hazards? Explain. If “yes”, give an
efficient way to fix the problem.

Problem 3e[2pts]: Does this processor have WAR hazards? Explain. If “yes”, give an efficient
way to fix the problem.

Problem 3f[3pts]: Assume that the fetch unit presents instructions to the decode stage for
execution. The decode stage is free to dispatch zero, one, or two instructions every cycle. Once
instructions have passed decode, they execute to completion (no further blocking). Assume that
enough bypassing hardware has been included to handle every arrow given in (3c).

Suppose that we have the following instruction sequence:

 ld r1, 0(r2)
 add r4, r1, r2

How many cycles must be inserted between these two instructions by the decode stage to
ensure correct execution? How does this translate to user-visible load-delay slots? Explain.

Problem 3g[3pts]: Suppose that we have the following instruction sequence:

 multf f1, f2, f3
 st 0(r1), f1

How many cycles will be inserted between these two instructions by the decode stage? How
many lost instructions does this represent?

CS152 Spring ‘03 Midterm II Page 13

[This page intentionally left blank!]

CS152 Spring ‘03 Midterm II Page 14

Problem #4: Fixing the loops
Assume that we have a superpipelined architecture with the following use latencies:
 Between a multf and an addf: 3 insts Between a load and a multf: 2 insts
 Between an addf and a divf: 1 insts Between a divf and a store: 7 insts
 Between an int op and a store: 0 insts Between two integer ops: 0 insts
 Number of branch delay slots: 1 insts

Consider the following loop which performs a restricted rotation and projection operation. In
this code, F0 and F1 contain sin(�) and cos(�) for rotation. The array based at register r1
contains pairs of single-precision (32-bit) values which represent x,y coordinates. The array
based at register r2 receives a projected coordinate along the observer’s horizontal direction:

project: ldf F3,0(r1)
 multf F10,F3,F0
 ldf F4,4(r1)
 multf F11,F4,F1
 addf F12,F10,F11
 divf F13,F12,F2
 stf 0(r2),F13
 addi r1,r1,#8
 addi r2,r2,#4
 subi r3,r3,#1
 bne r3,zero,project
 nop

Problem 4a[3pts]: How many cycles does this loop take per iteration? Indicate stalls in the
above code by labeling each of them with a number of cycles of stall:

Problem 4b[4pts]: Reschedule this code to run with as few cycles per iteration as possible. Do
not unroll it or software pipeline it. How many cycles do you get per iteration of the loop now?

CS152 Spring ‘03 Midterm II Page 15

Problem 4c[7pts]: Unroll the loop once and schedule it to run with as few cycles as possible per
iteration of the original loop. How many cycles do you get per iteration now?

Problem 4d[4pts]: Your loop in (4c) will not run without stalls. Without going to the trouble to
unroll further, what is the minimum number of times that you would have to unroll this loop to
avoid stalls? How many cycles would you get per iteration then?

Problem 4e[7pts]: Software pipeline this loop to avoid stalls. Overlap 5 different iterations.
What is the average number of cycles per iteration? Your code should have no more than one
copy of the original instructions. Ignore startup and exit code.

CS152 Spring ‘03 Midterm II Page 16

[This page intentionally left blank!]

CS152 Spring ‘03 Midterm II Page 17

[This is an extra page for scratch!]

