Recall: Limits to Multi-Issue Machines

- Multi-issue: simple matter of accounting
 - Must do dataflow analysis across multiple instructions simultaneously
 - Rename table updated as if instructions happened serially!

- To sustain: need execution bandwidth+commit bandwidth
 - To sustain ILP of X need at least
 - X-way issue, > X execution bandwidth (for mix), X way commit

- Inherent limitations of ILP
 - 1 branch in 5: How to keep a 5-way superscalar busy?
 - Latencies of units: many operations must be scheduled
 - Need about Pipeline Depth x No. Functional Units of independent instructions to keep fully busy
 - Increase ports to Register File
 - VLIW example needs 7 read and 3 write for Int. Reg. & 5 read and 3 write for FP reg
 - Increase ports to memory
 - Current state of the art: Many hardware structures (such as issue/rename logic) has delay proportional to square of number of instructions issued/cycle

Recall: Upper Limit to ILP: Ideal Machine

Recall: More Realistic HW: Branch Impact
The Five Classic Components of a Computer

- Processor
- Control
- Datapath
- Memory
- Output

Today’s Topics:
- Recap last lecture
- Locality and Memory Hierarchy
- Administrivia
- SRAM Memory Technology
- DRAM Memory Technology
- Memory Organization

Recall: Memory Hierarchy of a Modern Computer System

- By taking advantage of the principle of locality:
 - Present the user with as much memory as is available in the cheapest technology.
 - Provide access at the speed offered by the fastest technology.

Recall: Who Cares About the Memory Hierarchy?

- Processor-DRAM Memory Gap (latency)
 - “Moore’s Law”
 - “Less’ Law?”

Memory Hierarchy Technology

- Random Access:
 - “Random” is good: access time is the same for all locations
 - DRAM: Dynamic Random Access Memory
 - High density, low power, cheap, slow
 - Dynamic: need to be “refreshed” regularly
 - SRAM: Static Random Access Memory
 - Low density, high power, expensive, fast
 - Static: content will last “forever” (until lose power)

- “Non-so-random” Access Technology:
 - Access time varies from location to location and from time to time
 - Examples: Disk, CDROM, DRAM page-mode access

- Sequential Access Technology: access time linear in location (e.g., Tape)
 - The next two lectures will concentrate on random access technology
 - The Main Memory: DRAMs + Caches: SRAMs
Main Memory Background

- **Performance of Main Memory:**
 - **Latency:** Cache Miss Penalty
 - **Access Time:** time between request and word arrives
 - **Cycle Time:** time between requests
 - **Bandwidth:** I/O & Large Block Miss Penalty (L2)

- **Main Memory is DRAM:** Dynamic Random Access Memory
 - Dynamic since needs to be refreshed periodically (8 ms)
 - Addresses divided into 2 halves (Memory as a 2D matrix):
 - RAS or Row Access Strobe
 - CAS or Column Access Strobe

- **Cache uses SRAM:** Static Random Access Memory
 - No refresh (6 transistors/bit vs. 1 transistor)
 - **Size:** DRAM/SRAM - 4-8
 - **Cost/Cycle time:** SRAM/DRAM - 8-16

Random Access Memory (RAM) Technology

- **Why do computer designers need to know about RAM technology?**
 - Processor performance is usually limited by memory bandwidth
 - As IC densities increase, lots of memory will fit on processor chip
 - Instruction cache
 - Data cache
 - Write buffer

- **What makes RAM different from a bunch of flip-flops?**
 - **Density:** RAM is much denser

Static RAM Cell

- 6-Transistor SRAM Cell
- **Write:**
 1. Drive bit lines (bit=1, bit=0)
 2. Select row
- **Read:**
 1. Precharge bit and bit to Vdd or Vdd/2 => make sure equal!
 2. Select row
 3. Cell pulls one line low
 4. Sense amp on column detects difference between bit and bit

Typical SRAM Organization: 16-word x 4-bit

Q: Which is longer: word line or bit line?
Write Enable is usually active low (WE_L)

Din and Dout are combined to save pins:
- A new control signal, output enable (OE_L) is needed
- WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
- WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
- Both WE_L and OE_L are asserted:
 - Result is unknown. Don’t do that!!!

Although could change VHDL to do what desire, must do the best with what you’ve got (vs. what you need)

Problems with SRAM

- Six transistors use up a lot of area
- Consider a “Zero” is stored in the cell:
 - Transistor N1 will try to pull “bit” to 0
 - Transistor P2 will try to pull “bit bar” to 1
- But bit lines are precharged to high: Are P1 and P2 necessary?

Main Memory Deep Background

- “Out-of-Core”, “In-Core,” “Core Dump”?
- “Core memory”?
- Non-volatile, magnetic
- Lost to 4 Kbit DRAM (today using 64Mbit DRAM)
- Access time 750 ns, cycle time 1500-3000 ns
1-Transistor Memory Cell (DRAM)

° Write:
 • 1. Drive bit line
 • 2. Select row

° Read:
 • 1. Precharge bit line to Vdd/2
 • 2. Select row
 • 3. Cell and bit line share charges
 - Very small voltage changes on the bit line
 • 4. Sense (fancy sense amp)
 - Can detect changes of ~1 million electrons
 • 5. Write: restore the value

° Refresh
 • 1. Just do a dummy read to every cell.

DRAM Capacitors: more capacitance in a small area

° Trench capacitors:
 • Logic ABOVE capacitor
 • Gain in surface area of capacitor
 • Better Scaling properties
 • Better Planarization

° Stacked capacitors
 • Logic BELOW capacitor
 • Gain in surface area of capacitor
 • 2-dim cross-section quite small

Classical DRAM Organization (square)

° Row and Column Address together:
 • Select 1 bit a time

DRAM logical organization (4 Mbit)

° Square root of bits per RAS/CAS
DRAM physical organization (4 Mbit)

- **Column Address**
- **I/O**
- **I/O**
- **I/O**
- **Row Address**
- **I/O**

Block 0
Block 3

Logic Diagram of a Typical (Asynchronous) DRAM

° Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low
° Din and Dout are combined (D):
 - WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
 - WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin
° Row and column addresses share the same pins (A)
 - RAS_L goes low: Pins A are latched in as row address
 - CAS_L goes low: Pins A are latched in as column address
 - RAS/CAS edge-sensitive

DRAM Read Timing
° Every DRAM access begins at:
 - The assertion of the RAS_L
 - 2 ways to read: early or late v. CAS

DRAM WR Cycle Time
° Every DRAM access begins at:
 - The assertion of the RAS_L
 - 2 ways to write: early or late v. CAS

DRAM Write Timing
° Every DRAM access begins at:
 - The assertion of the RAS_L
 - 2 ways to write: early or late v. CAS

Row and column addresses share the same pins (A)

- RAS_L goes low: Pins A are latched in as row address
- CAS_L goes low: Pins A are latched in as column address
- RAS/CAS edge-sensitive

Control Signals (RAS_L, CAS_L, WE_L, OE_L) are all active low

- WE_L is asserted (Low), OE_L is disasserted (High)
 - D serves as the data input pin
- WE_L is disasserted (High), OE_L is asserted (Low)
 - D is the data output pin

Row and column addresses share the same pins (A)

- RAS_L goes low: Pins A are latched in as row address
- CAS_L goes low: Pins A are latched in as column address
- RAS/CAS edge-sensitive
Key DRAM Timing Parameters

- **t_{RAC}**: minimum time from RAS line falling to the valid data output.
 - Quoted as the speed of a DRAM
 - A fast 4Mb DRAM t_{RAC} = 60 ns

- **t_{RC}**: minimum time from the start of one row access to the start of the next.
 - t_{RC} = 110 ns for a 4Mb DRAM with a t_{RAC} of 60 ns

- **t_{CAC}**: minimum time from CAS line falling to valid data output.
 - 15 ns for a 4Mb DRAM with a t_{RAC} of 60 ns

DRAM Performance

- A 60 ns (t_{RAC}) DRAM can
 - perform a row access only every 110 ns (t_{RC})
 - perform column access (t_{CAC}) in 15 ns, but time between column accesses is at least 35 ns (t_{PC}).
 - In practice, external address delays and turning around buses make it 40 to 50 ns

- These times do not include the time to drive the addresses off the microprocessor nor the memory controller overhead.
 - Drive parallel DRAMs, external memory controller, bus to turn around, SIMM module, pins...
 - 180 ns to 250 ns latency from processor to memory is good for a “60 ns” (t_{RAC}) DRAM

Something new: Structure of Tunneling Magnetic Junction

- **Tunneling Magnetic Junction RAM (TMJ-RAM)**
 - Speed of SRAM, density of DRAM, non-volatile (no refresh)
 - “Spintronics”: combination quantum spin and electronics
 - Same technology used in high-density disk-drives

Main Memory Performance

- **Simple**:
 - CPU, Cache, Bus, Memory same width

- **Interleaved**:
 - CPU, Cache, Bus 1 word: Memory N Modules (4 Modules): example is word interleaved

- **Wide**:
 - CPU/Mux 1 word; Mux/Cache, Bus, Memory N words (Alpha: 64 bits & 256 bits)
Main Memory Performance

- DRAM (Read/Write) Cycle Time >> DRAM (Read/Write) Access Time
 - Why?

- DRAM (Read/Write) Cycle Time:
 - How frequent can you initiate an access?
 - Analogy: A little kid can only ask his father for money on Saturday

- DRAM (Read/Write) Access Time:
 - How quickly will you get what you want once you initiate an access?
 - Analogy: As soon as he asks, his father will give him the money

- DRAM Bandwidth Limitation analogy:
 - What happens if he runs out of money on Wednesday?

Increasing Bandwidth - Interleaving

Access Pattern without Interleaving:

Access Pattern with 4-way Interleaving:

Increasing Bandwidth - Interleaving

- Access Pattern without Interleaving:
 - Start Access for D1
 - Start Access for D2

- Access Pattern with 4-way Interleaving:
 - Access Bank 0
 - Access Bank 1
 - Access Bank 2
 - Access Bank 3

Main Memory Performance

- Timing model
 - 1 to send address,
 - 4 for access time, 10 cycle time, 1 to send data
 - Cache Block is 4 words
 - Simple M.P. = 4 x (1+10+1) = 48
 - Wide M.P. = 1 + 10 + 1 = 12
 - Interleaved M.P. = 1+10+1 + 3 =15

Independent Memory Banks

- How many banks?
 - number banks \geq number clocks to access word in bank
 - For sequential accesses, otherwise will return to original bank before it has next word ready
 - Prime number of banks: good for a variety of access patterns

- Increasing DRAM => fewer chips => harder to have banks
 - Growth bits/chip DRAM : 50%-60%/yr
 - Nathan Myrvold M/S: mature software growth (33%/yr for NT) - growth MB/$ of DRAM (25%-30%/yr)
Fewer DRAMs/System over Time

(from Pete MacWilliams, Intel)

<table>
<thead>
<tr>
<th>DRAM Generation</th>
<th>86</th>
<th>89</th>
<th>92</th>
<th>96</th>
<th>99</th>
<th>02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory per</td>
<td>4 MB</td>
<td>8 MB</td>
<td>16 MB</td>
<td>64 MB</td>
<td>256 MB</td>
<td>1 Gb</td>
</tr>
</tbody>
</table>

Minimum PC Memory Size

<table>
<thead>
<tr>
<th>Memory per</th>
<th>4 MB</th>
<th>8 MB</th>
<th>16 MB</th>
<th>32 MB</th>
<th>64 MB</th>
<th>128 MB</th>
<th>256 MB</th>
</tr>
</thead>
<tbody>
<tr>
<td>System growth</td>
<td>32</td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Growth</td>
<td>@ 25%-30% / year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fast Page Mode Operation

- Regular DRAM Organization:
 - N rows x N column x M-bit
 - Read & Write M-bit at a time
 - Each M-bit access requires a RAS / CAS cycle

- Fast Page Mode DRAM
 - N x M “SRAM” to save a row

- After a row is read into the register
 - Only CAS is needed to access other M-bit blocks on that row
 - RAS_L remains asserted while CAS_L is toggled

Key DRAM Timing Parameters

- \(t_{RAC} \): minimum time from RAS line falling to the valid data output.
 - Quoted as the speed of a DRAM
 - A fast 4Mbit DRAM \(t_{RAC} = 60 \text{ ns} \)

- \(t_{RC} \): minimum time from the start of one row access to the start of the next.
 - \(t_{RC} = 110 \text{ ns} \) for a 4Mbit DRAM with a \(t_{RAC} \) of 60 ns

- \(t_{CAC} \): minimum time from CAS line falling to valid data output.
 - 15 ns for a 4Mbit DRAM with a \(t_{RAC} \) of 60 ns

- \(t_{PC} \): minimum time from the start of one column access to the start of the next.
 - 35 ns for a 4Mbit DRAM with a \(t_{RAC} \) of 60 ns

What does “Synchronous” RAM mean?

- Take basic RAMs (SRAM and DRAM) and add clock:
 - Gives SSRAM or SDRAM (Synchronous SRAM/DRAM)
 - Addresses and Control set up ahead of time, clock edges activate

- More complicated, on-chip controller
 - Operations synchronized to clock
 - So, give row address one cycle
 - Column address some number of cycles later (say 2)
 - Data comes out later (say 2 cycles later)
 - Burst modes
 - Typical might be 1, 2, 4, 8, or 256 length burst
 - Thus, only give RAS and CAS once for all of these accesses
 - Multi-bank operation (on-chip interleaving)
 - Lets you overlap startup latency (5 cycles above) of two banks

- Careful of timing specs!
 - 10ns SDRAM may still require 50ns to get first data!
 - 50ns DRAM means first data out in 50ns
Example: SDRAM timing for Lab6

- Micron 128M-bit dram (using 2Megx16bitx4bank ver)
 - Row (12 bits), bank (2 bits), column (9 bits)

DRAMs over Time

<table>
<thead>
<tr>
<th>DRAM Generation</th>
<th>1st Gen. Sample</th>
<th>‘84</th>
<th>‘87</th>
<th>‘90</th>
<th>‘93</th>
<th>‘96</th>
<th>‘99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Size</td>
<td>1 Mb</td>
<td>4 Mb</td>
<td>16 Mb</td>
<td>64 Mb</td>
<td>256 Mb</td>
<td>1 Gb</td>
<td></td>
</tr>
<tr>
<td>Die Size (mm²)</td>
<td>55</td>
<td>85</td>
<td>130</td>
<td>200</td>
<td>300</td>
<td>450</td>
<td></td>
</tr>
<tr>
<td>Memory Area (mm²)</td>
<td>30</td>
<td>47</td>
<td>72</td>
<td>110</td>
<td>165</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>Memory Cell Area (µm²)</td>
<td>28.84</td>
<td>11.1</td>
<td>4.26</td>
<td>1.64</td>
<td>0.61</td>
<td>0.23</td>
<td></td>
</tr>
</tbody>
</table>

(from Kazuhiro Sakashita, Mitsubishi)

DRAM History

- DRAMs: capacity +60%/yr, cost –30%/yr
 - 2.5X cells/area, 1.5X die size in -3 years
- ‘97 DRAM fab line costs $1B to $2B
 - DRAM only: density, leakage v. speed
- Rely on increasing no. of computers & memory per computer (60% market)
 - SIMM or DIMM is replaceable unit
 => computers use any generation DRAM
- Commodity, second source industry
 => high volume, low profit, conservative
 - Little organization innovation in 20 years
 page mode, EDO, Synch DRAM
- Order of importance: 1) Cost/bit 1a) Capacity
 - RAMBUS: 10X BW, +30% cost => little impact

DRAM Design Goals

- Reduce cell size 2.5, increase die size 1.5
- Sell 10% of a single DRAM generation
 - 6.25 billion DRAMs sold in 1996
- 3 phases: engineering samples, first customer ship(FCS), mass production
 - Fastest to FCS, mass production wins share
- Die size, testing time, yield => profit
 - Yield >> 60%
 (redundant rows/columns to repair flaws)
Today’s Situation: DRAM

- Commodity, second source industry
 - high volume, low profit, conservative
 - Little organization innovation (vs. processors)
 in 20 years: page mode, EDO, Synch DRAM

- DRAM industry at a crossroads:
 - Fewer DRAMs per computer over time
 - Growth bits/chip DRAM: 50%-60%/yr
 - Nathan Myrvold M/S: mature software growth
 (33%/yr for NT) - growth MB/$ of DRAM (25%-30%/yr)
 - Starting to question buying larger DRAMs?

Today’s Situation: DRAM

- Intel: 30%/year since 1987; 1/3 income profit

Today’s Situation: DRAM

- Summary:
 - Two Different Types of Locality:
 - Temporal Locality (Locality in Time): If an item is referenced, it will tend
 to be referenced again soon.
 - Spatial Locality (Locality in Space): If an item is referenced, items
 whose addresses are close by tend to be referenced soon.
 - SRAM is fast but expensive and not very dense:
 - 6-Transistor cell (no static current) or 4-Transistor cell (static current)
 - Does not need to be refreshed
 - Good choice for providing the user FAST access time.
 - Typically used for CACHE
 - DRAM is slow but cheap and dense:
 - 1-Transistor cell (+ trench capacitor)
 - Must be refreshed
 - Good choice for presenting the user with a BIG memory system
 - Both asynchronous and synchronous versions
 - Limited signal requires “sense-amplifiers” to recover