Logic Synthesis with VHDL
Combinational Logic

Bob Reese
Electrical Engineering Department
Mississippi State University

Electrical & Computer Engineering Mississippi State University

Logic Synthesis

0 Use of Logic Synthesis has become common industrial practice.
The advantages are many:

- Technology portability
- Design Documentation
- Constraint Driven Synthesis

0 Two major languages are Verilog and VHDL. This tutorial will con-
ver logic synthesis via VHDL.

0 We will split the tutorials into three parts:
- Introduction to VHDL via combinational synthesis examples

- Sequential synthesis examples (registers, finite state
machines)

- System examples (combined datapath and control)

Bob Reese 5/95 CombSyn-2 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Tutorial Caveats

0 Tutorial examples have been made as simple and portable as pos-
sible.

- Will stay away from topics such as parameterization which
may involve vendor—dependent features.

- Will also stay away from coding styles which involve type
conversion as this tends to add extra complications.

0 Examples have been tested with the Synopsys and Viewlogic syn-
thesis tools; most of the synthesized schematics shown in the
slides are from the Viewlogic synthesis tool. Some of the more
complex examples are only compatible with the Synopsys envi-
ronment

O In these tutorials, the suggested styles for writing synthesizable
VHDL models come from my own experience in teaching an
ASIC design course for Senior/Graduate EE students.

0 Coverage of VHDL packages will be light; the block structural
statements and VHDL configurations are skipped. Generics are
not mentioned until late in the tutorial since support from a synthe-
sis point of view is vendor dependent.

0 This tutorial is no substitute for a good, detailed VHDL textbook or
the language reference manual. Get one or both!!!

Bob Reese 5/95 CombSyn-3 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

VHDL Synthesis Subset

0 The VHDL language has a reputation for being very complex - that
reputation is well deserved!

0 Fortunately, the subset of VHDL which can be used for synthesis is
SMALL - very easy to learn.

0 Primary VHDL constructs we will use for synthesis:

- signal assignment
nextstate <= HIGHWAY_GREEN

- comparisons
= (equal), /= (not equal),
> (greater than), < (less than)
<= (less than or equal), >= (greater than or equal)

l

logical operators
(and, xor, or, nand, nor, xnor, not)

l

if" statement
if (presentstate = CHECK_CAR) then
end if | elsif

l

'for’ statement (used for looping in creating arrays of
elements)

- Other constructs are 'when else ’, 'case’, 'wait '. Also ":=" for
variable assignment.

Bob Reese 5/95 CombSyn—-4 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

General Comments on VHDL Syntax

0 Most syntax details will be introduced on an 'as—needed’ basis.

- The full syntax of a statement type including all of its various
options will often NOT be presented; instead, these will be
introduced via examples as the tutorial progresses.

- There are many language details which will be glossed over or
simply skipped for the sake of brevity.

0 Generalities:
- VHDL is not case sensitive.
- The semicolon is used to indicate termination of a statement.
- Two dashes (—') are used to indicate the start of a comment.

- ldentifiers must begin with a letter, subsequent characters
must be alphanumeric or ’_’ (underscore).

-~ VHDL is a strongly typed language. There is very little
automatic type conversion; most operations have to operate
on common types. Operator overloading is supported in
which a function or procedure can be defined differently for
different argument lists.

Bob Reese 5/95 CombSyn-5 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Combinational Logic Examples

0 We will go through some combinational examples to introduce you
to the synthesizable subset of VHDL. Usually, we will demon-
strate multiple methods of implementing the same design.

0 Examples are:
-~ 2to1 Mux
- 8-level priority circuit
- 3 to 8 Decoder
- Synthesis boundary conditions

- Ripple—carry adder

Bob Reese 5/95 CombSyn-6 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Model Template

entity model_namés
port
(

list of inputs and outputs
);

end model_namg
architecturearchitecture_namef model_namés
begin

VHDL concurrent statements

endarchitectue_name

Bob Reese 5/95 CombSyn-7 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

2—-to—1 MUX — Using when else

library IEEE;
use IEEE.std_logic 164.all;

— vhdl model for 2 to 1 mux, 8—bits wide
entity mux2tol is

port

(

signal s: in std_logic;

signal zero,one: in std_logic_vector(7 downto 0);
signal y: out std_logic_vector(7 downto 0)
);

end mux2tol;

architecture behavior of mux2tol is

begin
mux2tol
y <= one when (s = '1’) else zero;
end behavior; zero 8

one

8
L
8
ﬁL’ s

1

Bob Reese 5/95 CombSyn-8 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Standard Logic 1164

library IEEE;
uselEEE.std_logic_1164ll;

0 The LIBRARY statement is used to reference a group of previous-
ly defined VHDL design units (other entities or groups proce-
dures/functions known as 'packages’.

0 The USE statement specifies what entities or packages to use out
of this library; in this case '"USE IEEE.std_logic_1164.all’ imports
all procedures/functions in the std_logic 1164 package.

0 The std_logic_1164 package defines a multi-valued logic system
which will be used as the data types for the signals defined in our
examples.

- The VHDL language definition had a built—in bit type which
only supported two values, "1’ and '0’ which was insufficient
for modeling and synthesis applications.

- The 1164 standard defines a 9—valued logic system; only 4 of
these have meaning for synthesis:
'1’,’0", 'Z’ (high impedance), '-' (don't care).

0 The 1164 single bit type std logic and vector type std logic vec-
tor (for busses) will be used for all signal types in the tutorial exam-
ples.

Bob Reese 5/95 CombSyn-9 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

2/1 MUX Entity Declaration

entity mux2tolis

port

(

signal s in std_logic;

signal zero,one in std_logic_vector(7 downto 0);
signal . out std_logic_vector(7 downto 0)
);

endmux2tol

0 The entity declaration defines the external interface for the model.

0 The port list defines the external signals. The signal definition con-
sists of the signal name, mode, and type.

- For synthesis purposes (and for this tutorial), the mode can be
either in, out or inout.

O In this tutorial, the signal types will be either std_logic (single bit) or
std_logic_vector (busses).

0 The array specification on the std logic_vector type defines the
width of signal:
std_logic_vector (7 downto 0) (descending range)
std_logic_vector (0 to 7) (ascending range)
Both of these are 8-bit wide signals. The descending/ascending
range declaration will affect assignment statements such as:
y <=7"111100007;
For descending rage, y(7) is '1’; for ascending range y(0) is '1'.

Bob Reese 5/95 CombSyn-10 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

2/1 MUX Architecture Declaration

architecturdoehaviorof mux2tolis
begin

y <=onewhen §="1") elsezerg

endbehavior

O The architecture block specifies the model functionality.

- The architecture name is user—defined. Multiple
architectures can be defined for the same entity. VHDL
configurations can be used to specify which architecture to
use for a particular entity.

- This tutorial will only use one architecture per entity and it will
always be called behavior .

O The 'when ... else’ statement is a conditional signal assignment

statement. 'When ... else’ statements can be chained such as:
signal_name <= valuel when conditionl else
value2 when condition2 else,

...... value N when conditionN else default_value;

O The 'when ... else’ statement is a particular type of statement
known as a concurrent statement as opposed to a sequential
statement. The differences between concurrent and sequential
statements will be discussed in more detail later.

Bob Reese 5/95 CombSyn-11 Combinational Synthesis witMHDL

Electrical & Computer Engineering

Mississippi State University

Bob Reese 5/95

CombSyn-12 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

2/1 MUX Architecture Using Booleans

architecturdoehaviorof mux2tolis
signaltemp std_logic_vector(7 downto 0);

begin
temp<= (s, S, S, sothers =>g);
y <= (tempandong) or (nottempandzero);

end behavior;

0 Boolean operators are used in an assignment statement to gener-
ate the mux operation.

0 The s signal cannot be used in a boolean operation with the one or
zero signals because of type mismatch (s is a std_logic type, one/
zero are std_logic_vector types)

- An internal signal of type std logic_vector called temp is
declared. Note that there is no mode declaration for internal
signals. The temp signal will be used in the boolean
operation against the zero/one signals.

O Every bit of tempis to be set equal to the s signal value. An array
assignment will be used; this can take several forms:
temp <= (others =>s); ’others’ keyword gives default value
temp<=(s,s,s,5,5,S,S,S); positional assignment, 7 downto 0
temp <= (4=>s, 7=>s, 2=>s, 5=>s, 3=>s, 1=>s, 6=>5, 0=>5) ;
named assignment
or combinations of the above.

Bob Reese 5/95 CombSyn-13 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

2/1 MUX Architecture Using a Process

architecturebehaviorof mux2tol_8s
begin

comb processg, zerq one
begin
y <=zerq
if s="1") then
y <=o0ne€
end if;
end processomi
endbehavior
O This architecture uses a process block to describe the mux opera-

tion.

- The process block itself is considered a single concurrent
statement.

- Only sequential VHDL statements are allowed within a
process block.

- Signal assignments are assumed to occur sequentially so that
an assignment can supercede a previous assignment to the
same signal.

- 'if ... else’, 'case’, 'for ... loop’ are sequential statements.

0 The list of signals after the process block is called the sensitivity
list; an event on any of these signals will cause the process block
to be evaluated during model simulation.

Bob Reese 5/95 CombSyn-14 Combinational Synthesis witMHDL

Electrical & Computer Engineering

Mississippi State University

8—level Priority Encoder

— vhdl model for 8 level priority circuit
— 1O Interface Declaration

entity priority is

port (
signal y1,y2,y3,vy4,y5,y6,y7: in std_logic; priority
signal vec: out std_logic_vector(2 downto 0) L
) —lY
end priority; — . y2
y3

— Architecture body vy
architecture behavior of priority is S Y/ vec
begin ___.ly6
process (y1,y2,y3,y4,y5,y6,y7) _ Jy7

begin

if (y7 ='1’) then vec <= "111";
elsif (y6 = '1") then vec <= "110";
elsif (y5 = '1") then vec <="101";
elsif (y4 = '1") then vec <= "100";
elsif (y3 ='1") then vec <= "011";
elsif (y2 ='1") then vec <="010";
elsif (y1 ='1") then vec <= "001";
else vec <= B"000";

end if: \

end process; | Uses ‘elsif’ construct for logic |
end behavior;

Bob Reese 5/95 CombSyn-15 Combinational Synthesis witMHDL

Electrical & Computer Engineering

Mississippi State University

o U] <
2 § 7
> > > -
L b L
L
> s IJ—.I
. . gl) ol
> g _ - (0]
-
w /g\ 0 [|uw
ajo|afr 00| <«JaJo|a _ ©
o ..
Y]
L ® Q Rl -
> >
" o
P
00 |¢
0 > P R sl
aa |7
< K T ©
> : §
o <o
0 0
o —
Ll N Ll
<
g
i} [}
@0
< j q
$F ¥ S
- o <
Bob Reese 5/95 CombSyn-16 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Priority Encoder again.....

O In a process, the ordering of sequential statements which affect a
common output define the priority of those assignments.

- By using normal ’if’ statements and reversing the order of the
assignments we achieve the same results as with the
chained ’elsif’ statements.

— Architecture body
architecture behavior of priority is
begin
process (y1,y2,y3,y4,y5,y6,y7)
begin

vec <= "000";

if (y1 ='1’) then vec <= "001"; end if;
if (y2 ='1’) then vec <= "010"; end if;
if (y3 ='1") then vec <="011"; end if;
if (y4 =’1’) then vec <= "100"; end if;
if (y5 ='1") then vec <="101"; end if;
if (y6 ='1’) then vec <= "110"; end if;
if (y7 ='1’) then vec <="111"; end if;

end process;
end behavior;

Since 'y7’ is tested last it will have highest
priority.

Bob Reese 5/95 CombSyn-17 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

3 to 8 Decoder Example

entity dec3to8 is port (

signal sel: in std_logic_vector(2 downto 0); — selector

signal en: in std_logic; — enable

signal y: out std_logic_vector(7 downto 0) — outputs are low true
); end dec3to8;

architecture behavior of dec3to8 is

begin
process (sel,en)
begin 'case’ statement used for
y <="11111111"; implementation
if (en ='1") then
case sel is /
when "000” => y(0) <="0";
when "001” =>y(1) <="0’;
when "010” =>y(2) <="0’;
when "011” => y(3) <="0";
when "100” => y(4) <="0";
when "101” => y(5) <="0";
when "110” => y(6) <="0’;
when "111” => y(7) <="0’;
end case;
end if;

end process;
end behavior;

Bob Reese 5/95 CombSyn-18 Combinational Synthesis witMHDL

Electrical & Computer Engineering

Mississippi State University

B ‘ c ‘ D
A
3 Y
BNANDQB Y5
1
SEL2 ° C‘
Y3 [
ENH#
2 B Jorza Y 2
Ya
SELO >
Y
B oR2B I
SEL1 Y6
3
Y1
a
Y2
YO
5
B Y
OlorzB Y7
c L
dec3t 08
MY R dec3t o8 6
SCH: dec3t o8
6 Jan 94 13: 48 ‘ SHEET 1 OF 1

Bob Reese 5/95

B

D

0

CombSyn-19 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

A Common Error

0 When using processes, a common error is to forget to assign an
output a default value. ALL outputs should have DEFAULT val-
uesl!!

- If there is a logical path in the model such that an output is not
assigned any value then the synthesizer will assume that the
output must retain its current value and a latch will be
generated.

0 Example: In dec3to8.vhd do not assign 'y’ the default value of
B”11111111". If enis 0O, then 'y’ will not be assigned a value!

process (sel,en)
begin

—

Comment out the defau
assignment to 'y’

y <="1111111";
if (en ='1") then

O In the new synthesized logic, all 'y’ outputs are latched!

Bob Reese 5/95 CombSyn-20 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University Electrical & Computer Engineering Mississippi State University

Alternative 3—to—8 Decoder

— vhdl model for the 3 to 8 decoder
— uses conditional signal assignments
— which are concurrent statements

entity dec3to8_alt is

g 2 ¥ & g g g g port (
signal sel: in std_logic_vector(2 downto 0); — selector
signal en: in std_logic; — enable
0 0
3 3 3 3 3 3 3 3 signal y: out std_logic_vector(7 downto 0) — outputs are low true
o ojlo oflo oo o o ojlo o] lo oo o):
‘ ‘ end dec3to8_alt; Conditionalsignal
> > > > > > N N . . _ assignment used
: : ﬂ 5 ; : (ﬂ archltecture behavior of dec3to8_alt is for each output bit,
:) 2l z 2l 2 z begin
0 O a|or <ofo | T 0 Tm‘o <Tmo
® y(0) <="0" when (en ='1" and sel = "000") else '1’;
y(1) <='0"when (en ='1" and sel ="001") else '1’;

y(2) <='0"when (en =1’ and sel = "010") else '1;
y(3) <='0"when (en =1’ and sel = "011") else '1’;
y(4) <='0"when (en ='1" and sel = "100") else '1’;

y(5) <='0"when (en ='1’ and sel = "101") else '1’;

Z
w

oDl
SEL2
SELO
SEL1

y(6) <='0" when (en =1’ and sel = "110") else '1";
y(7) <='0"when (en =’1" and sel = "111") else '1’;

end behavior;

Bob Reese 5/95 CombSyn-21 Combinational Synthesis witMHDL Bob Reese 5/95 CombSyn-22 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Generic Decoder

0 Shown below is an architecture block for a generic decoder:

architecturebehavior ofgeneric_decodeis
begin
processgel, en
begin
y <= (others =>'1") ;
fori in y'range loop
if (en="1"and bvtoi(To_Bitvectoe))) =i) then
y() <='0";
end if ;
end loop;
end process;
end behavior;
0 This architecture block can be used for any binary decoder (2 to 4,

310 8, 4 to 16, etc).

0 The ’for ... loop’ construct is used to repeat a sequence of state-
ments.

- The y’range is the range of values for loop variable 'i'. The
‘range attribute of the signal 'y’ is defined as the array range
of the signal. In this case, I’ will vary from 7 to O if the array
range of 'y’ was defined as "7 downto 0.

- Other attributes useful for synthesis are: 'LEFT, 'RIGHT (left,
right array indices); 'HIGH, 'LOW (max, min array indices);
'EVENT (boolean which is true if event occurred on signal).

Bob Reese 5/95 CombSyn-23 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Generic Decoder (cont.)

~foriin y'range loop
if (en="1"and bvtoi(To_Bitvectogel) =i) then
y() <='0;
end if ;
O In order to compare loop variable /with the value of sel, a type con-
version must be done on selto convert from std_logic_vector to
integer.

- The Standard Logic 1164 package defines a conversion from
std_logic_vector to bit_vector (bit_vector is a primitive VHDL

type).
0 Unfortunately, the VHDL language standard does not define type

conversions between bit_vector and integer; these conversion
functions are vendor dependent.

- 'bvtoi’ is the Synopsys bit vector to integer conversion
function; 'vib2int’ is the Viewlogic equivalent; the Cypress
WARP equivalent is 'bv2i'.

Bob Reese 5/95 CombSyn-24 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University Electrical & Computer Engineering Mississippi State University

Synthesis Boundary Conditions

SHEET 1 OF 1

What happens when: —

Two outputs are reduced to the same logic equation?

13: 55
E

An output is is reduced to '0’, "1’ or to a primary input? ‘

boundt est
\

MY R: boundt est

— synthesis 'boundary’ conditions.. —
entity boundtest is
port (o
signal a,b,c: in std_logic;
signal w, X, y, z_lowz_high: out std_logic
); end boundtest;

6 Jan 94

ISCH: boundt est

AC[>Y

architecture behavior of boundtest is
begin

c
AC{>Y

— x and y reduce to the same logic equation

— the w output should be just a wire from c...

— the z_low output will be '0’, the z_high will be 1’
X <=aorb;
y <=aor ((b and not c) or (b and c));
w <= (c and b) or (¢ and not b); . .
z low <= b and not b;
z_high <= b or not b; < <

end behavior;

Bob Reese 5/95 CombSyn-25 Combinational Synthesis witMHDL Bob Reese 5/95 CombSyn-26 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Ripple Carry Adder

Library IEEE;
use IEEE.std_logic 164.all;

entity adder4 is port (

signal a,b: in std_logic_vector (3 downto 0);
signal cin: in std_logic; <~ Explicit Carryin
signal sum: out std_logic_vector(3 downto O} ang Carryout
signal cout: out std_logic «—————

);
end adder4;

architecture behavior of adder4 is
signal c: std_logic_vector(4 downto 0);

begin \

process (a,b,cin,c) Temporary signal
begin to hold internal
¢(0) <= cin; carries.

foriin O to 3 loop
sum(i) <= a(i) xor b(i) xor c(i);
c(i+1) <= (a(i) and b(i)) or

(c(i) and (a(i) or b(i)));
end loop;
cout <= c(4); Use Looping construct to
end process; create logic for ripple carry
end behavior; adder.

Bob Reese 5/95 CombSyn-27 Combinational Synthesis witMHDL

Electrical & Computer Engineering

Bob Reese 5/95

Mississippi State University

5)"

“ | «
. i
>| > ﬁ
a o 0
B I N

adder 4_al t

CombSyn-28

Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Ripple Carry Adder Comments

0 The Standard Logic 1164 package does not define arithmetic op-
erators for the std_logic type.

0O Most vendors supply some sort of arithmetic package for 1164
data types.

- Some vendors also support synthesis using the '+’ operation
between two std_logic signal types (Synopsis). Others
provide an explicit function call (Viewlogic).

- For code portability, it is best to avoid use of vendor—specific
arithmetic functions.

Bob Reese 5/95 CombSyn-29 Combinational Synthesis witMHDL

Electrical & Computer Engineering Mississippi State University

Summary

0 Logic synthesis offers the following advantages:
- Faster design time, easier to modify

- The synthesis code documents the design in a more readable
manner than schematics.

- Different optimization choices (area or speed)
0 Several combinational VHDL examples were examined.

- Both concurrent and sequential statements can be used to
specify combination logic — which you use is up to individual
preference.

Bob Reese 5/95 CombSyn-30 Combinational Synthesis witMHDL

Logic Synthesis with VHDL
Sequential Circuits

Bob Reese
Electrical Engineering Department
Mississippi State University

Electrical & Computer Engineering Mississippi State University

Sequential Circuits

0 Logic which contains both combinational logic and storage ele-
ments form sequential circuits. All sequential circuits can be di-
vided into a combinational block and a storage element block.

Inputs Outputs

Combinational Logig

PresentState State NextState
Flip—Flop CLK

°2

Single Phase Sequential System

0 The above diagram shows a single-phase sequential system. In a
single-phase system the storage elements are edge-triggered
devices (flip-flops).

- Moore-type outputs are a combinatorial function of
PresentState signals.

- Moore—type outputs are a combinatorial function of both
PresentState and external input signals.

0 Multiple-phase design is also supported since latches can be syn-
thesized as the storage elements.

Bob Reese 5/95 SeqSyn-2 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

Sequential Template

Electrical & Computer Engineering Mississippi State University

library declarations

entity model_namés
port
(
list of inputs and outputs
);

end model_namge

architecture behavior ahodel_namés
internal signal declarations
begin
— thestateprocess defines the storage elements

state: processdensitivity list — clock, reset, next_state inputs

begin
vhd| statements for state elements
end process state;

— thecombprocess defines the combinational logic
comb: processgensitivity list — usually includes all inputs

begin

vhdl statements which specify combinational logic

end process comb;
end behavior;

Bob Reese 5/95 SeqSyn-3 Sequential Circuits

8—Dbit Loadable Register with
Asynchronous clear

library ieee;
use ieee.std_logic_1164.all;

entity reg8bit is port (

signal clk, reset, load: in std_logic;
signal din: in std_logic_vector(7 downto 0);
signal dout: out std_(7 downto 0)

)i

end reg8bit;

architecture behavior of reg8bit is
signal n_state,p_state : std_logic_vector(7 downto 0);
begin

dout <= p_state;

comb: process(p_state,load,din)
begin

n_state <=p_state;

if (load="1") then n_state <= din; end if;
end process comb;

state: process(clk, reset)
begin
if (reset ='0") then p_state <= (others =>"'0");
elsif (clk’event and clk ='1") then
p_state <= n_state;
end if;
end process state;

end behavior;

Bob Reese 5/95 SeqSyn—4 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

reg8bit State Process

state:process(clk, reset)
begin
if (reset =’0") then p_state <= (others =>"0);
elsif (clk'event and clk =’1’) then
p_state <= n_state;
end if;
end process state;

0 The state process defines a storage element which is 8—bits wide,
rising edge triggered, and had a low true asynchronous reset.

- The output of this process is the p_state signal.

- Note that the resetinput has precedence over the clock in
order to define the asynchronous operation.

- The ’event attribute is used to detect a change in the clock
signal; comparing the current clock value against "1’ implies
that p_state gets the n_state value on a 0 to 1 transition
(rising edge).

- The state holding action of the process arises from the fact
that p_state is not assigned a value is reset is not asserted
and a rising clock edge does not occur.

Bob Reese 5/95 SeqSyn-5 Sequential Circuits

Electrical & Computer Engineering

Mississippi State University

>
[}
3}

CLK

cLRr

hg&é

hg&&

|

CLK
o nNe Y CLR
- J
S v
B
L &
o AT
— c
Q

T
g
<

»

. U
\

2
2

|
|

%
.

o>

g

! L%QE“

r eg8bi t
R regsbi t
lscrt r egebi t

6 Jan 94 1a:25 | SHEET 1 OF 1

Bob Reese 5/95 SeqSyn—6

Sequential Circuits

Electrical & Computer Engineering

wait Statement

0 An alternative method of specifying the storage elements is shown
below:

state: process

begin

wait until ((clk’'event and clk ='1") or (reset =’0"));

if (reset =’0’) then p_state <= (others =>'0’);
else
p_state <= n_state;

end if;

end process state;

0 The wait statement is a sequential statement.

0 The wait statement causes a suspension of a process or proce-
dure until the condition clause is satisfied.

0 The signals used in the condition clause form an implicit sensitivity
list for the wait statement.

- Can use 'wait on sig1, sig2, ..sigN until condition_clause’ to
explicitly specify the sensitivity list.

- Note that the process has no sensitivity list.

0 'if’ statements used with processes generally give more flexibility
and control than 'wait’ statements .

Bob Reese 5/95 SeqSyn—7 Sequential Circuits

Mississippi State University

Electrical & Computer Engineering Mississippi State University

Finite State Machine Example

@ HL:GRN @ HL:RED

FL:RED FL:GRN

Traffic Light Controller

F F
ALARM + CAR
-

@ HL:GRN
FL:RED 6—. START_SHORT_TIM%

F HL:RED
FL:YEL

start timer with short value T
Gﬁ START_SHORT_TIM@ @ F

*T

@ HL:YEL
FL:RED (ﬂ START_LONG_TIMEE
Y

. —()

Upon RESET enter state HGC
€_> START_LONG_TIME@

v

start timer with long vahie

Bob Reese 5/95 SeqSyn-8 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

Traffic Light Controller Block Diagram

Timerln
Glue N
select long load #
— 0/1 0
1 short load
load en
N
TLC Control Timer
car PortB PortA
—> car
start_short_timer| start_A
start_long_timer start_B
timer alarm
count
fl hi
2 2
fl hl count

Bob Reese 5/95 SeqSyn-9 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

VHDL For Traffic Light FSM Control

library ieee;
use ieee.std_logic_1164.all;
— vhdl model for the Traffic Light Control, sync reset, encoded states
entity tlc_enc is port(
signal reset, car, timer, clk: in std_logic;
signal stateout: out std_logic_vector(2 downto 0);
signal highway_light, farm_light: out std_logic_vector(1 downto 0);
signal start_short_timer, start_long_timer: out std_logic);

end tic_enc; [State assignments |
architecture behavior of tic_enc is

constant HGC: std_logic_vector(2 downto 0) := "0007;
constant HY: std_logic_vector(2 downto 0) := "001";
constant FG: std_logic_vector(2 downto 0) := "0107;
constant FY: std_logic_vector(2 downto 0) := "011%;
constant HG: std_logic_vector(2 downto 0) := "100";
constant GREEN: std_logic_vector(1 downto 0) := "007;
constant YELLOW: std_logic_vector(1 downto 0) := "01”;

constant RED: std_logic_vector(1 downto 0) := "117;

signal p_state, n_state : std_logic_vector(2 downto 0);

begin
stateout <= p_state;
statereg: process(clk, reset)
if (reset =’0") then p_state <= HGC;
elsif (clk’event and clk ='1") then p_state <= n_state; end if;
end process statereg;

Bob Reese 5/95 SeqSyn-10 Sequential Circuits

Electrical & Computer Engineering Mississippi State University Electrical & Computer Engineering Mississippi State University
VHDL For Traffic Light FSM (cont) VHDL For Traffic Light FSM Control
(cont.)
comb:process(car, timer, p_state) All outputs should be
begin assigned default
— default assignments — VERMPORTANT va/u_es!! If you do not
start_short_timer <='0"; <-—— assign default values
start_long_timer <="0’; then outputs may get if p_state = FG then
. synthesized with ; ; - . ; - .
— by default, stay in same state!!! highway_light <= RED; farm_light <= GREEN;
output latches! e i oy
n_state <= p_state; — if timer = "1’ or car =0’ then . _
highway_light <= GREEN; farm_light <= RED;Use if’ statements n_state <= FY; start_short_timer <="1’; end if;
< to enumerate end if:
" HG th states.
if p_state = then .
- . _) . _) if p_state = FY then
.rf”q[hway:“,g,htt:_ GRE,[E’:" :?rmélght <d_.EED’ highway_light <= RED; farm_light <= YELLOW:;
! (mﬁer ='1) then n_state <= - endih if timer = "1’ then
endif; Start timer with n_state <= HG; start_long_timer <='1’; end if;
short timeout value end if:
if p_state = HGC then (vellow light).
highway_light <= GREEN; farm_light <= RED;
if car ='1’ then / end process comb;
n_state <= HY; start_short_timer <="1"; end if;
end if; Start timer with end behavior;
long timeout value.
if p_state = HY then
highway_light <= YELLOW; farm_light <= RED;
if timer = "1’ then /
n_state <= FG; start_long_timer <="1’; end if;
end if;
Bob Reese 5/95 SeqSyn-11 Sequential Circuits Bob Reese 5/95 SeqSyn-12 Sequential Circuits

Electrical & Computer Engineering Mississippi State University Electrical & Computer Engineering Mississippi State University

One—Hot Encoding for FSMs

f 0oy oo
: P RN
¢ £ g % % B 0 One—Hot encoding of FSMs uses one flip—flop per state.
- Only one flip—flop is allowed 'on’ at anytime.
- E.G., states are "00001”, "00010", 00100, "01000", "10000"
for a five state FSM. All other states are illegal.
0 One—Hot encoding trades combinational logic for flip—flops.
2yl > >
2,00 : o : :
i $ %@ o - Good for 'flip—flop’ rich implementation technologies.
L - Because the combinational logic is reduced, the length of the
critical path can be reduced resulting in a faster FSM.
,@ T >§ >§ >§ TE Spee<.JI increase is more significant for larger finite state
< Fd | <®la] Fa | o machines.
. J
lﬁ .
<Jafo ?
i]
: § 40

Bob Reese 5/95 SeqSyn-13 Sequential Circuits Bob Reese 5/95 SeqSyn-14 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

One Hot Encoding for TLC

library IEEE; use IEEE.std_logic_1164.all;

entity tlc_onehot is port (
signal reset, car, timer, clk: in std_logic;
signal stateout: out std_logic_vector(4 downto 0);
signal highway_light,farm_light: out std_logic_vector(1 downto 0);
signal start_long_timer,start_short_timer: out std_logic
); end tlc_onehot;

architecture behavior of tic_onehot is

constant HG: integer := 0;

constant HGC: integer := 1; State assignments now
constant HY: integer := 2; specify bit positions in
constant FG: integer := 3; the state FFs

constant FY: integer := 4,

constant GREEN: std_logic_vector(1 downto 0) := "00";
constant YELLOW: std_logic_vector(1 downto 0) :="01";
constant RED: std_logic_vector(1 downto 0) :="11";

signal p_state, n_state : std_logic_vector(4 downto 0);

begin
stateout <= p_state;

Initial state is
state: process(clk, reset) 00010’

begin
if (reset ='0’) then p_state <= (HGC =>"1’, others =>'0’);
elsif (clk'event and clk = '1’) then

p_state <= n_state;
end if;
end process state;

Bob Reese 5/95 SeqSyn-15 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

One Hot Encoding for TLC

comb:process(car, timer, p_state)

begin

— default assignments — VERVMPORTANT
start_long_timer <="0’; start_short_timer <="0’; start <="0’;
n_state <= p_state;
highway_light <= GREEN; farm_light <= RED;

if p_state(HG) =1’ then
highway_light <= GREEN; farm_light <= RED;
if (timer =’1’) then
n_state(HG) <="0’; n_state(HGC) <="1’;

end if; ~—__
end if; When changing
states you must turn
if p_state(HGC) =1’ then off current state FF
highway_light <= GREEN; farm_light <= RED;&1d turn on next
if car ='1’ then state FF

n_state(HGC) <='0"; n_state(HY) <="1’;
start_short_timer <="1";
end if;
end if;

if p_state(HY) ='1’" then
highway _light <= YELLOW; farm_light <= RED;
if timer = "1’ then
n_state(HY) <='0’; n_state(FG) <="1’;
start_long_timer <="1’;
end if;
end if;

Bob Reese 5/95 SeqSyn-16 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

One Hot Encoding for TLC

if p_state(FG) =1’ then
highway_light <= RED; farm_light <= GREEN;
if timer ='1’ or car ='0’ then
n_state(FG) <='0"; n_state(FY) <="1";
start_short_timer <="1’;
end if;
end if;
if p_state(FY) =1’ then
highway_light <= RED; farm_light <= YELLOW;
if timer =1’ then
n_state(FY) <='0"; n_state(HG) <="1";
start_long_timer <="1’;
end if;
end if;

end process comb;

end behavior;

Bob Reese 5/95 SeqSyn-17 Sequential Circuits

Electrical & Computer Engineering

Bob Reese 5/95

: 3 g
g LA . B P E
J I ok iz
> —
¥m¥ %11 >‘ >‘ > >
Fq 83 A,jd § %5: L
Ja| | o < <
—e

ATECUTZ

Mississippi State University

N
.
)=

_ARM
car

SeqSyn-18

ax

A Y.

=ser

Sequential Circuits

Electrical & Computer Engineering Mississippi State University

Simple 4—bit Shift Register

H . H L
library IEEE; use IEEE.std_Ioglc_1164.aI|,,dl.n,I.s serial input|

entity shift4 is port(

.) MSB of 'dout’ is
signal clk, reset:

instd_logic; the serial output

signal din: in std_logic;
signal dout: out std_logic_vector(3 downto 0)
); end shift4;

architecture behavior of shift4 is
signal n_state, p_state : std_logic_vector(3 downto 0);

begin

dout <= p_state;

state: process(clk, reset)

begin

if (reset ='0") then p_state <= (others =>"0’);

elsif (clk’event and clk ='1") then Assign serial input i
p_state <= n_state; to the 'data’ input of the

end if; first flip—flop

end process state;

Use ’for’ loop to connect

output of previous

flip—flop to input of current

n_state(0) <= din; flop—flop

foriin 3 downto 1 loop
n_state(i) <= p_state(i — 1);

comb:process (p_state,di
begin

end loop;

end process comb;
end behavior;

Bob Reese 5/95 SeqSyn-19 Sequential Circuits

Electrical & Computer Engineering

Mississippi State University

Loop function for Shift Register

comb:process (p_state,din)
begin
n_state(0) <= din;
foriin 3 downto 1 loop
n_state(i) <= p_state(i — 1);

end loop;

end process comb;
Left Shift Operation (LSB to MSB)

LSB
n_state(0 5 n_state(1)
Q D n_state(2)
DIN p_state(0 Q b
state(1]
P (Q—— > o o
-0 p_state(2)
i=1
i=2
n_state(i)
——» D
p_state(i-1) Q
p_state(i)
i'th stage
Bob Reese 5/95 SeqSyn-20

MSB

Sequential Circuits

Electrical & Computer Engineering

Mississippi State University

DOUTO

DOUT 1

DOUT2

DFC1B

CLK

CLR

DFC1B

CLK

CLR
I
DFC1B

CLK

DI

shi ft4

SHEET 1 OF 1

14: 46
E

6 Jan 94

MW R: shifta
ISCH: shi ft 4

Bob Reese 5/95

SeqSyn-21

Sequential Circuits

Electrical & Computer Engineering Mississippi State University

Scan Path Synthesis

0 The 'for-loop’ VHDL construct can be used to create a scan—path
in your design. A scan path is a design technique used for improv-
ing the testability of a design.

- A scan path requires three extra pins on the design: 'scarn’,
'scan_in', and 'scan_out.

- When 'scan’ is asserted, all flip—flops in the design act like a
serial shift register; the 'scan_in' pin is the serial input and
the 'scan_out pin the serial output. When 'scan’ is negated
the design functions normally.

- Because all flip—flops in the design are on the scan path the
circuit can be placed in any desired state.

0 To enter a test vector via the scan path do:
- Assert 'scan’.

- Apply the test vector serially to the 'scan_in’ input; this
requires N clocks if N flip—flops are on the scan path.

- Negate 'scar, clock the circuit once. This will allow the circuit
to operate normally for one clock cycle; the result of the test
vector will be loaded into the flip—flops.

- Assert 'scan’; clock N times to clock out the test vector result
and to clock in the next test vector. Thus, each test vector
requires N+1 clocks.

Bob Reese 5/95 SeqSyn-22 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

4—bit Register with Scan Path

entity scanreg4 is port (i
signal clk, reset_b, load: in std_logic; scan’, ‘'scan_in’
signal scan, scan_in: in std_logic; <—— | Signals
signal din: in std_logic_vector(3 downto 0);

signal dout: out std_logic_vector(3 downto-Q) _
); end scanreg4; 'scan_out’ will be

MSB of 'dout’; don'’t

architecture behavior of scanreg4 is nee,d an extrayt pin
for 'scan_out.

signal n_state, p_state : std_logic_vector(3 downto'e);

begin
dout <= p_state;
state: process(clk, reset)
begin
if (reset ='0") then p_state <= (others =>"'0’);
elsif (clk’event and clk ='1’) then - —
p_state <= n_state: When 'scan’ is
— — ’ asserted the scan

end if; path is active.
end process state;

process (scan,scan_in,load,p_state,di
begin
n_state <= p_state;
if (scan ='1") then
n_state(0) <= scan_in;
foriin 3 downto 1 loop
n_state(i) <= p_state(i — 1);

end loop; Register functions
elsif (load = '1") then <«———— | normally when
n_state <= din; 'scan’ is negated.

end if;
end process;
end behavior;

Bob Reese 5/95 SeqSyn-23 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

Adding Scan to tlc_onehot.vhd

0 Add 'scar’, 'scan_in' to port list. 'scan_out will be MSB of port
'Stateout .

entity tic_onehot_scan is port (

signal reset, catimer, clk: in std_logic;
signal scan, scan_in in std_logic;
signal stateout: outstd_logic_vector(4 downto 0);

signal highway_light,farm_light: out std_logic_vector(1 downto 0);
signal start long_timestart _short_timer: out std_logic
); end tlc_onehot_scan;

0 Add ’'scan’, 'scan_in' to sensitivity list of process: state_machine.

state_machine:processén, scan_inreset, cartimer, p_state)

0 Add scan path in Architecture body:

if (scan ='1’) then
n_state(0) <= scan_in;
foriin 4 downto 1 loop
n_state(i) <= p_state(i — 1);
end loop;
else
if p_state(HG) ='1’ then
highway_light <= GREEN; farm_light <= RED;
.. etc...

Bob Reese 5/95 SeqSyn-24 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

Register with TriState Output

library IEEE; use IEEE.std_logic_1164.all;

entity tsreg8bit is port (signal clk, reset, load,in std_logic;
signal din: in std_logic_vector(7 downto 0);
signal dout: out std_logic_vector(7 downto 0)

);

end tsreg8bit;

architecture behavior of tsreg8bit is
signal n_state, p_state : std_logic_vector(7 downto 0);

begin

Make Z assignment to
specify tristate
capability.

dout <= p_state when (en ='1")
else 27777777,

state: process(clk, reset)

begin
if (reset ='0’) then p_state <= (others =>'0’);
elsif (clk’event and clk ='1") then

p_state <= n_state;

end if;

end process state;

comb: process (p_state, load, din)

begin
n_state <= p_state;
if (load ='1") then n_state <= din;
end if;

end process comb;

end behavior;

Bob Reese 5/95 SeqSyn-25 Sequential Circuits

Electrical & Computer Engineering Mississippi State University

Mapped to ITD stdcell library because Actel ACT1 does not have tristate capability.

< | o

>
o

TAL

AL o A1 arrraon
vt 101 B1 (—
LKz
2!

P ge)
orves
1 ©ai f 2201 1
w100
mpsge P T~
e o J arcraon
=
H e -
Moo - e
o Na Sai 1 2201 RST3 baTAl o 4
i ror
Fam
e
b2 oom
e
. P go A T~ .
e o o arcra0n
oauns
= e
e =5 e a2 o
o>
D zeon cera e
i ron f
, e
S
H o -
a2 a ar
N%D [arrraor Lona®2 o e
=
y - e
TN =)
o]
©ai f 2201 R3S
w101
. .

Sai 1 2201

0

[

g

K
Y
FRER
Kéij
§ 27
T

Q
I

A
g
z
2
RRER
Kéij
<2
522
8

lene pauro |
paTAll =)
Grraza

Cai 1 2201

l e
RS Pam—— Al o
s
~
Loz 2
o
»
o

lene bouTz
paTAll =}
Grraza

m

14

2T
RBER
g2
g
:

:

Cai f 2201

TN a
ot 101 b1 o
L = A -
v 101 oai 2201 CLIKZ urr a1z
ax ers
reseT_s
° EN)—‘ 6
t sreg8bi t
ErrTn
ki v egsbi ¢
6 Jan 94 14: 50 ‘ SHEET 1 oF 1
= s = B
Bob Reese 5/95 SeqSyn-26 Sequential Circuits

Logic Synthesis with VHDL
System Synthesis

Bob Reese
Electrical Engineering Department
Mississippi State University

Electrical & Computer Engineering Mississippi State University

VHDL Packages

0 A VDHL package is a mechanism for collecting procedures, func-
tions, constants, and components for future re—use.

0 A package contains a package declaration followed by a package
body.

- Package declaration

package package nameis

{ external constant, procedure, function,
component declarations }
end package name;

- Package body
package body package name is

{constant, procedure, function, component
definitions }
end package_name;

0 Any items in the package declaration are available for external
use. There can be items in the package body which are not in the

package declaration; these items are only available for use within
the package.

Bob Reese 5/95 System-2 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

Example VHDL Package

Library IEEE; use IEEE.std_logic164.all;
packageascasis

procedureipple_adder (a,b: in std_logic_vector; cin: in std_logic;
sum: inout std_logic_vector; cout: out std_logic);

end iscas;
package bodiscasis

functionxor3 (a,b,c: in std_logic) return std_logic is
begin

return (a xor b xor c);

end xor3;

procedureipple_adder (a,b: in std_logic_vector; cin: in std_logic;
sum: inout std_logic_vector; cout: out std_logic) is

variable c: std_logic_vector((a’high—a’'low+1) downto 0);
begin

¢(0) :=cin;

foriin O to (a’high—a’low) loop

sum(i+sum’low) :=or3 (a(i+a’low), b(i+b’low), c(i));

c(i+1) := (a(i+a’low) and b(i+b’low)) or

(c(i) and (a(i+a’low) or b(i+b’'low)));

end loop;

cout := c(c’high);
end ripple_adder;

endiscas

Bob Reese 5/95 System-3 System Design witWHDL

Electrical & Computer Engineering Mississippi State University

VHDL Functions

0 General form:
function function_name (parameter list) return return_type is
{variable declarations}
begin
{sequential statements}
end function_name;

functionxor3 (a,b,c: in std_logic) return std_logic is
begin
return (a xor b xor c);
end xor3;
0 A VHDL function computes a return value based upon its parame-
ter list.

- All parameters passed to a VHDL function must be of mode in;
i.e, the function is not allowed to modify any of the function
parameters.

- The default class of the elements in a parameter list for either
procedures or functions is variable.

- Signals can be passed in the parameter list; in this case the
parameter list would look like:
(signal a, b, c: std_logic)

- More on the difference between variables and signals will be
given later.

Bob Reese 5/95 System—4 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

VHDL Procedures

0 General form:
procedure procedure _name (parameter list) is
{variable declarations}
begin
{sequential statements}
end procedure_name,

0 The ripple_adder procedure implements the ripple carry adder
used in previous examples.

0 The ripple_adder procedure uses the local xor3 function defined
within the package.
sum(i+sum’low) :=or3 (a(i+a’low), b(i+b’low), c(i));

0 For generality, the input parameters 'a’ and 'b’ as well as the output
'sum’ are declared as unconstrained array types; i.e., no array
bounds are given for the std_logic vector type.

- Allows any width vector to be passed as a parameter.

- Array indices must be computed using the 'low attribute as an
offset in order to achieve independence from the actual array
indices which are passed in.

Bob Reese 5/95 System-5 System Design witWHDL

Electrical & Computer Engineering Mississippi State University

Signals vs Variables

0 Only signals are used as the connection ports for VHDL entities.

- Variables are declared within process blocks, procedures,
and functions.

- Signals can only be declared within architecture bodies; they
can be passed as parameters to functions and procedures.

0 Signals are assigned via "<="; Variables are assigned via ":=".
0 From a simulation point of view:

- Signals have events occurring on them and this event history
is tracked via an internal event list.

- Signal assignment can be delayed such as:
a <= '1’ after 10 ns

- Variable assignment is always immediate.
a <: 11!;

- Signals require more overhead in terms of storage and
simulation time than variables. A general rule of thumb is to
use variables wherever possible.

0 From a synthesis point of view, both variables and signals can turn
into internal circuit nodes.

Bob Reese 5/95 System-6 System Design witVHDL

Electrical & Computer Engineering Mississippi State University Electrical & Computer Engineering Mississippi State University
Using the ripple _adder Procedure A Carry Select Adder
. + Each stage computes part of the
Library IEEE; ; ; .
Y : _ 'work’ is the default library name fdr —> A Cl sum. Typically, the stage sizes in
use IEEE.std_logic 164.all; o SUM crease; so a 16 bit adder stage
) packages. The ’all’ keyword says to SUM—L> sizes might be 4. 5. 7 = total of
use work.iscas.all, <——— |use all externally available packagg —>B 16 bits gRi o adders are usel
. . items in the 'iscas’ package. K bits L_COUT for sta.e adpdpers
entity adder_test is i 9 -
port (cS0
signal a,b: in std_logic_vector (15 downto 0);
signal cin: in std_logic; 0 1
signal sum: out std_logic_vector(15 downto 0); Y Y o} UM
signal cout: out std_logic — cl —f> cl > >
); /5l g SUM o g SUM ——
end adder_test; COuT CouT MUX
L bits
architecture behavior of adder_test is v
begin CMDﬂ
process (a,b,cin)
variable temp_sum: std_logic_vector (sum’range); 0 1 Ccs1
variable temp_cout: std_logic; v v Y
begin s s 0T SUM
ripple_adder(a, b, cin, temp_sum, temp_cout); SUM SUM - —
sum <= temp_sum; T —>B —>B 1
cout <= temp_cout; Call the ‘ripple_adder’ procedure. M bits QYT CoUT MUX
end process; Variables are used as parameters
within 'ripple_adder’ so variables Y
. must be passed in as arguments. CS1 cs2
end behavior, These variables are then assigned|to
the targetsignals. | etc.
Bob Reese 5/95 System—7 System Design witWHDL Bob Reese 5/95 System-8 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

Carry_Select_Adder Procedure

procedurecarry_select_adder
(groups: iarray; a,b: in std_logic_vector; cin: in std_logic;
sum: inout std_logic_vector; cout: out std_logic) is

variable low_index, high_index :integer;

variable temp_sum_a, temp_sum_b : std_logic_vector(sum’range);
variable carry_selects :std_logic_vector(groups’range);

variable carry_zero :std_logic_vector(groups’low to (groups’high—1));
variable carry_one :std_logic_vector(groups’low to (groups’high—-1));

begin
low_index :=0;
for i in groups’low to groups’high loop
high_index := (groups(i)-1) + low_index ;
if (i = 0) then — first group, just do one ripple—carry
ripple_adder (a(high_index downto low_index), b(high_index downto low_index),
cin, sum(high_index downto low_index), carry_selects(0));
else
— need to do two ripple carry adders then use mux to select
ripple_adder (a(high_index downto low_index), b(high_index downto low_index),
'0’, temp_sum_a(high_index downto low_index), carry_zero(i—1));

ripple_adder (a(high_index downto low_index), b(high_index downto low_index),
'1’, temp_sum_b(high_index downto low_index), carry_one(i-1));
if (carry_selects(i-1) ='0’) then
sum(high_index downto low_index) := temp_sum_a(high_index downto low_index);
else
sum(high_index downto low_index) := temp_sum_b(high_index downto low_index);
end if;
carry_selects(i) := (carry_selects(i—1) and carry_one(i-1)) or carry_zero(i—1);
end if;
low_index := high_index + 1;
end loop;
cout := carry_selects(groups’high);
end ripple_adder;

Bob Reese 5/95 System-9 System Design witWHDL

Electrical & Computer Engineering Mississippi State University

Iscas Package Declaration

Library IEEE;
use IEEE.std_logic 164.all;

package iscas is
type IARRAY is array (natural range <>) of integer;

procedure ripple_adder (a,b: in std_logic_vector; cin: in std_logic;
sum: inout std_logic_vector; cout: out std_logic);

procedure carry_select_adder
(groups: iarray; a,b: in std_logic_vector; cin: in std_logic;
sum: inout std_logic_vector; cout: out std_logic);
end iscas;

0 We need to declare an array type for integers; call this IARRAY.
This type will be used to pass in an integer array to the carry_se-
lect_adder procedure; the integer array will be define the stage
sizes for the adder.

0 Since xor3is to be local to the iscas package; it is not in the pack-
age declaration. However, if it was to be made externally avail-
able, its declaration would be:

function xor3 (a,b,c: in std_logic) return std_logic;

Bob Reese 5/95 System-10 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

Using the carry select adder Procedure

Library IEEE;
use IEEE.std_logic 164.all;
use work.iscas.all;

entity adder_cs is

port (

signal a,b: in std_logic_vector (15 downto 0);
signal cin: in std_logic;

signal sum: out std_logic_vector(15 downto 0);
signal cout: out std_logic

);

end adder cs; Define local constant array of in+

- tegers to define the stage sizes for

architecture behavior of adder_cg {&e adder. 4 +5 + 7 = 16 bits.

— | Must be a constant array so that]

begin stage sizes are known at compil
time.

%

process (a,b,cin)
variable temp_sum: std_logic_vector (sum’range);
variable temp_cout: std_logic;

constant groups: iarray(0 to 2) := (4,5,7

begin

carry_select_adder(goups,a,b,cin,temp_sum, temp_cout);
sum <= temp_sum;
cout <= temp_cout;

end process;

end behavior;

Bob Reese 5/95 System-11 System Design witWHDL

Electrical & Computer Engineering

Mississippi State University

Bob Reese 5/95

System-12

System Design witVHDL

Electrical & Computer Engineering Mississippi State University

VHDL Generic lists

Library IEEE; Generic declaration which

.] is used to define the
use IEEE..std_Ioglc_l’B4.aII, a,b,sum signal widths.
use work.iscas.all;

/ Default value is specified

entity adder_test is as 16.

generic (N : integer := 16);
port (

signal a,b: in std_logic_vectdl{1 downto 0);
signal cin: in std_logic;

signal sum: out std_logic_vectbk1 downto 0);
signal cout: out std_logic

);

end adder_test;

architecture behavior of adder_test is

begin

process (a,b,cin)

variable temp_sum: std_logic_vector (sum’range);

variable temp_cout: std_logic;

begin
ripple_adder(a, b, cin, temp_sum, temp_cout);
sum <= temp_sum;
cout <= temp_cout;

end process;

end behavior;

Bob Reese 5/95 System-13 System Design witWHDL

Electrical & Computer Engineering Mississippi State University

VHDL Generic lists (cont.)

0 VHDL generic lists are used in entity declarations for passing stat-
ic information.

- Typical uses of generics are for controlling bus widths, feature
inclusion, message generation, timing values.

O A generic will usually have a specified default value; this value can
be overridden via VHDL configurations or by vendor—specific
back—annotation methods.

- Generics offer a method for parameterizing entity
declarations and architectures. Because the method of
specifying generic values (other than defaults) can be
vendor specific, generics will not be covered further in this
tutorial.

Bob Reese 5/95 System-14 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

Operator Overloading

Library IEEE; use IEEE.std_logic_1164.all;

package genmux is
—2/1 version, 1 bit inputs
functionmux (a,b: std_logic; sel: std_logic) return std_logic;
— 2/1 version, N bit inputs
functionmux (a,b: std_logic_vector; sel: std_logic) return std_logic_vector;

—3/1 version, 1 bit inputs

functionmux (a,b,c: std_logic; sel: std_logic_vector) return std_logic;

—3/1 version, N bit inputs

functionmux (a,b,c: std_logic_vector; sel: std_logic_vector) return std_logic_vector;

—4/1 version, 1 bit inputs

functionmux (a,b,c,d: std_logic; sel: std_logic_vector) return std_logic;

—4/1 version, N bit inputs

functionmux (a,b,c,d: std_logic_vector; sel: std_logic_vector) return std_logic_vector;

end genmux;

package body genmux is
functionmux (a,b: std_logic; sel: std_logic) return std_logic is
variable y: std_logic;

begin

y:i=a;
if (sel ='1") then y :=b; end if;
return(y);

end mux; — 2/1 version, 1 bit inputs

functionmux (a,b: std_logic_vector; sel: std_logic) return std_logic_vector is
variable y: std_logic_vector(a'range);

begin
y=a
if (sel =°'1") then y :=b; end if;
return(y);
end mux; — 2/1 version, N bit inputs
Bob Reese 5/95 System-15 System Design witWHDL

Electrical & Computer Engineering Mississippi State University

Operator Overloading (cont.)

functionmux (a,b,c: std_logic; sel: std_logic_vector) return std_logic is
variable y: std_logic;
begin
y:='-'; — Don't care for default state
if (sel ="00") theny := a; end if; if (sel ="01") theny :=b; end if;
if (sel =710") theny :=c; end if;
return(y);
end mux; — 3/1 version, 1 bit inputs

functionmux (a,b,c: std_logic_vector; sel: std_logic_vector) return std_logic_vector is
variable y: std_logic_vector(a'range);

begin

y := (others =>"-"); — Don't care for default state

if (sel =700") theny := a; end if; if (sel ="01") theny :=b; end if;

if (sel ="10") then y :=c; end if;

return(y);

end mux; — 3/1 version, N bit inputs

functionmux (a,b,c,d: std_logic; sel: std_logic_vector) return std_logic is
variable y: std_logic;
begin
y:=d;
if (sel =700") theny := a; end if; if (sel ="01") theny :=b; end if;
if (sel ="10") then y :=c; end if;
return(y);
end mux; — 4/1 version, 1 bit inputs

functionmux (a,b,c,d: std_logic_vector; sel: std_logic_vector) return std_logic_vector is
variable y: std_logic_vector(a'range);
begin
y:=d;
if (sel ="00") theny := a; end if; if (sel ="01") theny :=b; end if;
if (sel ="10") then y :=c; end if;
return(y);
end mux; — 4/1 version, N bit inputs

end genmux;

Bob Reese 5/95 System-16 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

Test of 'mux’ Function

Library IEEE;
use IEEE.std_logic 164.all;
use work.genmux.all;

entity muxtest is

port (

signal a,b,c: in std_logic;

signal s_a: in std_logic_vector(1 downto 0);
signal y: out std_logic;

signal j,k,l: in std_logic_vector(3 downto 0);
signal s_b: in std_logic_vector(1 downto 0);
signal z: out std_logic_vector(3 downto 0)
);

end muxtest;
architecture behavior of muxtest is
begin

y <=mux (a,b,c,s_a);
Z <=mux (j,k,l,S_b);

end behavior; \

The mux operator is overloaded; the
correct mux function is chosen by
doing template matching on the-p
rameter lists.

Bob Reese 5/95 System-17 System Design witWHDL

Electrical & Computer Engineering

Mississippi State University

Bob Reese 5/95

System-18 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

BlackJack Dealer

0 This example will be a BlackJack Dealer circuit (example taken
from The Art of Digital Design, Prosser & Winkel, Prentice—Hall).

0O One VHDL model will be written for the control and one for the da-
tapath. A schematic will be used to tie these two blocks together.

- Later, a VHDL structural model will be used to connect the
blocks.

O Control:

- Four States:
Get — getacard
Add — add current card to score
Use — use an ACE card as 11
Test — see if we should stand or if we are broke

0 Datapath:
- 5-bit register for loading score; needs a synchronous clear.
- Mux for choosing between card value, plus 10 and minus 10.
- Adder for adding card with current score.
- ACE card detect (an ACE card has value '0001)

- Comparator logic for checking is score is greater than 16 or
greater than 21.

Bob Reese 5/95 System-19 System Design witWHDL

Electrical & Computer Engineering Mississippi State University

BlackJack Dealer Control

@ BlackJack Dealer
[A

¢ wait for card

wait until button
is lifted

F - stand.out
F - broke.out

Start game over

stand T
+ REG: Clear score
roke F - acellflag.out
] y
MUX: Select Card Add card value

REG: Load score

acecard
F
MUX: Select ADD10
REG: Load score
T - acellflag.out
Use ACE as 11 l
To TEST
state Y

Bob Reese 5/95 System-20 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

BlackJack Dealer Control (cont)

Cancel ACE=11

MUX: Select SUB10
REG: Load score
F - acellflag.out

T
acellflag
F F
@ T - broke.out

Score is > 16 and Score > 21 and we
< 21 so stand can't adjust an
ACE value so we
are broke

\
To GET state

Bob Reese 5/95 System-21 System Design witWHDL

Electrical & Computer Engineering Mississippi State University

BlackJack Datapath

5
+10 4? clear

(%]
Q
S 5
- A\
N X
2] ADDER 5 | Score 5
e]
8 2 5 REG
A\
\
sel T
- load
Ace Finder | 3
acecard score
Y
_______________ 1
aceliflag.out |
aceliflag |
— — :
| 5 —> scorel6gt
| Comparator
I —» score2lgt
Miscellanous Flip Flopsto |
be included in Control |
Card card.rdy.sync
Rdy - stand.out stand
button > >
card.rdy.delay broke.out broke
Bob Reese 5/95 System-22 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

VHDL File for BlackJack Datapath

entity bjdpath is port (
signal clk,reset_b, load, clear_b: in std_logic;
signal sel: in std_logic_vector(1 downto 0);
signal card: in std_logic_vector(3 downto 0);
signal acecard,scorel6gt,score21gt: out std_logic;
signal score: out std_logic_vector(4 downto 0)
);end bjdpath;

architecture behavior of bjdpath is

signal adder_out, score_in: std_logic_vector(4 downto 0)
mux_out, score_out : std_logic_vector(4 downto 0);

— temporary signal for carries

signal c: std_logic_vector (5 downto 0);

bedi State process for
egin score register flip—
score_state: process(clk, reset_by«——— |flops.

begin

if (reset_b ='0’) then score_out <= "00000";

elsif (clk'event and clk ='1") THEN Combinational logic
score_out <= score_in; for Score Register

END IF: /
end process score_state;

— combinational logic for score register

score_in <= "00000” when (clear_b ='0’) else
adder_out when (load = '1’) else
score_out;

Bob Reese 5/95 System-23 System Design witWHDL

Electrical & Computer Engineering Mississippi State University

VHDL File for BlackJack Datapath (cont.)

— adder process ADDER process

— adder_out <= score_out + mux_out

adder:process (score_out, mux_out)
begin

c(0) <="0;
foriin score_out’range loop
adder_out(i) <= score_out(i) xor mux_out(i) xor c(i);
c(i+1) <= (score_out(i) and mux_out(i)) or
(c(i) and (score_out(i) or mux_out(i)));
end loop;
end process adder;

MUX for

«— | card, plus 10

mux_out <="01010" when (sel = B"00”) else minus 10.
”10]10” When (Sel e B”lo”) else
'0’ & card;

acecard <="1" when (card = B"0001") else '0’;<—

score <= score_out;

scorel6gt <='1" when (score_out > B"10000") else '0’;
score21gt <="1" when (score_out > B"10101") else '0’;

. \
end behavior;
Comparators
Bob Reese 5/95 System-24 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

Electrical & Computer Engineering

VHDL File for BlackJack Control

entity bjcontrol is port (
signal clk, reset_b, card_rdcecard: in std_logic;

signal scorel6gt, score21gt: in std_logic;
signal hit, broke, stand: out std_logic;
signal sel: out std_logic_vector(1 downto 0);

signal score_clear_b, score_load: out std_logic
); end bjcontrol;

VHDL File for BlackJack Control (cont.)

Entity declaration

architecture behavior of bjcontrol is and State Assignments

— declare internal signals here

signal n_state, p_state : std_logic_vector(1 downto 0);
signal acelflag_pstate, acdflag_nstate: std_logic;
signal broke_pstate, broke_nstate: std_logic;
signal stand_pstate, stand_nstate: std_logic;
signal card_rdy_dlycard_rdy sync: std_logic;

— state assignments are as follows

constant get_state: std_logic_vector(1 downto 0) := B"00”;
constant add_state: std_logic_vector(1 downto 0) := B"01";
constant test state: std_logic_vector(1 downto 0) := B"10”;
constant use_state: std_logic_vector(1 downto 0) :#"B"1

constant add_10 plus: std logic_vector(1 downto 0) := B"00”;
constant add_card: std_logic_vector(1 downto 0) := B"01";
constant add_10_minus: std_logic_vector(1 downto 0) := B"10";

Bob Reese 5/95 System-25 System Design witWHDL

begin

— state process to implement flag flip—flops and FSM state
state: process(clk, reset_b)
begin
if (reset_b =0") then p_state <= "00";
elsif (clk’event and clk ='1") THEN
p_state <= n_state;
acelflag_pstate <= acéflag_nstate;
broke_pstate <= broke_nstate;
stand_pstate <= stand_nstate;
card_rdy_dly <= card_rdy_sync;

Mississippi State University

State pocess to define flip—
flops for various flags and
finite state machine .

card_rdy_sync <= card_rdy;
END IF;

end process state;

broke <= broke_pstate;
stand <= stand_pstate;

Bob Reese 5/95 System-26 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

VHDL File for BlackJack Control (cont.)

comb:process (p_state, addthg _pstate, broke_pstate, stand_pstate,
acecard, card_rdy_dlgard_rdy_sync, scorel6gt, score21gt)

begin

sel <= B"007%;

score_load <='0’; score_clear_b <="1";

hit <='0’; n_state <= p_state;

acelflag_nstate <= acdflag_pstate;

stand_nstate <= stand_pstate; broke nstate <= broke_pstate;

case p_state is
when get_state =>
if (card_rdy_sync ='0’) then hit <="1";
elsif (card_rdy_dly ='0") then

stand_nstate <='0’; broke nstate <='0’;

if (stand_pstate ='1’ or broke_pstate = '1’) then
score_clear_b <="0";
acelflag nstate <='0’;

end if; 'get’ and 'add’
n_state <= add_state; states
end if;

when add_state =>
sel <= add_card; score load <="1";
if (acecard =’1" and acédflag_pstate = '0’) then
n_state <= use_state;
else n_state <= test_state;
end if;

Bob Reese 5/95 System-27 System Design witWHDL

Electrical & Computer Engineering Mississippi State University

VHDL File for BlackJack Control (cont.)

when use_state =>

sel <= add_10 plus;
score_load <="1’;
acellflag_nstate <="1";
n_state <= test_state;

when test_state =>

‘use’ and

if (scorel6gt = '0") then 'test’ states

n_state <= get_state;
elsif (score21gt = '0’) then
stand_nstate <="1";
n_state <= get_state;
elsif (acelflag_pstate ='0’) then
broke nstate <="1’;
n_state <= get_state;
else
sel <= add_10_minus;
score_load <="1";
acelflag_nstate <='0’;
end if;

when OTHERS => n_state <= p_state;

end case;
end process comb;
end behavior;

Bob Reese 5/95 System-28 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

Electrical & Computer Engineering Mississippi State University

Top Level Schematic for Dealer

Blackjack Dealer Simulation

SCOREL[4101

FATH
BidpeEh

- [=1

T - =

(=R -
[T [
[=T} n

I

E

-

f

&

5
— T
— HIT

CaAD[3 0]
C
E

CONT

Bicontrol
LATOUT _EEMEARATOA=STOCELL

[=T=TTTT=TeE
[T
WL L

=

[
AESET-H
——
CLE

CAAD_ADT

Bob Reese 5/95 System-29 System Design witWHDL

Enter'5' Card| | Enter '8’ Card| |Enter 4’ Card|

N

CARD o X 03 X o4 K
CARD_RD 1 1 - IR [
ULALAULLT
RESET_E
S e B e B
STAND [
EROKE
SCORE S £ o5 YD O
[W B0 2000 oo 4000 4000 8050 1000
Initial Score
of zero [Score=5+0 =5|
[Score=8+5=13
Score =13 +4=17;
score is > 16 so we STAND.
Bob Reese 5/95 System-30 System Design witVHDL

Electrical & Computer Engineering Mississippi State University

Blackjack Dealer Simulation (cont.)

First card is an Next card is Next card is _Fina’I cgrd
"Ace’. a’ a'o isa’'10

Electrical & Computer Engineering Mississippi State University

Structural VHDL

\ \ \ (facecard)
N
. . * oz } X o :K T

CARD_RD 0 : : |_| . . |_| . _ |_|

CLK ' UuiiririUrvuu Uy

RESET_E
M 1 L
STAMND
EROKE .
SCORE 11 * 13 }C}(1z X == .
4 A A
T T T T M T T
8000 3600 10000 12000 [1dooo [
/ /
Assertion of _
STAND from We will use the 13 + 9 > 21 so we break;
previous game first 'Ace’ as a val- however, we have an 'Acg¢’
causes us to ue of 11", so we can treat it as a val-
ue of '1’; the new score is:
start new 14249212
game. [Score =11 + 2 =13] .
12 + 10 > 21 so we I
are 'BROKE'.
Bob Reese 5/95 System-31 System Design witWHDL

O You do not have to use a schematic to connect VHDL blocks. You
can write a structural VHDL model which ties the blocks together.

O Pros:

- When you synthesize the design all of the VHDL blocks are
flattened (collapsed into one block) and it is possible that the
resulting logic may be more efficient.

- The structural VHDL code is more portable to other design
systems than a schematic.

0 Cons:

- Writing structural VHDL code can be more error prone than
creating a schematic (very easy to misplace a net when you
don’t have a 'picture’ to go by).

- The resulting flattened netlist can be more difficult to debug.

Bob Reese 5/95 System-32 System Design witVHDL

Electrical & Computer Engineering

Mississippi State University

Structural VHDL for BlackJack Player

entity bj_struct is port (
signal reset_b, clk, card_rdy :
signal card:
signal stand, broke,hit:
signal score: out

end bj_struct;

architecture structure of bj_struct is

component bjcontrol port (<

signal clk,reset_b:

signal card_rdy, acecard:
signal scorel6gt, score21gt:
signal hit, broke,stand:
signal sel:

signal score_clear_b:
signal score_load:

end component;

component bjdpath

port (

signal clk, reset_b:

signal load, clear_b:
signal sel:

signal card:

signal acecard, scorel6gt:
signal score21gt:

signal score:

end component;

Bob Reese 5/95 System-33

_ _ Normal entity
in std_logic; declaration.
in std_logic_vector(3 downto 0);

out std_logic;

std_logic_vector(4 downto 0));

Need a component deq
) .| laration for each differ-
in std_logic; ent type of component
in std_logitused in the schematic
in std_logic;
out std_logic;
out std_logic_vector(1 downto 0);
out std_logic;
out std_logic);

in std_logic;

in std_logic;

in std_logic_vector(1 downto 0);

in std_logic_vector(3 downto 0);
out std_logic;

out std_logic;

out std_logic_vector(4 downto 0));

System Design witWHDL

Electrical & Computer Engineering

Mississippi State University

Structural VHDL for BlackJack Player (cont)

signal load_net, clear_net, acecard_net : std_|

. _ PHiternal signal declara
signal sel_net : std_logic_vector (1 downto 0); | tion for those nets not
signal s21gt_net, s16gt_net: std_logic.¢ connected to external
ports.

begin

c1: bjcontrol <
port map (
clk => clk,
reset_b =>reset_b,
card_rdy => card_rdy,
acecard => acecard_net,

Each component used in the
design is given along with
its port map.

'c1l’ is the component label
'bjcontrol’ gives the compo
nent type.

scorel6gt => s16gt_net,
score2lgt => s21gt_net,
hit => hit, broke => broke, stand => stand,
sel => sel_net,

score_clear_b => clear_net,

score_load => load_net);

c2: bjdpath

this design.

Only two components in

port map (
clk => clk,
reset_b =>reset_b,
load => load_net,
clear_b => clear_net,
sel => sel_net,
card => card,
acecard => acecard_net,
scorel6gt => s16gt_net,
score21gt => s21gt_net,
score => score);

end structure;

Bob Reese 5/95 System-34

System Design witVHDL

Electrical & Computer Engineering Mississippi State University

Results of bj_struct Synthesis

|
.

E el L

e e B L S -

e e Ty S

= F— L T

= s L
—— e [

0 _@_T—‘?_ = rif |—|_|

|

Bob Reese 5/95 System-35 System Design witWHDL

