Wavenets
John Chapin ASPLOS new ideas session, October 1998
MIT Laboratory for Computer Science http://sdg.lcs.nit.edu/ ~ chapin

Current programming languages and instruction sets are based on computational models well-tuned to
implement batch programs: programs that read input, process it, generate output, and halt. Wavenets are an
attempt at a clean-sheet design tuned instead to implement parallel servers: programs that run forever and
respond to multiple asynchronous inputs in parallel while maintaining their internal invariants. Wavenets are
inspired by quantum mechanics, specifically state superposition, wave function collapse, and conservation of
energy. However, wavenets are a computational model, not a proposal for a guantum computer architecture.

A wavenet is a synchronous circuit with the following special properties. When a signal arrives at a
computational element N where one of multiple outputs must be chosen, the signal initially propagates to all
outputs (superposition). Eventually one of the outputs is latched by a latch or contributes to a further
computation whose output is latched. All other outputs generated by N for that signal are retracted, undoing any
further computations in which they have participated (wave function collapse). Finally, all signals output by
latches at the start of each machine cycle must be consumed at the end of the cycle, either by being latched or by
contributing to a computation whose output is latched (conservation of energy). Surprisingly, conservation of
energy is a powerful computational primitive that provides global concurrency control and constraint
satisfaction.

Here is a wavenet that solves the dining philosophers problem. In this formalism, defined precisely in a
white paper available on my website, wires carry symbols rather than binary signals. Bars across wires represent
latches, which may have an initial state denoted by writing a symbol name next to the latch. Input from the
external world is expressed as a latch with no input wire; output to the external world is a latch with no output
wire. Production rules are the only operation. Production rules contain input terms, followed by an arrow and
output terms. A rule activates when all the symbols named in its input terms have arrived on the corresponding
named input ports of the node. When a rule activates, it produces the symbols named in its output terms on the
corresponding named output ports of the node.

All production rules in a node whose input terms have been satisfied activate in parallel. However, after
wave function collapse, each input symbol can only contribute to a single production in a node. That is,
collapsing requires choosing which rule in each node will consume each symbol that has arrived on an input port
of that node during the cycle. => indicates a regular production rule, while - - > indicates a default rule that only
fires if required to avoid violating conservation of energy.

(from phi | osopher) (to phil osopher)

p p p-node

p:think => left:fork + right:fork
p: hungry + left:fork + right:fork => p: eat
p: hungry --> p:tryagain

righti ri ght | ef t left
right right f-node

. tabl e

right:fork => tabl e:fork
As many pairs of nodes | ef t left:fork => table:fork
(phi | osopher, fork) as —»| table:fork => right:fork fork
desi red. table:fork => left:fork

ot t table:fork --> table:fork [{3ple

Discussion

The programmer or compiler need not express the usual locking and resource reservation protocols to solve
the problem. In each machine cycle all input requests and available internal resources are considered
simultaneously to find a wave function collapse that does not violate conservation of energy.

Consider the fork symbol output by the latch at the right edge of the diagram. If neither the philosopher
to its right nor the one to its left has sent a hungry request in this cycle, the default rule in the f-node must
fire, leaving the fork on the table, because the outputs of the other rules in the f-node with t abl e: f ork as an
input term cannot be consumed.

Conversely, if a philosopher has sent a hungry request, the fork resource from the philosopher’s left can
only be consumed if the fork resource from the philosopher’s right is also consumed. Therefore if the fork on
the right is not available or is consumed elsewhere, the fork on the left will remain on the table and the
default rule in the p-node will fire telling the philosopher to try again.

By automating the global matching of requests with resources, wavenets promise much better composability
of components than traditional computational models. An individual component like the f-node or p-node in
the dining philosopher’s solution merely states what it is capable of computing. Which of its possible
computations will actually occur in a given cycle is determined by the global arrangement of components,
available resources, and input requests. This suggests that wavenets may form the basis of a useful
abstraction at the programming language level.

The production rules in the above formalism can represent arbitrary functional computations, while the
symbols can be arbitrarily complex data structures. One could design a system with a hybrid architecture
where the wavenet component provides global control and the traditional component does all the processing
work. Given a program expressed partially in terms of the wavenet abstraction, the hardware may execute it

efficiently by mating a traditional ISA processing core to a FPGA or other application-specific custom circuit
component.

