
Towards Sound HTTP Request Causation Inference

Kristin Stephens-Martinez

Abstract
Network traces are a useful tool in understanding how
users navigate the web. Knowing the sequence of pages
that led a user to arrive at a malicious website can help re-
searchers develop techniques to prevent users from reach-
ing such sites. Nevertheless, inferring sound causation
between HTTP requests is a challenging task. Previous
work often inferred these relationships without proper cal-
ibration. We present here methods for and considerations
when inferring causation relationships between HTTP re-
quests. We also introduce causation trees and terminology
needed to model causal relationships between HTTP re-
quests. Finally, we describe Gretel, our system that infers
causation relationships, how we calibrated it, and our re-
sults on a sample control data set where ground truth was
available.

1 Introduction
When a user clicks on a link, their browser generates mul-
tiple HTTP requests, which each potentially cause even
more requests. This cascade of HTTP requests merges
with other cascades to give us the network traffic we see.
However, which HTTP request caused another to appear
is not readily apparent.

If we can infer the causation between HTTP requests
there are numerous applications for both researchers and
practitioners. For example, we can follow a user’s pro-
gression through a single domain or identify how a user
arrived at a new domain. Also, grouping the HTTP re-
quests causally linked together lets us understand user
characteristics within an Internet session, such as random
jump frequency.

Causal inference can also help analyze website effi-
ciency by allowing investigators to observe the cascade
of requests caused by a single action. Observing patterns

such as long sequences of HTTP requests “daisy chained”
together can provide a root cause diagnosis for slow page
load times.

Understanding the causal tree also has security impli-
cations. An administrator attempting to create sound se-
curity policies, such as “no files of a particular type,” can
apply such a policy over a network trace, removing re-
quests not allowed by the policy. They can then display
the result as it would appear when following the proposed
policy.

Finally, inferring HTTP request causation can aid in
forensics. For example, by differentiating between vol-
untary and automatic HTTP requests, we can analyze the
recording of a user web attack to understand if the attack
was due to a user action and, if so, which one.

The process of inferring causal relationships from a
network trace, however, is not straightforward. Previ-
ous work [14, 11, 10] attempted to infer the relationship
between HTTP requests using the HTTP Referer header
[sic]. Few such systems explain in detail how exactly their
implementation uses the referer to infer causal relation-
ships. Even fewer calibrate their system by comparing
its inferred HTTP request causal relationships against the
corresponding known ground truth causal relationships.
Drawing conclusions without a thorough understanding
of the referer and without proper calibration can lead to a
potentially skewed understanding of the network traffic.

In this work, we define the meaning of causality be-
tween HTTP requests and explain how finding causality
requires more than simply looking at the referer. We
present considerations required to infer HTTP request
causal relationships, when using only the reconstructed
HTTP messages within the network traffic and without
considering the Internet objects transferred. Using these
insights, we design and implement a system to infer
causal relationships, dubbed Gretel, which we calibrated
and ran over a sample control data set.

1

Figure 1: Small example of an HTTP request causation
tree.

Our method for studying HTTP causality is minimally
invasive. We record at the network layer rather than at the
browser and/or server end. Using only HTTP messages
without their payload helps preserve user privacy. We be-
lieve this is the right trade-off to select when compared to
the information we might get from a browser-based tech-
nique. While the browser technique would provide more
detailed data it is at the cost of user privacy and installa-
tion overhead.

The rest of this paper is organized as follows. In Sec-
tion 2 we present causation trees and related terminology.
In Section 3 we discuss previous work, and in Section 4
we cover the needed steps and considerations that we pro-
pose for inferring HTTP request causation. In Section 5
we introduce our implementation to infer causation trees,
Gretel, and our calibration system. In Section 6 we de-
scribe our sample data set, and in Section 7 we compare
Gretel’s analysis against ground truth, providing illustra-
tive examples of why proper system calibration provides
strong results. Finally we conclude in Section 8 and dis-
cuss possible future work in Section 9.

2 Causation Trees

Before going further into how to infer causal relation-
ships, we first present concepts and terminology to better

discuss these relationships. In this section we introduce
causation trees and new terminology defined in Table 1.
We define a causation tree as a tree where each node rep-
resents an HTTP request and an edge connects two nodes
that have a causal relationship. A causal relationship ex-
ists between a parent and child node when a child node
would not exist if the parent did not exist. A causal re-
lationship is represented by an edge that points from a
parent node to its children. Because every node can only
have one parent and a child node cannot be the cause of
one of its ancestor nodes, the nodes and edges combine
into a tree, or in our case a causation tree.

Figure 1 shows a small example of this. When click-
ing on a browser bookmark to go to the author’s web-
site, first the browser requests index.html. Next
the browser requests style.css and ga.js (Google
Analytics Javascript file) because index.html uses
them. The index.html request is the parent of the
style.css and ga.js requests because if it did not
exist the other two requests would not exist. Finally
__utm.gif?utmwv=5 is requested due to ga.js,
which gives us another parent-child or causal relationship.

An edge representing a causal relationship has two
types, automatic and voluntary. In Figure 1 all the edges
are automatic because between the request for the par-
ent node and the child node no action was needed by
the user to create the child HTTP request. This is be-
cause browsers commonly automatically load Javascript
and CSS files at page load time. If there was a node repre-
senting the root’s parent, in this example a bookmark, the
edge connecting the two nodes would be a voluntary edge
because a user action was required to request the parent
node.

Nodes connected to their parent by an automatic edge
are requests usually created by the browser or other appli-
cations that use HTTP. These requests are often needed to
build the entire web page beyond its first set of HTML.
They commonly include CSS, flash, xml, json, HTML,
Javascript, and image files. Unless the user explicitly con-
figured their browser to ask [15], these requests are always
sent automatically without any intervention by the user.
Besides components for a web page, automatic requests
include security certificates, requests by non-browser pro-
grams that use HTTP to communicate over the Internet,
automatic checks for updates in web applications like
email, and requests that notify the service provider of a

2

Term Definition
Node Represents an HTTP request and additional information found in its HTTP response.
Parent The node that caused another node.
Child The node caused by another node, its parent.
Edge A directed edge that points from a parent node to a child node.
Lost Child A node with an unknown parent. The node implies the existence of a parent through our edge

detection heuristics but the parent HTTP request is not detected.
Orphan A node that does have a parent but we are unable to find evidence of a relationship. So the

node appears to have no parent HTTP request.
Root An orphan that does not have an HTTP request as a cause. Can also be called a “true orphan.”

Table 1: Definition of causation tree terminology

Figure 2: Different types of nodes in terms of a node’s
relationship with its parent. Node B is the typical parent-
child relationship. Node D is a lost child. Node F is an
orphan. Node G is a root.

user’s activity on the service’s application.
One other kind of automatic request is HTTP redirects.

An HTTP redirect occurs when a requested Internet ob-
ject is not where the browser originally requested it. The
server’s response to the browser’s request includes where
to look for the object instead, which is usually requested
automatically.

A voluntary edge connects two nodes where the child
node exists due to a direct user action. Its existence is
because of both the parent node and the user action. The
common case is when the user clicks on a link in a web
page. However it could also mean the user searched for
something using the browser’s toolbar, used a bookmark,
typed into the address bar, or ran an application accessible
through a browser and is interacting with it.

Because there may be gaps in our inferences, due to
lack of data or imperfect inferences, we also require ter-
minology to describe nodes that are missing a parent. The

main distinction between different situations is whether a
parent exists and/or there is information on who the par-
ent is. This terminology we also define in Table 1 and
show a graphical representation of in Figure 2. In the fig-
ure the first pair of nodes’ relationship is the parent and
child relationship we have already discussed.

The second example shows Node D as a lost child. A
lost child does not have a parent node, but it does have
information on who its parent should be. In the example
our causation heuristics say Node C is Node D’s parent
but Node C cannot be found. This can be because Node
C is not in the data set or the name Node D is using for
Node C is not what Node C calls itself. A toy example
can be seen in Figure 3(a). The left example shows the
child node as lost because its parent is not in the data set.
The right example is where the parent is in the data set,
but the child has an incorrect URL to identify the parent.
See Section 7.3 for real world examples.

The next example in Figure 2 with Nodes E and F rep-
resents an orphan relationship, where the child, Node F,
does not know that its parent is Node E, but it does actu-
ally have a parent. This is because the parent could not
be identified with the used heuristics. Figure 3(b) shows a
toy example, where the child node is an orphan and there-
fore does not know who its parent is, but it does have a
parent. The relationship is just missing. See Section 7.4
for real data examples.

Finally the example with Node G is of a root, or “true
orphan,” where Node G’s parent could not be identified
because its parent is not an HTTP request and therefore is
not represented by a node. Such parents can be a book-
mark or an application sending an HTTP request.

3

(a) Lost Child Examples (b) Orphan Example

Figure 3: Toy examples of nodes as a lost child or orphan. 3(a) is two ways a node can be lost. On the left is because
the node’s parent is not in the data set, possibly due to the trace not starting early enough in time. The node on the
right is lost because the name the node has for its parent’s name is not correct. 3(b) is an orphan node because the node
does not have a URL to identify its parent but it does have a parent.

3 Related Work

Prior work used two methods to infer relationships be-
tween HTTP requests. The more common method [14,
11, 10] is with the HTTP Referer header [sic], the URL of
the resource from which the requested web object’s URL
was obtained [9]. Another method is to reduce the prob-
lem by downloading a single web page and consider the
original web page HTTP request as the cause of all result-
ing HTTP requests [6].

Works that used the referer header usually lack an ex-
planation on how the referer URL is matched to a re-
quested URL [14, 10]. Explaining their process is im-
portant. Due to a URL’s flexibility, there can actually
be many different URL strings that point to the same
web object (Section 4.1). The meaning of the lack of
a referer is also usually interpreted as a new web page
without any investigation to the accuracy of such an as-
sumption [14, 11, 10]. We found that this is often untrue
(Section 6.4, Section 7.4), which could actually skew the
interpretation of their results. Finally some prior work
that use the referer technique do not calibrate their accu-
racy [14, 11, 10]. Without calibration the accuracy of their
inferences cannot really be judged (Section 4.2).

Qiu et al. [14] introduced the idea of a referer tree,
where nodes represent HTTP requests and edges point
from a parent node to a child node. They interpreted

the child node’s referer URL as the parent node’s URL.
Their goal was to determine the mount of web traffic in-
fluenced by search engines, as well as estimate web mod-
eling parameters such as the number of links followed
before a “random” page jump. Qiu et al. focused on
only text documents, filtering on the Content Type HTTP
header, and kept only HTTP requests from well-known
browsers, such as “Mozilla” [2], by filtering on the User-
Agent HTTP header.

Using their referer trees they found 13.6% of nodes in
their trees have a search engine for a parent or ances-
tor. Qiu et al. also measured referer tree size, depth, and
branching factor, mapping these measurements to user
characteristics of page visits before a random jump, how
deeply a user follows hyperlinks, and number of links
clicked per page. They found all three characteristics fol-
low a power-law curve when comparing the number of
trees versus a particular characteristic. They also noted
that 45% of their trees were a single node, interpreting
this as a user jump with no further links clicked. How-
ever, contrastingly we found evidence that a majority of
single nodes are most likely HTTP requests missing their
referer and are unlikely to be a user click (Section 7.4).

Also Qiu et al. do not explain how they match referer
URLs with requested URLs, simply stating the URLs are
equal. There is no mention of calibrating their system
either.

4

Meiss et al. [11] also used the referer to infer relation-
ships between requests. They then used this information
to create a host graph of domain names. Using data from
the Indiana University network they looked at the differ-
ence between the traffic-weighted host graph versus the
link-weighted host graph, as well as the difference be-
tween the web traffic’s and PageRank’s [12] host graph
ranking. They found the weights in the traffic-weighted
host graph are much more diverse than the link-weighted
graph and there are very different rankings between the
web traffic and PageRank’s host graph rankings. Meiss
et al. labeled each HTTP request as a human click if it is
from a common browser and the URL is likely an actual
web page, such as ending with HTML and not something
like a style sheet or media file. Of their human HTTP
requests they found 54% had no referer, which they in-
terpreted as a page visit without clicking on a link and
therefore a user jump. Once again this could be due to a
missing referer.

Meiss et al. do explain how they use the referer header
to match the referer URL to the request URL. For each
request they first convert the URLs to the fully qualified
domain name of the servers. They then find a node’s par-
ent using this domain name. While Meiss et al. do explain
how they used the referer, they do not calibrate their sys-
tem with a ground truth set of known relationships. They
did do a sanity check on their resulting host graph, con-
firming it exhibited similar well known topological char-
acteristics found by large-scale crawl studies [3, 5, 8, 16].

Ihm et al. [10] introduced their page detection algo-
rithm StreamStructure. First, it uses the referer field to
group requests into streams. Then, it uses content type
and timing to determine the main objects. All objects be-
tween two main objects are grouped as part of the web
page of the earlier main object. Finally, they identify the
initial pages using idle times between requests of 0.5 to
2 seconds. The idle time thresholds where found by us-
ing the Google Analytics Javascript beacon, sent when
the DOMContentLoaded event fires, meaning the web
page is successfully loaded.

Ihm et al. do not include in their report how they use
the referer, only saying they find a node’s parent if the
referer and request URL match. They also do not go into
detail of how they interpret requests with no referer nor
how they handle requests that are not mentioned in the
referer header of any other request. Ihm et al. validate

their algorithm using manually generated data by visiting
and clicking through the top 100 sites of Alexa’s list [1]
with Microsoft Internet Explorer. Their precision, num-
ber of correct web pages found divided by total web pages
found by the algorithm, and recall, number of correct web
pages found by the algorithm divided by number of cor-
rect web pages browsed, where both over 0.8. This is still
not the same as calibrating their inferred relationships be-
cause they only considered their validation at the level of
a web page, not HTTP requests.

Butkiewicz et al. [6] looked at the complexity of indi-
vidual websites by recording the HTTP requests gener-
ated when visiting the landing page of popular websites.
They recorded the generated web traffic with a browser
extension. From this they characterized each page by the
number of objects fetched, object size, and content type.
They found the main indicator of client perceived lag is
the number of web objects fetched. Butkiewicz et al.’s
work can be extended by looking at client perceived lag
at a finer granularity. For example the lag’s cause could
be the daisy chaining of multiple requests which would
make the fetching of some web objects to be well after
others.

4 Needed Steps for Sound Causa-
tion Inference

4.1 URL Sanitization
Our primary means of identifying nodes and linking
nodes together are URLs. However, URLs cause a lot
of trouble because of their great flexibility. This flexibil-
ity requires converting them from their raw network traf-
fic format to a standard format. This enables us to com-
pare URLs between HTTP requests, using simple string
comparisons. The following are our steps to convert raw
URLs into a standard format.

First, all URLs are fully unescaped. URLs can be in-
consistently escaped by browsers. In Table 2, URL A1

is a URL requested by the browser, while URL A2 is the
same URL in the referer header of another HTTP request.
A common trend seen in our sample data set is escaping
the referer URL one more time than the request URL; see
Section 6 for more details. The most levels of escapes we
observed for a URL was 3, for example in Table 2 URL

5

A1 en.wikipedia.org/wiki/Pascal’s_triangle
A2 en.wikipedia.org/wiki/Pascal%27s_triangle
B1 creativeby1.unicast.com/script/V3.00/deliver2.html?exp=’043012’&png=

’http://ping1.unicast.com/adstracking.gif&pip=
’http://ad.doubleclick.net/imp;
˜cs=g?http://s0.2mdn.net/dot.gif?1333487226525’

B2 creativeby1.unicast.com/script/V3.00/deliver2.html?exp=%27043012%27&png=
%27http%253A//ping1.unicast.com/adstracking.gif&pip=
%27http%253A//ad.doubleclick.net/imp
%257Ecs=g%25253fhttp%253A//s0.2mdn.net/dot.gif%3F1333487226525%27

C1 platform.twitter.com/widgets/tweet_button.1329950604.html#_=13300172879
C2 platform.twitter.com/widgets/tweet_button.1329950604.html
D1 pixel.quantserve.com/pixel;[...];ogl=title.The Protégé Effect[...]
D2 pixel.quantserve.com/pixel;[...];ogl=title.The Prot\xc3\xa9g\xc3\xa9 Effect[...]

Table 2: Examples of different URLs. Text in bold represents URL portions removed for brevity.

B1 is the fully unescaped URL while URL B2 is the orig-
inal raw URL. For easier reading each line of URL B1

matches with the corresponding line in URL B2.
Our next step is to remove the URL fragment, if

present. The fragment starts with the “#” character and
goes to the end of the URL. Request URLs can have frag-
ments but not referers [9]. Therefore we remove the frag-
ments for the sake of consistency and to match request
URLs to referer URLs. URL C1 and URL C2 in Table 2
show an example of this.

Our final two sanitization steps are to encode UTF-8
characters into ASCII and replace newlines with “ˆ J”.
URL D1 and URL D2 in Table 2 show the actual and
UTF-8 encoded URL respectively. WE chose to replace
newlines with “ˆJ” because we use Bro 1.5 [13], which
represents newlines with “ˆJ”. Further Bro implementa-
tion details are in Section 5. Our main reason for these
two steps is for greater consistency between the network
traffic data set and the ground truth data set, which we ex-
tracted with different tools, Bro and Firefox respectively.

4.2 Calibration

Calibration helps us better understand the accuracy of a
system’s HTTP request causation inferences. Calibration
means taking the output of a system’s inferred causal re-
lationships and comparing it to its corresponding known
causal relationships, or ground truth. In our case we used

a browser plugin for Mozilla Firefox [2] to collect our
ground truth; see Section 5.3 for more details. Calibration
is also useful because it provides clues on how to improve
the system.

4.3 Other Pitfalls

Besides the steps discussed above, we found other issues
we needed to keep in mind when inferring causation re-
lationships. Included here are caveats that can occur but
were not significant enough to warrant their own section.

• A user will not necessarily have the same IP address
throughout the entire trace. For example, a user can
change between Ethernet and wifi in the middle of
their session. This complication means we could
not fully rely on the TCP four-tuple to identify what
node a tree belongs to because the source or destina-
tion IP address may not be the same for all the nodes
in a tree.

• Useful information for a request can (and most likely
will) be in both the HTTP request and response mes-
sage (e.g., redirect information is in the response).
Measurement loss can complicate this. A lost packet
may garble a message, which could hinder identify-
ing the request and response message pairs in a TCP
stream.

6

5 Implementation
Considering the steps and caveats above we implemented
our own HTTP request causation inference system, Gre-
tel. We used Bro version 1.5.3 [13] to extract information
from our Internet traces. All other processing used Ruby
1.8.7. We used the Common Gateway Interface (CGI)
ruby library to unescape URLs, a needed step explained
in Section 4.1.

5.1 Information Extraction
Table 3 lists the information used to create our causation
trees, found in both the HTTP request and response mes-
sages. We use the timestamp for tie-breaking heuristics.
The IP address and port of the source and destination are
used to help identify a request’s response. We explain our
use of the request URL, referer URL, HTTP response re-
quested URL, redirect code, and location in Section 5.2.
The User Agent is for filtering for only Firefox nodes
when we calibrate Gretel, explained in Section 6.

5.2 Cause URL and Edge Heuristics
We infer a causal relationship between two HTTP re-
quests using an HTTP request’s cause URL. The cause
URL is the URL of a node’s parent and identifies the par-
ent node. To find the cause URL we first use Bro to ex-
tract the information in Table 3 and then merge the HTTP
request and response information into a node. Finally we
infer the causal relationships, or the edges between nodes,
by using the following edge heuristics.

• Referer Header: This header is in the HTTP re-
quest message. Its corresponding value is the URL
of the resource where the client found the request-
ing URL, usually called the referer. Its original pur-
pose was to provide servers with information to cre-
ate back-link lists [7, 9]. This header is technically
optional and web clients are cautioned to be care-
ful with private information. However it is usually
sent by default, with some exceptions [4]. There-
fore, the referer is an ideal candidate for determining
the cause URL of a request.

Absent more information, we use the referer as the
cause URL.

• HTTP Redirects: These are HTTP reply messages
with status codes in the 300s. They generally mean
further action is needed before fulfilling the HTTP
request. If the status code is 301, 302, 303, or 307,
the object requested should be looked for at the URL
in the HTTP Location header’s value [9].

If a request is due to a redirect, the cause URL is the
URL of the HTTP request that received the redirect
reply.

• Tie-Breaker: When multiple nodes have the same
URL, there are therefore multiple parent node candi-
dates. The candidate closest in time to the child node
is chosen as the parent.

The referer header is what most prior work [10, 11, 14]
used to create what Qiu et al. [14] called referer trees.
However since we focus on HTTP request causation trees,
using only referers will not create accurate causation trees.
When a request is sent due to a redirect, the value of
the referer header is unclear. It could be the original
redirected HTTP request’s referer, the URL of the redi-
rected message, or empty. In our data set we found Fire-
fox always set the referer as the referer of the originally
redirected HTTP request; see Section 6.4 for more de-
tails. However there is no established agreement across
browsers on what the referer should be for redirects.

A toy example with and without the redirect heuris-
tic is in Figure 4. Figure 4(a) shows the se-
ries of messages. Figure 4(b) is the causation tree,
where www.foo.com/img1.jpg is the parent of
www.bar.com/img1.jpg because the first request
was redirected to the second. Figure 4(c) is the referer
tree, assuming the referer was set to the original redirected
HTTP request and therefore used as the cause URL.

5.3 Calibration

To calibrate Gretel we need the ground truth for the net-
work traffic we give our system. Ground truth is the actual
causal relationships between HTTP requests. We used a
Firefox plugin to collect our ground truth, while simulta-
neously recording the corresponding network traffic.

7

Both HTTP Request HTTP Response
Network Timestamp Requested URL Requested URL (inferred by Bro)
Source IP address Referer URL Content Type
Source Port User Agent Redirect Code (if a redirect)
Destination IP address Location (if a redirect)
Destination Port

Table 3: Information used by Gretel to create causation trees.

Firefox Notification or Function Documentation
http-on-examine-request Notification when Firefox creates an HTTP request and provides the

HTTP request content
http-on-examine-response Notification when Firefox receives an HTTP response and provides the

HTTP response content
shouldLoad Called before loading a resource to determine whether to load it, pro-

vides both the resource and the object that wants to load the resource

Table 4: Documentation of Firefox functions.

5.3.1 Firefox Plugin Implementation

We altered a preexisting Firefox plugin, RequestPol-
icy [15], that already tracked the cause of each request.
Using its logic we recorded the information needed to cre-
ate the ground truth causation trees.

The bulk of the code we inserted into Re-
questPolicy is in Mozilla’s nsIContentPolicy’s
function shouldLoad and two Firefox plu-
gin events, http-on-examine-request and
http-on-examine-response. In other words, a
node contains information found in all three function
calls. Table 4 provides documentation on these three
functions.

Firefox calls shouldLoad for all content that
needs rendering on the page. It has an optional
parameter, aRequestOrigin, that provides the
location of the resource that initiated the load re-
quest. The value of aRequestOrigin is what
we consider the cause of the request. We used
the events http-on-examine-request and
http-on-examine-response to see each mes-
sage’s content. This lets us collect the other information
listed in Table 3 when comparing to Gretel’s output.
These events also allow us to track any redirects, which
Firefox does not take into account when providing
the cause URL in aRequestOrigin, and apply our

redirect heuristic discussed in Section 5.2.
Another advantage of using a plugin is shouldLoad

allows us to identify actual roots of a tree. Any
node that Firefox identifies as having a cause URL
of chrome://browser/content/browser.xul
is a root because this URL actually means the browser
itself.

While we collected our ground truth from the vantage
point of the browser, we do recognize that our imple-
mentation does not fully capture what we want. At this
time we are not able to actually determine the accuracy
of shouldLoad’s optional aRequestOrigin param-
eter. We also needed to track the redirect messages out-
right. A more accurate ground truth collection would in-
volve digging deeper into Firefox to find and track the
formation and progression of all HTTP requests.

5.3.2 Complexities using Firefox Plugin

The possibility of recording an inaccurate ground truth
is further compounded by complexities we found while
using the plugin, which we list here.

1. Firefox may call the
http-on-examine-request listener without
actually sending the request because of browser
caching. This results in a false negative when

8

(a) HTTP Messages (b) Causation account for redirects

(c) Causation only using referers

Figure 4: Example of the difference between only using referers to infer causation and also including redirects.

comparing the ground truth with the output of the
causation tree inference implementation. This is
because the ground truth shows the existence of an
HTTP request but it is not in the network traffic.
This required us to set Firefox to “no caching” to
avoid these false negatives.

2. Firefox may include the fragment in a URL when
reporting it to our plugin, but not actually send the
fragment with the URL. This is handled in our URL
sanitization step that removes fragments, discussed
in Section 4.1.

3. The output from Firefox is not encoded the same
as Bro. Firefox provided data in UTF-8 and with

newlines, while Bro only output ASCII and replaced
newlines with “ˆJ”. To handle this we preprocess the
Firefox output to replace all UTF-8 encoding with
ASCII and replacing newlines with “ˆJ”, similar to
what we mentioned in the URL sanitization step in
Section 4.1.

4. Some requests are not seen in shouldLoad. These
requests are for objects such as security certificates,
which are not rendered on a web page. Further work
is needed to find ways to confirm the cause of re-
quests like these.

5. In a reversal of the previous pitfall, we also found
Firefox calls the shouldLoad function 1.4x -

9

2.9x more often compared to the actual number
of requests. One reason for this is a web page
may render the same object multiple times, call-
ing the shouldLoad function each time it needs
to be rendered. This is different from the caching
problem because no request is ever created, so
http-on-examine-request is never called.

One example of this is when we loaded
maps.google.com in our data set. There
were 1398 calls to shouldLoad for
mapcontrols3d7.png compared to 3 ac-
tual requests.

6. shouldLoad and our listener on the
http-on-examine-request event are some-
times called in reverse order. This can cause
complications when linking a node’s data from the
shouldLoad call to the information found in the
HTTP events.

The best way to handle problems 4, 5, and 6 is to log
every call to all three functions.

To handle the overzealous calling of shouldLoad,
which causes many “extra” nodes, we take two addi-
tional steps. First, while creating the causation trees
and there are multiple parent node candidates, we al-
ways prefer a parent node that is actually seen in
http-on-examine-request. Second, once we
finish comparing the ground truth from Firefox and
our causation inferences from Gretel, and therefore
have an idea of what nodes were actually sent, we
removed from consideration all nodes Gretel would
not have been able to see. In particular we re-
moved nodes Firefox found but were not actually re-
quested, such as those seen in shouldLoad but not
http-on-examine-request. We also removed any
requests sent through HTTPS, identified by the scheme
used in the HTTP request.

To fix the problem of reordering, we track
nodes that are missing their corresponding
http-on-examine-request or shouldLoad
function call. We merge two nodes, and therefore
consider it a reorder event, if:

1. They have the same URL,

2. They are missing the function call the other has, and

3. They are within 0.1s of each other

6 Data from a Controlled Environ-
ment

6.1 Data Set Collection
We recorded five Internet browsing sessions as a sample
control data set for Gretel. Table 5 shows the basic infor-
mation for each session: day of recording, interface used,
duration, and number of nodes, edges, trees, lost children,
and orphans in the session’s data. We define a tree as hav-
ing more than one node.

We recorded all sessions on a Lenovo T410 laptop run-
ning Ubuntu 10.04. We used Firefox 10.02 for the first
session, Session A, and Firefox 11.0 for all other sessions,
Sessions B through E. Most of the recorded Internet traffic
included reading news and blog articles at various web-
sites initially accessed with Google’s Reader application
and using YouTube.com, Google Maps, and a Flash ap-
plication. The diverse sources of traffic contributed to the
broad range of node and edge counts regardless of the In-
ternet traffic recording’s duration.

At this point we would like to note this data set is only a
small controlled sample of network traffic and is not nec-
essarily representative of any particular network. How-
ever it does serve as an existential proof that behavior like
this does exist. Also due to the small and very diverse
sample data set, unless otherwise stated we will refer to
the entire data set as a whole.

We recorded each session as follows:

1. Start Internet traffic recording, with tcpdump

2. Open Firefox

3. Browse Internet

4. Close Firefox

5. Stop tcpdump

Starting the recording before the start of Firefox en-
sured we record all HTTP requests Firefox sent. Also af-
ter we extract our needed information with Bro, we filter
on the user agent HTTP header value so we only compare
requests sent by Firefox to the ground truth.

10

Session Date Interface Duration Nodes Edges Trees Lost Children Orphans
A 2012-02-23 wlan0 1:16:48 1,700 1,457 10 1 242
B 2012-04-03 eth0 0:51:33 3,224 3,026 20 57 141
C 2012-04-05 wlan0 0:13:08 1,851 1,747 10 18 86
D 2012-04-10 wlan0 0:53:31 11,006 10,410 40 67 529
E 2012-04-13 wlan0 0:08:23 627 571 7 4 52

Totals 3:23:22 18,408 17,211 87 147 1,050

Table 5: Information about each data set collected.

6.2 Preliminary Analysis
Using the capture-loss.bro Bro script, we had a
mean Bro event loss of 0.13% and mean byte loss of
0.70% for our network traffic.

From Table 5 we see that of our 18,408 nodes, 1,197
have no parent (6.5%). Of these parentless nodes, 147 are
lost children (12.3%) and 1,050 are orphans (87.7%). 87
of the nodes with no parent have children and are there-
fore considered a tree. 24 of the nodes at the top of these
trees are lost children and 63 are orphans.

23.4% of the nodes had multiple potential parents, with
the parent chosen using our tie breaker heuristic in Sec-
tion 5.2.

6.3 Referer Complexities
We found 96.1% of the edges in our data set through ref-
erers (16,535 out of 17,211). Of these edges we needed
URL sanitization, discussed in Section 4.1, to find 2,627
(15.9%). This means 15.9% of the raw referers do not
match the raw requested URL they are referring to.

Of these 2,627 edges, 94.7% did not match because of
inconsistent browser escaping. Table 6 shows the num-
ber of requested URLs and cause URLs on each side of
an edge per number of times each had to be unescaped.
Notice that there is a general trend of escaping the cause
URL one more time than the requested URL.

The step after unescaping the URLs, discussed in Sec-
tion 4.1, is to remove the fragment. Using this step, we
found the other 5.3% of the edges, where the raw ref-
erer did not match the requested URL it was referring to.
When analyzing the Gretel only data set, we did not actu-
ally need to check for the last two URL sanitization steps
because Bro automatically converts UTF-8 into ASCII
and replaces newlines. However, we needed the last two

Count of unescapes
for requested URLs

0 1 2 Total

Count of
unescapes for
cause URLs

0 0 0 0 0
1 1,628 333 0 1,961
2 0 657 0 657
3 0 0 9 9

Total 1,628 990 9 2,627

Table 6: Number of requested URLs and cause URLs con-
nected by an edge per number of required unescapes for
each URL. This table shows URLs that only matched be-
cause of sanitization.

steps for our ground truth because Firefox output has dif-
ferent formatting; see Section 5.3.2 for details.

6.4 Redirects

676 (3.7%) of the nodes represent requests due to redirect
replies. We found that some of these nodes are chained to-
gether, with the longest path containing 20 nodes. There-
fore while there are 676 redirect nodes, there are only 472
paths; 16.7% of these have more than one redirected node.

We were able to find the parent for all but four of our
nodes caused by redirects. Of the nodes we found par-
ents for, their referer matched the referer of the original
redirected HTTP request.

The referer matching the originally redirected HTTP
request is also consistent with the 58 nodes without a ref-
erer. If we only used the referer heuristic these nodes
would be considered orphans, even though we can iden-
tify their cause.

11

 1

 10

 100

 1000

 10000

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

C
o

u
n
t

o
f

N
o

d
e
 P

a
ir

s

Difference (s)

Figure 5: Histogram of timestamp difference between
paired Gretel and ground truth nodes. Notice the y-axis
uses a log scale.

7 Comparison with Ground Truth

Comparing the ground truth to the results from Gretel re-
quires comparing two forests of trees. Unfortunately, with
so many nodes and edges, ambiguities arise on how to
match between the two forests. This is especially true be-
cause some nodes have the same requested URL.

In this section we first describe how we compared the
two forests. Then we discuss our overall accuracy. Fi-
nally, we look at Gretel’s lost children and orphans with
the added context of the ground truth.

7.1 Implementation

We compared the two forests of trees by using a node-
centered approach. First, we did this by pairing nodes
from the ground truth causation tree forest to nodes in
Gretel’s causation tree forest. Only after we match the
nodes, do we look at the edges by considering the edge
that connects a node to its parent.

To pair ground truth and Gretel nodes, we used each
node’s meta-data. This greatly simplifies the problem, but
it does not eliminate all the complexities.

Below are the steps we make when comparing the two
forests.

1. For each node in the ground truth: Find all nodes
from Gretel that match with the following criteria:

(a) Request URLs are equal,

(b) Same scheme, and

(c) Timestamps are within 2.0s of each other

2. Tie Breaker: If there is more than one possible
match:

(a) Choose the node with the most matching chil-
dren URLs

(b) Otherwise choose the one closest in time

The same scheme condition is needed because the Fire-
fox plugin can see both HTTP and HTTPS, however Gre-
tel cannot and therefore has no HTTPS nodes.

We have the timestamp difference limit because there
is a slight difference in the Firefox plugin and Bro times-
tamps and URLs can be requested multiple times. There-
fore to reduce the possibilities of incorrect node pairings
we limit how far apart the nodes’ timestamps can be. Fig-
ure 5 shows a histogram of the time differences between
Gretel and ground truth node pairs. Note the log scaling
on the y-axis. 97 (0.5%) of the node pairs had the Gretel
node’s timestamp before the ground truth node’s times-
tamp. 98% of the paired nodes were within 1.0s of each
other, so we considered 2.0s adequate.

We used the tie breaker to find the matching Gretel
node for 8.9% of the ground truth nodes. 4.3% of these
ties used the “most matching children URLs” rule, while
95.7% used time. This is not surprising because 89.2%
of the nodes in our data set do not have children. Even
though our system used time more often, we still want the
number of matching children to take precedence over time
when such information is available.

7.2 Overall Accuracy

Since there are two steps in our comparison, our accuracy
is also in two parts. First is how many nodes were paired
between the ground truth and Gretel data sets. Figure 6
shows the percentage of ground truth nodes we were able
to pair with a Gretel node.

Second is how many of these pairs of nodes agree on
the paired parent nodes. There are 10 possible parent child
relationship scenarios for the paired nodes, shown in Fig-
ure 7. A circle represents a ground truth node, while a

12

(a) Agree has parent (91.42%) (b) Agree no parent (1.75%) (c) Parents paired to other nodes (1.91%)

(d) Parents not paired (0.16%) (e) Ground truth node parent unpaired, Gretel
node parent paired (0.00%)

(f) Ground truth node parent paired, Gretel node
parent unpaired (0.01%)

(g) Only ground truth node has
paired parent (4.59%)

(h) Only Gretel node has paired
parent (0.05%)

(i) Only ground truth node has un-
paired parent (0.12%)

(j) Only Gretel node has unpaired
parent (0.00%)

Figure 7: All possible parent child relationship scenarios after pairing a ground truth node, depicted as a circle, with a
Gretel node, depicted as a square. The percent of occurrences for each scenario in our dat set are in parenthesis

13

 90

 92

 94

 96

 98

 100

A B C D E

P
er

ce
n
ta

g
e

(%
)

Node Set

Node Matching Accuracy

Figure 6: Percent of ground truth nodes paired with a node
in Gretel’s data set. Note the y-axis does not start at 0.

square represents a Gretel node. An ellipse around both
means they are paired together.

Figures 7(a) and 7(b) are the two scenarios where the
paired ground truth and Gretel node agree on their parent.
All the other figures, 7(c) to 7(j), are how a pair of nodes
can disagree. Figures 7(c) through 7(f) are when both
nodes in the pair have a parent, but the parent is paired
with a different node or not paired at all. Figures 7(g)
through 7(j) are when only one of the nodes has a parent
and that parent is either paired or not.

Within the caption of each subfigure in Figure 7 is the
percent of times that scenario occurred. 93% of the paired
nodes agreed on the parent or agreed there is no parent.
7% of the paired nodes disagreed. Looking further we
found of the node pairs that disagreed, 64% were in sce-
nario 7(g), where only the ground truth node has a parent
and it is paired with a Gretel node. This made up 5% of all
paired nodes. Also 27% of disagreeing nodes pairs were
in scenario 7(c), where both nodes in the pair have a par-
ent but those parents are paired to different nodes, which
is 2% of all paired nodes.

7.3 Gretel’s Lost Children
There are a total of 147 lost children in Gretel’s causation
inference of our data set, 0.8% of the total nodes. A lost
child is a node with a cause URL, but we could not find the
node with that cause URL. Table 7 shows the breakdown
of different kinds of lost children.

Categories of lost children Proportion
Flash 81%
Firefox remembered tabs 16%
API Call 3%

Table 7: Categories of lost children, sorted in descending
percent order.

The majority of our lost children were requests by
Flash, identified by the cause URL having “.swf” as the
ending. In Table 8 URLs A1 and A2 are examples of
URLs with Flash file URL Ac as their cause URL. How-
ever there is no node with URL Ac as its URL, only nodes
with the same URL but no query string, like URL A′c.
When looking at the ground truth node paired with these
lost children we found its cause URL is completely dif-
ferent from the Gretel node’s cause URL, URL A′′c . We
also found the ground truth node had no referer URL, but
the corresponding Gretel node’s cause URL came from
the referer header. This is more evidence of unexpected
Firefox behavior and the need for calibration. At this time
we were not able to find why it ocurred.

The “Firefox remembered tabs” lost children are HTTP
requests made by Firefox when loading tabs saved from
the previous Firefox session. We identify them as nodes
requested during the first 30 seconds of the session. An
HTTP request made when loading the previous session’s
tabs could be considered lost because the request that
would be its parent is in the previous session of Firefox,
which is an unknown time before.

The last of the lost children were API calls, identified
as URLs containg a “?” followed by a query string, such
as example URL B in Table 8. We could not identify a
consistent pattern for why these nodes were lost children.

7.4 Gretel’s Orphans

In our data set there were 1,050 orphans, 5.7% of the total
nodes. Orphans are similar to lost children because they
have no parent, but differ because they do not have a cause
URL identifying their parent node. Table 9 shows the dif-
ferent categories of orphans and the percent of orphans in
that category. We were able to categorize all but 3% of
the orphans.

The majority of our orphans were API calls. We iden-

14

A1 receive.inplay.tubemogul.com/StreamReceiver/services
A2 inplay-rcv25.tubemogul.com/StreamReceiver/services
Ac static.inplay.tubemogul.com/core/core-as3-v4.5.3.swf?playerID=P-RS5-841&[...]
A′c static.inplay.tubemogul.com/core/core-as3-v4.5.3.swf
A′′c www.esquire.com/features/young-people-in-the-recession-0412-3
B api.invideous.com/plugin/get_user_info?QUERY STRING
C safebrowsing-cache.google.com/safebrowsing/rd/[...]
D1 www.google.com/favicon.ico
D2 s2.youtube.com/crossdomain.xml
E1 ocsp.entrust.net/
F1 start.ubuntu.com/10.04/[...]
F2 fxfeeds.mozilla.com/[...]
G www.google.com/search?client=ubuntu&channel=fs&q=tablet reviews&[...]

Table 8: Examples of different URLs, text in bold represent URL portions removed for brevity.

Categories of orphans Proportion
API Call 40%
System file 21%
Firefox remembered tabs 13%
Picture 10%
Flash 9%
Security 3%
Unknown 3%
Root (True Orphan) 1%

Table 9: Orphan categories, sorted in descending percent
order.

tified them by looking for a “?” and a query string af-
terwards, same as lost children, and manual examination
that identified common API calls. For example URL C
in Table 8 is one of many Google API calls used by Fire-
fox to detect phishing. When looking at the paired ground
truth node for these orphan API call nodes, some also do
not have parents. This is especially true for those nodes
with URLs like the phishing detection with Google’s API.
These nodes may be roots or true orphans, in that they do
not have an HTTP request as their cause. Instead, the
browser is their cause.

System files are favicon.ico and crossdomain.xml files
for a website, like URL D1 and D2 in Table 8. Pictures
are any files that ended with jpg, png, or gif. We looked at
the corresponding ground truth node for these two types
of nodes and found they have parents. However the referer

is not set nor does this involve redirects, therefore Gretel
would not be able to identify a cause URL with its current
heuristics. At this time why Firefox did not set the referer
header is not known.

Security nodes are those with URLs recognized as se-
curity certificates, such as URL E1, identified when the
URL references a domain’s OCSP subdomain. The paired
ground truth node for these requests also did not have a
parent nor a cause URL. Why and when Firefox sends a
request for a security certificate is not clear and therefore
we do not know whether these requests are orphans or
roots.

We identified 13 of the 1,050 orphans as roots or true
orphans. A node was considered a true orphan if it was an
automatic request by Firefox on startup, like URLs F1 and
F2, or a search using the Google search toolbar in Firefox,
URL G. We were able to confirm this by looking at the
paired ground truth node and checking if its cause URL
is chrome://browser/content/browser.xul,
which is referring to the browser.

8 Conclusion

Previous work attempted to infer the relationships be-
tween HTTP requests, usually by using only the referer
header. However previous work does not always explain
how the referer is used to infer the relationships, which
can affect their level of accuracy. Some also did not

15

calibrate their system, which requries checking their in-
ferred relationships against known ground truth. Not un-
derstanding their accuracy, potentially skews their results.

To better understand HTTP request relationships we in-
troduced the idea of causation trees. Causation trees are a
representation of Internet traffic at the level of HTTP re-
quests. They show which HTTP request caused another to
occur and provide a means to understand Internet traffic at
a finer granularity than previously researched.

We then discussed an approach for sound causation tree
inference, as well as potential pitfalls and complexities
when creating the trees and collecting the ground truth.

Finally we presented Gretel, a first attempt at creating
causation trees. When comparing its results to our ground
truth using our control data set, we achieved over 95%
node pairing and 93% edge agreement within our trees.
However, as we said before, our data is from a small con-
trolled sample of network traffic. Therefore our accuracy
should more show the strength of our existential proofs by
example that behaviors like this can happen.

9 Possible Refinements
At the time of this writing more can be done for inferring
sound causation between HTTP requests. Below is a list
of possible refinements.

• To discern between voluntary and automatic HTTP
requests, use known voluntary/automatic requests to
create probability distributions of the times between
the request and its parent. The distribution for each
possibility can then be used to label the unknown
voluntary/automatic requests. The time difference
between the parent and the unknown request can be
compared to the distribution to find the probability it
is voluntary or automatic; see Section 2 for defini-
tions.

• Use URL parameter to help determine the parent of
a node. API calls, ActiveScript, and Flash do not
necessarily have the referer set, but the parameters
may provide enough information. However it can-
not be assumed the parameter field name is always
the same (e.g., YouTube.com uses a mix of docid,
video id, and v as the parameter field name holding
the video’s ID).

• More information is available than what we used
for Gretel. Appendix A lists all the information we
recorded, with anything we did not use marked.

10 Acknowledgements
We would like to acknowledge the great help many have
given in this project. Vern Paxson, who advised this
work and guided the writing of this report. Mobin Javed,
who also worked on Gretel while this was a class project.
David Wagner, who served as our second reader and also
guided the writing of this report. Justin Samuel, who
kindly let us use his RequestPolicy code and answered
questions as it was altered for our needs. And last, but
not least, my husband Chris Martinez, who supported me
through the highs and lows of this work.

References
[1] Alexa the web information company. www.alexa.com.

[2] Mozilla firefox. www.mozilla.org/en-US/
firefox/new/.

[3] R. Albert, H. Jeong, and A.-L. Barabási. Internet: Diam-
eter of the world-wide web. Nature, 401(6749):130–131,
1999.

[4] A. Barth, C. Jackson, and J. C. Mitchell. Robust defenses
for cross-site request forgery. In Proceedings of the 15th
ACM conference on Computer and communications secu-
rity, CCS ’08, pages 75–88, New York, NY, USA, 2008.
ACM.

[5] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Ra-
jagopalan, R. Stata, A. Tomkins, and J. Wiener. Graph
structure in the web. Computer networks, 33(1):309–320,
2000.

[6] M. Butkiewic, H. V. Madhyastha, and V. Sekar. Under-
standing website complexity: Measurements, metrics, and
implications. In In Proc. Internet Measurement Confer-
ence, 2011.

[7] S. Chakrabarti, D. A. Gibson, and K. S. McCurley. Surfing
the web backwards. Computer Networks, 31(11-16):1679
– 1693, 1999.

[8] D. Donato, L. Laura, S. Leonardi, and S. Millozzi. Large
scale properties of the webgraph. The European Physi-
cal Journal B-Condensed Matter and Complex Systems,
38(2):239–243, 2004.

16

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. RFC 2616: Hypertex trans-
fer protocol – HTTP/1.1, 1999.

[10] S. Ihm and V. S. Pai. Towards understanding modern
web traffic. In Proceedings of the 2011 ACM SIGCOMM
conference on Internet measurement conference, IMC ’11,
pages 295–312, New York, NY, USA, 2011. ACM.

[11] M. R. Meiss, F. Menczer, S. Fortunato, A. Flammini, and
A. Vespignani. Ranking web sites with real user traf-
fic. In Proceedings of the international conference on Web
search and web data mining, WSDM ’08, pages 65–76,
New York, NY, USA, 2008. ACM.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The pager-
ank citation ranking: bringing order to the web. 1999.

[13] V. Paxson. Bro: a system for detecting network intruders
in real-time. Computer Networks, 31(23-24):2435 – 2463,
1999.

[14] F. Qiu, Z. Liu, and J. Cho. Analysis of user web traffic
with a focus on search activities. In In Proc. International
Workshop on the Web and Databases (WebDB, pages 103–
108, 2005.

[15] J. Samuel. RequestPolicy. www.requestpolicy.
com.

[16] M. Serrano, A. Maguitman, M. Boguñá, S. Fortunato, and
A. Vespignani. Decoding the structure of the www: A
comparative analysis of web crawls. ACM Transactions
on the Web (TWEB), 1(2):10, 2007.

17

A Recorded Network Information

HTTP Request
• Network time

• TCP:

– Source IP address

– Source port

– Destination IP address

– Destination port

• URL scheme∗

• URL

• URL fragment∗

• Origin∗

• User agent

• Cookies∗

HTTP Response
• Network time

• TCP:

– Source IP address

– Source port

– Destination IP address

– Destination port

• URL

• Status code

• Location header value

• Content type∗

∗Information not used in our analysis

18

