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ABSTRACT

Constructed-response, code-tracing questions (“What would Python
print?”) are good formative assessments. Unlike selected-response
questions simply marked correct or incorrect, a constructed wrong
answer can provide information on a student’s particular difficulty.
However, constructed-response questions are resource-intensive to
grade manually, and machine grading yields only correct/incorrect
information. We analyzed incorrect constructed responses from
code-tracing questions in an introductory computer science course
to investigate whether a small subsample of such responses could
provide enough information to make inspecting the subsample
worth the effort, and if so, how best to choose this subsample. In
addition, we sought to understand what insights into student diffi-
culties could be gained from such an analysis.

We found that ~5% of the most frequently given wrong an-
swers cover ~60% of the wrong constructed responses. Inspecting
these wrong answers, we found similar misconceptions as those
in prior work, additional difficulties not identified in prior work
regarding language-specific constructs and data structures, and non-
misconception “slips” that cause students to get questions wrong,
such as syntax errors, sloppy reading/writing.

Our methodology is much less time-consuming than full manual
inspection, yet yields new and durable insight into student difficul-
ties that can be used for several purposes, including expanding a
concept inventory, creating summative assessments, and creating
effective distractors for selected-response assessments.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICER’17, August 18-20, 2017, Tacoma, WA, USA.

© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4968-0/17/08...$15.00

DOI: http://dx.doi.org/10.1145/3105726.3106188

KEYWORDS

constructed-response questions; introductory computer science;
education; massive courses; formative assessments; student errors;
code-tracing questions

1 INTRODUCTION

The goals of formative assessment are to provide feedback to the
student to improve their attainment in cases of error and to in-
form the teacher as to how to modify or improve pedagogy to
address weaknesses in student attainment [1]. In large-enrollment
courses, selected-response questions (e.g. multiple choice) are often
used as both formative and summative assessment instruments
because they can be mechanically graded. However, it is difficult to
write selected-response questions whose distractors effectively tar-
get common student misunderstandings [13]. Writing constructed-
response questions (CRQs), such as filling in blanks, is easier be-
cause the teacher does not need to create specific distractors. Ad-
ditionally, requiring the student to construct a response may also
provide richer insight into their level of understanding compared
to asking them to identify a correct choice from a list.

However, manually analyzing constructed responses to deter-
mine student errors can be prohibitively time-consuming in large-
enrollment courses. We considered the wrong constructed responses
from code-tracing questions and set about to answer the following
research questions:

e R1: Can analyzing a small subsample of wrong constructed
responses yield information about student difficulties that
makes it worth the time investment?

- R1.A: If so, assuming the same questions are used in
subsequent course offerings, can the information so
gained be applied to future course offerings, further
amortizing the time investment?

— R1.B: If so, how should that subsample be chosen and
how large must it be?



e R2: What insights about student difficulties can be gained
from analyzing the subsample?

We address these questions by examining a corpus of 332,829
responses to 92 code-tracing, univalent (having a single correct
answer) CRQs. The data comes from responses by 4,068 students
in 3 offerings of a large-enrollment introductory computer science
(CS) course. We found that a 5% subsample of the most frequent
wrong answers covers *60% of the wrong constructed responses.
The frequent wrong answers are consistent in how much they
overlap for a given question set and semester pair, but the level of
overlap varies between question sets and semester pairs. Therefore
frequency should be taken into account when choosing a sample
to inspect.

In addition to discovering student difficulties similar to those
found in prior work, we also identify new difficulties not reported in
prior work such as language-specific constructs and data structures.

After defining terminology and surveying related work, we de-
scribe our data set and the emergent coding process we used to
analyze it. We then report on how our analysis informs the answers
to our research questions. We conclude with a discussion on known
and potential uses for our findings.

2 TERMINOLOGY

e Machine-marked-wrong answer (MMWA) - A (question,
string) pair the automated system marks as incorrect.

e Wrong answer - A MMWA that is actually incorrect, as op-
posed to a false positive marked incorrect by the automated
system.

® Response - A (student, MMWA) pair; many students may
give the same MMWA.

e Tag - Human experts’ interpretation of a specific student
difficulty that could lead to an observed student error.

o Taggable - A wrong answer is taggable if at least one tag
can be applied to it.

3 RELATED WORK

Misconceptions leading to student programming errors have been
intensively studied. Clancy [5] reviews potential causes of program-
ming misconceptions and inappropriate attitudes that interfere with
learning programming. Sorva [17] provides an extensive catalog
of novice misconceptions about introductory programming con-
tent. We find similar misconceptions, but also new misconceptions
about data structures and language-specific constructs, which are
less studied in prior work. In addition, because we focused on how
students got wrong answers, we also found student difficulties with
syntax and sloppy reading or writing.

While machine-gradable selected-response exercises with carefully-

constructed distractors can reveal common student errors, effective
distractors are hard to create [13]. This is true especially in intro-
ductory programming courses, where instructors’ beliefs about
student errors have only a weak correlation with the errors stu-
dents actually make [3]. Others have therefore attempted to extract
information about CS students’ misunderstandings from various
types of CRQs, such as code explanations [10, 15] or code submis-
sions [7, 9, 12, 14], programming process byproducts such as error
logs [4, 6], and univalent CRQs as in our work. Univalent CRQs

are particularly appealing: like other CRQs, they can reveal useful
information about student difficulties without requiring creation
of distractors in advance, but unlike other CRQs, they can be easily
machine-graded.

The closest work to ours is Sirkid and Sorva’s work analyzing
students’ missteps when using a visual simulation tool for program
tracing [16]. Students use the tool to indicate at each execution step
what they expect the code to do, and the tool records every student
mistake. The authors identified 200 mistakes each made by at least
10 students, and they analyzed the 26 most popular mistakes to
find them to be either a usability-related issue, previously-known
conceptual difficulty, or previously-unreported conceptual difficulty.
In contrast, our code-tracing questions elicit only a single answer
from the student, namely the overall result of running the code.
In addition, our tags, which code the way(s) students could arrive
at a wrong answer, are the equivalent of student mistakes but we
allow multiple tags that in combination or separately could cause
the wrong answer. Some questions include intermediate print
statements so we can gain more fine-grained information as the
student traces the code. In this regard, both systems encourage
students to fix earlier errors before continuing their code-tracing,
so we view them as complementary.

Finally, others outside CS have also used the content of wrong
answers to understand a student’s current knowledge. For basic
arithmetic problems, Tatusoka categorized student errors using a
two-dimensional Rule Space, with regions of this space representing
erroneous rules students use to solve the problems [19, 20]. We
instead assign as many tags as necessary to capture the individual
or combined student errors that would lead a student to arrive at a
wrong answer.

Another way to understand student difficulties is to construct
a student model; this is the approach of Repair Theory [2] and
systems such as PROUST [8] and MARCEL [18]. Building such
models requires enumerating both the student’s knowledge and a
“bug” list representing ways to mutate that knowledge. While our
technique does not result in an explicit student model, it provides
insight into common student difficulties without this up-front cost.

4 DATA COLLECTION AND ANALYSIS

Our data comes from three recent offerings of a large-enrollment
introductory CS course that teaches programming and the basics of
programming abstraction using Python and Scheme. One formative-
assessment activity consists of univalent CRQs involving code-
tracing: a typical question (Figure 1, left) presents 1 — 20 lines of
code and asks the student what the interpreter’s state will be at
various points during execution. A question set groups questions
about a similar topic, for example, lambda-expressions.

4.1 Data Collection and Preprocessing

The questions are administered through an automatic system run-
ning in a terminal window that poses each question and prevents
the student from proceeding to the next question until the current
one has been answered correctly; unlimited attempts are allowed.
Grading is based on completion of the question sets. We record and
timestamp every student response; this corpus forms the basis of
our dataset.
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Figure 1: The flow of assigning categories and tags to
MMWaAEs. Left: question set example with two questions on
control flow with the correct answers in dark green round-
corner rectangles. MMWAs for these questions are in the
middle, all with a red bold border. These MM WA s are catego-
rized as: “conceptually correct”, “not an answer”, or “student
error”; the top two categories are false positives. Wrong an-
swers with yellow/non-transparent rounded-corner rectan-
gles are either taggable (top three answers have tags, shown
in blue circles) or not taggable (bottom answer).

We cleaned the data by removing all blank answers and any
duplicate responses made by the same student. Since the questions
are answer-until-correct, every student will have the same set of
correct responses, so we examine only their machine-marked wrong
responses. Therefore, all future discussion of responses is only
about the MMWAs. We did not do any merging of answers, as we
found that fixing common typos such as ‘TRue’ for ‘True’ barely
changed our results.

We collected data from the Fall 2015, Spring 2016, and Fall 2016
offerings of the course. Different instructors taught the Fall versus
Spring offerings. We report our findings on 11 question sets.

As shown in Figure 1, one weakness of the automatic question
administration system is its inflexibility in grading answers, result-
ing in two kinds of false positives. A typo might be the student
entering ‘bgi’ rather than the correct answer ‘big’; a human
instructor would likely recognize that the student was trying to
provide the correct answer. A mode error might be a student typing
‘eixt()’ rather than ‘exit()’ when intending to exit a session;
these responses are also marked as wrong, even though the student
was not attempting to answer the question at all. In the next sec-
tion, we explain how we deal with such responses in our analysis
process.

Figure 2 and Figure 3 summarize information about the question
sets we used, ordered chronologically with some order swapping be-
tween semesters. Although some question sets showed significant
variation in the total number of unique MMWAs across semesters
(Figure 2) or percentage of students making at least one mistake
when tackling that question set (Figure 3), we find that the prop-
erties of the frequent wrong answers remain relatively consistent,
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Figure 2: Distribution of the number of unique MMWAs for
each semester and each question set. Ex: Question Set 6 had
~1,000 unique MMWAs for Fall 2015 and Spring 2016 but
~2,250 for Fall 2016.

as we describe in the next section. A noteworthy outlier is Ques-
tion Set 1, which has outlier behavior in almost all of our analyses
because it tests simple Boolean logic and is therefore easier than
the other question sets. In addition, in Fall 2016 that question set
was optional, and stronger students (who would be more likely to
get all the questions correct on the first attempt) may have simply
skipped it.

4.2 Tagging Process

Three content experts inspected the MMWAs. Two were experts
who did well in the course and continued on to higher-level courses;
the third expert was a former teaching assistant (TA) for the course.
For each question set, we first chose a subset of MMWAs. For this
set of MMWAS, we completed two phases with multiple steps each.

Our process uses emergent coding to create and assign the
tags [11]. Section 5.4 includes details of how much time each phase
took, what MMWAs we inspected, inter-rater-reliability, and results
of the tagging process.

Phase 1: Tag Creation

(1) Propose Tags: One expert inspects the MMWA set to gen-
erate a set of proposed tags with a name, description, and
example. (Time here recouped during Phase 2, Step 1 & 2)

(2) Finalize Tags: All three experts discuss the proposed list
until deciding on a revised list of final tags.

Phase 2: Tagging Answer Set

(1) Categorize: Two experts separately inspect the MMWA set
and assigned each MMWA a category (middle of Figure 1).
e conceptually correct: marked wrong due to a typo
e not an answer: marked wrong but was not intended
as an answer because of a mode error or misunder-
standing what text contains the question.
e student error: conceptual errors and carelessness,
further discussed in a later section.
(2) Assign Tags: Those answers categorized as “student error”
are assigned zero or more tags (right of Figure 1).
(3) Consolidate/Discuss: The two experts consolidate their
assignments into a single set of category and tag(s), dis-
cussing until they reach agreement.



Fall 2015 Spring 2016 Fall 2016
, % % %
Question Set Qélestlon Students | Responses | Students | Students | Responses | Students | Students | Responses | Students
ount Wrong Wrong Wrong

1 Booleans 3 1,271 1,337 54 348 1,046 61 1,093 3,135 33
2 Short Circuit 10 1,283 9,570 95 847 5,234 94 1,692 19,032 99
3 if...else 11 1,293 8,145 97 840 5,843 97 1,022 6,901 99
4 Loops 4 1,278 4,744 31 330 3,766 87 1,675 13,103 96
5 Lambdas 12 1,239 23,124 99 827 19,316 99 1,614 37,666 99
6 HOF 6 1,203 9,698 93 783 8,624 96 1,581 27,121 99
7 OOP 5 907 4,146 92 767 4,147 94 1,516 5,431 90
8 OOP 19 1,042 12,344 99 767 10,760 99 1,510 28,199 99
9 Link Lists 9 1,010 5,543 91 753 4,525 92 1,479 6,478 87
10 Scheme Lists 11 1,040 17,050 99 739 12,791 99 359 3,614 100
11 Iterators 2 870 5,834 92 722 4,562 94 - - -

Figure 3: Statistics on the question sets used for this analysis for all course offerings. “HOF” stands for Higher Order Functions
and “O0P” for object-oriented programming. “Students” is the number of students attempting that question set; low values
are often due to the question sets being optional in certain semesters. “% Students Wrong” is the percentage of students who

made at least one error on any question in the question set.

(4) Review/Confirm: During initial training of experts, a third
expert inspects consolidated assignments and confirms
them. If this expert disagrees, there is a discussion among
all three experts until they reach agreement.

5 RESULTS
5.1 R1: Useful to Examine Small Subset of
MMWASs?

Our main findings are that frequent MMWAs appear much more
frequently than infrequent ones, and that for most students, most of
their wrong answers are in the frequent set. Therefore, inspecting a
small subset of these most frequent MMWA s results in good cover-
age of cumulative responses covered, rapidly decreasing response
coverage, and good coverage of a student’s individual MMWAs.
This section provides details to support the above findings, which
affirmatively answer R1. The results presented refer to the Spring
2016 offering, as there was little difference among the three course
offerings. We will note differences as appropriate.

Frequent wrong answers are very frequent. Figure 4 shows
the behavior of the 1,000 most frequent MMWAs. Even though
Figure 2 shows a wide range in the number of unique MMWAs
per question set and per course offering, the cumulative percent
of responses covered quickly reaches 50% using no more than the
top-100 MMWAs for each question set. In other words, to cover
the majority of responses from students, less than 100 MMWAs
will need to be inspected per question set, with most question
sets needing less than 50. This behavior is confirmed by noticing
that the percent of students that submit a given unique MMWA
quickly drops to below ~5% by 100 MMWAs, even though almost
all question sets have over 500 unique MMWA .

For most students, most of their MMWAs are frequent. If
we, therefore, use the top-100 unique MMWA s as a simple definition
of “frequent MMWAS,” we can ask how many students have a given
percentage of their MMWAs within that top-100 frequent set. As

100 ————rrrrrry -
w80} zZ -
02"3 // 7///
%g 60 |- zZ/z = n
50. ‘s
o 40L 27 .
§§é 7 [ 7
Ok 20} “Z~ -
0 1 1
0 —
P ]
[
q) —
©
2
3 ]
R ]
103
— 1 — 4 - 7 — 10
—_— 2 — 5 - 8 - 11
— 3 — 6 - 9

Figure 4: Frequency of the unique MMWAs in Spring 2016.
Each line represents a question set. The x-axis (log scale) is
the 1,000 most frequently occurring MMWAs ordered by fre-
quency. Upper: Cumulative percent of responses covered by
up to the Xth most frequent answer, e.g. Question Set 1’s top
10 MMWA covered ~80% of wrong responses. Lower: Percent
of students that submitted the Xth most frequent MMWA,
e.g. Question Set 11’s 10th most frequent MMWA was sub-
mitted by ~42% of the students that submitted a wrong re-
sponse to this question set.
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Figure 5: CDF showing the percent of students that have at
least the x-axis percentage of their MMWAs in the top 100.
Ex: For Question Set 10, ~75% of students have at least ~80%
of their MMWA in this question set’s top 100.

the CDF in Figure 5 shows, for any given question set, 80% or
more of the students have the majority of their MMWAs in the top
100. Therefore, most of a student’s MMWAs are in the top 100 and
the infrequent wrong answers are coming from many students as
opposed to a concentrated subset of students. This gives us greater
confidence that by inspecting only the most frequent MMWAs, we
are examining at least some, if not the majority of, MMWAs from
every student.

5.2 R1.A: Are frequent MMWAs stable across
course offerings?

Figure 6 shows the overlap of the most frequent MMWASs between
a pair of course offerings. (When ordering MMWAs, we broke ties
arbitrarily by sorting the answer text alphabetically.) The beginning
of the graph is noisy due to a small denominator (the x-axis value).
The amount of non-overlapping frequent MMWA s is an estimate of
how many MMWAs would need to be inspected in a new offering
of the course.

For some question sets there is a high level of overlap between
course offerings. Almost all question sets for all pairs of semesters
stabilize starting at *50 MMWAs and stay stable until ~150 MMWAs
or beyond. 150 is well past the number of MMWAs we need to
inspect to cover the majority of responses. Therefore, there will
always be some tagging that can be reused, but the amount depends
on the question set and other factors that are currently unclear.

The differences between the pairs of semesters is unclear, es-
pecially since the Fall 2015 and 2016 offerings were taught by the
same instructor, yet have lower MMWA overlap than Fall 2015 with
Spring 2016 (since the course material did not change, we would
expect that a change of instructor would result in lower overlap
than the same instructor teaching the same material twice.). Our
best guess as to why this is happening is that the TA staff between
the Fall 2015 and Spring 2016 overlapped much more than with the
Fall 2016 TA staff. Each course offering had 50 to 87 TAs versus a
single lecturer, so it is possible that a teaching effect happening at
the TA level is causing the differences in the MMWAs overlap.
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Figure 6: Percent of MMWASs that appear in a pair of semes-
ter’s X most frequent MM WA, e.g.: comparing Fall 2015 and
Spring 2016, ~85% of Question Set 6’s top-100 MMWASs over-
lapped between the semesters. Note: Fall 2016 did not have
Question Set 11 to compare with.
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Figure 7: Empirical Monte Carlo analysis results when sam-
pling x-axis students 50 times and plotting the mean overlap
across the samples with the entire course offering’s top-100
most frequent wrong answers for each question set. Ex: For
Question Set 5, when we sampled 100 students 50 times, the
mean overlap of the top-100 MMWA with the entire cohort’s
top-100 MMWA was x~90%.



Tagging Step Human effort required
Finalize Tags ~ 10 mins./tag

Assign Tags ~ 1.5 mins./answer
Consolidate/Discuss | = 0.5 mins./answer
Review/Confirm ~ 0.1 mins./answer

Figure 8: Human-expert time required for each tagging step.
Total time was ~87 tagger-hours to create tags and ~36
expert-hours to tag the FrequentSet. We also spent =127
expert-hours to tag the StudentSet, required only for our
own validation and not integral to the technique.

Figure 7 shows the result of an empirical Monte Carlo simulation
on the Spring 2016’s data using the following steps and the simple
definition of the top-100 unique MMWA s as “frequent”: (1) Sample
successive values of N students (x-axis value), 50 times, (2) For each
sample compute the overlap of the top-100 most frequent MMWAs
between the sample and the entire offering, and (3) Plot the mean
overlap across the samples.

Figure 7 shows high overlap is achieved between 150 and 250
students, with marginal returns afterward. (Question Set 1 once
again is an outlier, most likely due to how few unique MMWAs it
had.) Therefore, given our data, frequent MMWAs are stable for a
much smaller course than the size we had available (enrollments
between 800 and 1,700).

5.3 R1.B: How to choose subsample, and how
large?

Using taggability (whether or not a wrong answer has a tag) as a
proxy for information about student difficulties, our main finding
is that frequently-occurring wrong answers are more likely to yield
information about student difficulties than rarely-occurring ones,
suggesting that the subsample should be created by choosing the
most “popular” wrong answers.

We arrived at this conclusion by applying our tagging process
to two different MMWA sets. One focused on only the frequent
MMWAS per question set, hereafter the FrequentSet, and the other
was all MMWAs submitted by a subsample of 50 randomly cho-
sen students for each question set, hereafter the StudentSet. The
main deciding factor for choosing each MMWA set was how much
human-expert resources we had to tag these MMWAs. For the Fre-
quentSet, we chose 500 MMWAs to tag; for the StudentSet, after
getting a better sense of the resources required, we chose ~2,000.
Figure 8 summarizes the person-hours required.

For each question set, we ranked the MMWAs by frequency and
then used thresholds on two metrics: (1) total coverage—include
the most “popular” MMWAs that cover 60% of all responses, and
(2) marginal coverage—then add further MMWAs (still ranked by
frequency) as long as each additional MMWA covers at least 0.4%
more responses. The interaction between these metrics (Figure 4)
led us to explore their value ranges jointly; our parameter values
resulted in 508 MMWAs to tag.

Our inter-rater agreement when categorizing wrong answers in
the FrequentSet and StudentSet were 96.2% and 86.7% respectively.
The fraction of tags given by both experts was 33.2% for the Fre-
quentSet and 46.3% for the StudentSet. The tag overlap is lower than
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Figure 9: Number of MMWAs in each MMWA set per ques-
tion set. Al MMWAs in the FrequentSet also appeared in the
StudentSet and therefore are counted in both bars. Ex: For
Question Set 6, the FrequentSet had ~50 MMWA and the Stu-
dentSet had ~250.

we would like, which could be for three possible reasons that we
will address in future work. First, since a question set tested a main
topic, a misapplied tag was usually misapplied for multiple answers.
Second, in some cases, one expert used a more specific tag than the
other, for example, “sloppily evaluating a variable” versus “sloppily
evaluating an attribute of a variable” (an important distinction in
Python). During consolidation, the more specific tag was always
used. The inter-rater-reliability scores were not compensated for
either of these situations. Third, taggers might need more training.
The FrequentSet was the first time tagging for our experts, so train-
ing occurred while tagging. The increase in agreement between
the FrequentSet and StudentSet, despite there being more wrong
answers to tag in the latter, supports this reasoning.

Despite the low agreement on tags, however, the agreement on
categories is high, supporting the assertion that frequent wrong
answers are more likely to be taggable. In addition, the main focus
of this work is on whether the wrong answer was tagged (and
therefore whether insights can be gained from it), as opposed to
which tag(s) it was given.

By design, there are many more MMWAs in the StudentSet than
the FrequentSet (Figure 9). However, the number of MMWAS per
question set is much more varied, making this method of choos-
ing MMWAs more likely to result in higher variability in which
MMWA:s are chosen. In addition, we found the StudentSet included
all the MMWAS in the FrequentSet because (in accord with intu-
ition) we were more likely to randomly choose a student that gave
a particular frequent MMWA than a particular rare one. Therefore,
the graph represents the Frequent MMWAs twice, once in the Fre-
quentSet and once in the StudentSet. This is further evidence that
the frequent MMWAs would be sufficient to yield information on
student difficulties that is representative of all MMWAs.

Figure 10 also shows that across question sets, there are more
MMWAS categorized as “conceptually correct” or “not an answer”
for the StudentSet than the FrequentSet. Since our interests are
mainly in MMWAs categorized as “student error” and the Fre-
quentSet yields relatively more of these, we have further support
that frequency is a good way to choose which MMWA s to inspect.



Frequent Student
NA C SE NA C SE
Mean 1.0% | 5.8% | 93.1% | 4.4% | 8.1% | 87.5%

Median 0% | 45% | 94.6% | 3.2% | 4.9% | 90.8%
Variance 0.1 0.3 0.4 0.2 0.4 0.4

Figure 10: Statistics on the % of MMWA per category for the
FrequentSet and StudentSet. NA - “Not an Answer,” C - “Con-
ceptually Correct,” and SE - “Student Error.”
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Figure 11: Percent of taggable wrong answers between the
frequent and infrequent wrong answers in the StudentSet.
Ex: For Question Set 6, ~67% of the frequent wrong answers
in the StudentSet were taggable and 40% of the infrequent
wrong answers were taggable. Note: All MMWA in the Fre-
quentSet are the frequent wrong answers in the StudentSet.

Finally, Figure 11 shows that the percentage of taggable MMWAs
is higher for the frequent wrong answers than the infrequent ones
for all but one question set. While the question sets are ordered
chronologically, it is unclear why the percentages are converging
but not stabilizing. However, since almost all question sets have
a higher percentage of taggable wrong answers for the frequent
wrong answers than infrequent wrong answers in the StudentSet,
we count this as further evidence that frequent MMWAs are more
informative than rare ones.

5.4 R2: What insights can be gained from
subsample?

We created a total of 173 tags, which is more than the catalog of
novice misconceptions provided by Sorva [17]. In addition, 63% of
our tags did not fit the topics in the catalog. This is because our
tags focus on what the student did to create the wrong answer,
as opposed to the conceptual idea the student misunderstood. In
Figure 12 we list the topics from the catalog and ones we created,
the number of tags for that topic, and an exemplar tag. Only an
exemplar tag is included due to space. A full discussion of the
insights we gained will be left to future work.

“Language-Specific Constructs” are tags about student difficulties
specific to the language, such as idioms, constructs, and implemen-
tations. “Syntax” tags focused on ways students were wrong due to
syntax errors or misunderstandings. “Sloppy” tags focused on ways
students either read the code they were tracing poorly or submitted
their answer without proofreading. Finally, we created the topic

“Data Structures” because, even though it is not as well studied
in prior work, we found student difficulties with data structures
using our analysis. We were able to do this because our data set
included questions testing concepts with linked lists, regular lists,
dictionaries, sets, and trees.

These insights were gained from question sets created by teach-
ing staff prior to this work and without a rigorous, data-driven
design process. We believe more insights could be gained through
an iterative process where current insights inform the design of new
questions, who’s wrong answers are then analyzed, and hopefully
more insights are gained. This we, also, leave to future work.

5.5 Research Question Summary

R1: Can analyzing a small subsample of wrong constructed
responses yield information about student difficulties that
makes it worth the time investment?

Yes, the frequent MMWAS constitute only a 5% subsample of the
MMWAs in the data set, yet the wrong answers in the FrequentSet
are more likely to be taggable.

R1.A: If so, assuming the same questions are used in sub-
sequent course offerings, can the information so gained be
applied to future course offerings, further amortizing the
time investment?

How much can be applied to another course offering is currently
inconclusive. The amount of overlap for a given question set and
pair of semesters is consistent between the most frequent ~50-150
wrong answers. However, how much it overlaps between a question
set and pair of semesters is highly dependent on the question set
and factors that are currently unclear, such as teaching effects.

R1.B: If so, how should that sample be chosen and how
large must it be?

We believe the best way to choose MMWAs is by first ordering
them by their frequency and then choosing the most frequent,
thresholding based on both the cumulative percent of responses
covered and the marginal additional coverage of each additional
MMWA. The parameter values can be chosen together based on
the number of human-expert hours available for tagging, with the
understanding that a lower threshold will affect the results of the
set’s representativeness and stability.

R2: What insights about student difficulties can be gained
from analyzing the subsample?

Using MMWA s from univalent-constructed-response, code-tracing
questions with our tagging process, we found both misconceptions
similar to those identified in prior work and new misconceptions
based on topics appearing in our assessments but not used in prior
work, such as difficulties with language-specific constructs and data
structures.

6 APPLICATIONS

When we shared our tags with the course’s teaching staff, they used
the tags to create univalent CRQs for the exams. The wrong answer
taggings could also be used to discover common student errors in
the class to then create targeted distractors for selected-response
assessments and to change the teaching materials to proactively
target those errors. In addition, analyzing the MMWAs categorized



Topic # of Exemplar Tag
Tags | Name Description Example Code (in Python)
General, 27 | Sequential if This WA demonstrates that the student believes | >>> x = 5
Control, OOP, statements are two if’s next to each other are actually an if..else | >>> if x <= 5: a =1
References, if...else clause >>> if x > 3: a =2
Misc >>> print(a)
1
Variable 22 | Expression not This WA demonstrates that the student doesnot | >>> a = 1 + 2
Assignment evaluated recognize the need to evaluate an expression | >>> a
and instead a code snippet is “passed around” | 1 * 2
Calls 15 | Evaluating a function | This WA demonstrates that the student believes | >>> f = lambda x: 1
name is a function call | when the name of a function is in a line of code | >>> f
(but not called) the function is being called. 1
Language 39 | List comprehension This WA demonstrates that the student believes | >>> [x for x in range(3)]
Specific does not return a list a list comprehension does not return a list, but | @
Constructs” just a value.
Syntax* 34 | List does not need This WA demonstrates that the student believes | >>> [x for x in range(3)]
commas a list does not need commas. [0 1 2]
Sloppy* 15 | Sloppy sorting This WA is wrong because the student is being | >>> sorted(['b','a','c'])
sloppy in how they are sorting the values ['a','c','b']
Data 21 | Link lists cannot cycle | This WA demonstrates that the student believes | >>> 1 = Link(1, Link(2, Link(3)))
Structures® that linked lists cannot link back to itself, soifa | >>> l.rest =1
line of code does that, it is as if did not happen. | >>> 1.rest.rest.first
2

Figure 12: The number of our tags per topic in Sorva’s catalog [17] with exemplars. Those with * are topics we created.

as “conceptually correct” can reveal how the system is poor at
marking answers correctly. This can lead to either improvements in
the automated system or in the questions to reduce such errors. For
the MMWA s categorized as “not an answer,” they can also be used
to understand ways to improve the question or the system. This
category led us to discover a confusing question where students
thought they were answering the comment that was written as
a question next to the code rather than predicting the output of
the code. Finally, wrong answer taggings can be used to develop
a model to detect student difficulties as they work through the
automatically graded assessments. When the model detects a stable
difficulty in the student, formative feedback could be delivered
immediately in situ.

If the wrong answers tagged in a prior offering of a course do
not cover the current offering, more wrong answers need to be
collected and tagged. However, the stability we found across cohorts
leads us to believe that the desired level of tagged frequent wrong
answers will eventually be achieved and/or the number of wrong
answers will never be so great as the initial effort of tagging. There
is, however, a caveat when using this technique between offerings.
If the teacher is using the formative assessments to inform changes
in teaching strategies, they are now tracking a moving target since
the cohorts are likely changing in their common errors based on
the instruction they receive.

7 CONCLUSION

We set out to investigate if the information gained from analyzing
responses from univalent-constructed-response, code-tracing ques-
tions is worth the effort expended. We analyzed a corpus of 332,829

responses to 92 questions by 4,068 students across 3 offerings of a
large-enrollment introductory CS course. We found inspecting the
frequent wrong answers are worth the opportunity cost because
they are a small sample compared to all the unique wrong answers
and cover a majority of the wrong responses. When comparing
the overlap of the frequent wrong answers between two course
offerings, our results show that the level of overlap is almost always
consistent for the frequent wrong answers, but that level varies
between question sets and course offering pairs.

In addition, we report on the insights we gained from inspecting
these frequent wrong answers. We found similar misconceptions
discussed in prior work. Our inspecting process focused on identi-
fying ways students arrive at wrong answers, so we also identified
student difficulties with syntax and how students can be sloppy
when they read the code or answer questions. Finally, we readily
found student difficulties with language-specific constructs (Python
and Scheme for this class) and data structures, areas with less prior
work on student misconceptions.
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